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1. Need for stochastic decision making in conflict situations

� In many practical situations, we need to make a decision.

� A naive commonsense understanding is that the decision needs to be
deterministic.

� If a person flips a coin to decide where to have lunch, this usually
means that this person does not care.

� In serious situations, we are supposed to think and make a thought-of
decision.

� In their seminal book on game theory, von Neumann and Morgenstern
give a good example of such an attitude.

� If an admiral explains that he selected a route for the ships by flipping
a coin, this admiral will be dismissed right away.



2. Need for stochastic decision making in conflict situations
(cont-d)

� However, in conflict situations, it is often advantageous to make
stochastic decisions.

� For example, in rock-paper-scissor game, a person applying a deter-
ministic strategy will lose.

� The optimal strategy is to select each of the three possible moves with
equal probability 1/3.



3. But do we need stochastic decision making in non-conflict
situations? Looks like no

� But what if we have a non-conflict situation: a person selects between
several options.

� According to decision theory, decisions by rational person can be de-
scribed as follows.

� To each alternative i, we can assign a numerical value ui known as its
utility.

� We always select the alternative with the largest possible value of
utility.

� The utility of a “lottery” in which we get alternative i with probability
pi is equal to

u = p1 · u1 + . . .+ pn · un, where pi ≥ 0 and
n∑

i=1

pi = 1.



4. But do we need stochastic decision making in non-conflict
situations? Looks like no (cont-d)

� One can easily see that the largest value of u is attained when we
take the option with largest utility – with probability 1.

� If we have several options with equal utility, we can choose each with
some probability.

� However, we do not gain anything this way.

� And in real life, exact utility values are rare.

� So, it looks like we do not need stochastic decision making in non-
conflict situations.



5. But do we need stochastic decision making in non-conflict
situations? Actually yes

� The above argument was based on classical physics, where uncertainty
is described by probabilities pi.

� In quantum physics, uncertainty is, in general, described by a sym-
metric density matrix ρi,j.

� We can have different such states with different probabilities pi, re-
sulting in

ρi,j = p1 · ρ(1)i,j + . . .+ pn · ρ(n)i,j .

� We know that the utility of a probabilistic combination is equal to
the probabilistic combination of utilities.

� This implies that, in general, the utility is equal to u =
∑
i,j

ρi,j · ui,j

for some symmetric matrix ui,j.

� Here, the constraint is that
∑
i

ρi,i = 1 and that the matrix ρi,j is

non-strictly positive definite.



6. But do we need stochastic decision making in non-conflict
situations? Actually yes (cont-d)

� In this case, the largest value of u is not necessarily attained for a
deterministic decision.

� One can show that its is attained when ρi,j = ai ·aj for the eigenvector
ai of ui,j corresponding to the largest eigenvalue.

� So, if we take quantum uncertainty into account, even in non-conflict
situations we should make stochastic decisions.



7. Natural next question: how to find the optimal stochastic
decision

� From the practical viewpoint, the important issue is how to compute
the optimal decision.

� Many decision problems are difficult, they need a lot of computations.

� The need to select probabilities, and not just one of the alternatives,
makes it even more difficult.

� Interestingly, as we will show, this need leads us again to quantum
effects – namely, to quantum computing.



8. Need for faster computers

� Modern computers are extremely fast.

� However, there are still many important practical problems for which
the current computer speed is not sufficient.

� One of such problems is the problem of tornado prediction.

� In many areas of the US, destructive tornados appear year after year,
bringing lot of destructions and even deaths.

� Once a tornado is sighted, a warning is issued.

� In principle, people have access to shelters.

� However, during the tornado season, warnings are issued practically
every day, and people cannot spend all their lives in shelters.

� Besides, for each town, the vast majority of tornados do not enter
this town’s area.

� As a result, people ignore the warnings, and once in a while a disaster
happens.



9. Need for faster computers (cont-d)

� The only way to prevent such disasters is to be able to reasonably
accurately predict in what direction a tornado will move.

� This way, warning will be issued only to people in danger, and others
will be able to continue their normal activities.

� In principle, such predictions are possible.

� After all, tornado is an atmospheric effect just like storms and hurri-
canes, and we know how to predict weather.

� In particular, we know how to predict in what direction storms and
hurricanes will move.

� By spending an hour or so on a supercomputer, we can get a very
good understanding of where a storm will move.

� Similarly, by spending an hour or so on a high performance computer,
we can estimate in what direction a tornado will turn.



10. Need for faster computers (cont-d)

� The problem is that tornados are smaller in size and thus, their dy-
namics is faster.

� Whatever changes occur to a storm in a day takes 15 minutes for a
tornado.

� Thus, the fact that we can predict the tornado dynamics by spending
an hour on a supercomputer is useless.

� By the time we finish computations, the tornado has already changed
directions four times.

� Thus, we need to make computers much faster.

� There are many other practical problems in which the same need
appears.

� To speed up computations, we need to make computer components
smaller.



11. Need for faster computers (cont-d)

� A fundamental limit to computation speed is the fact that all com-
munication speeds are limited by the speed of light.

� Indeed, in a usual laptop of 30 cm size, it takes 1 nanosecond for light
to travel from one side to another.

� During this time, the simplest 4 GHz processor already performs 4
operations.

� To make computations faster, we need to make computers much
smaller – and thus, we need to make all the components much smaller.



12. Need for quantum computing

� When we decrease the size of computer components, we get sizes
comparable to sizes of molecules and atoms.

� At this level, we cannot rely on the usual Newton’s physics.

� We need to take into account that for objects of this small size, quan-
tum effects are essential.

� Thus, we arrive at the need for computing that takes quantum effects
into account – which is known as quantum computing.



13. Beyond the current quantum computing, to topological
quantum computing

� What if we will need even faster computers?

� In this case, we will need to get to sizes which are much much smaller
than the sizes of molecules and atoms.

� At certain sizes, according to modern physics, quantum fluctuations
become so large that we can no longer talk about metric.

� All if left is topology – and causal order.

� Topological level is difficult to describe but appropriate for computa-
tions.

� From the mathematical viewpoint, physics at this level is much more
difficult to describe.



14. Beyond the current quantum computing, to topological
quantum computing (cont-d)

� Indeed, in the absence of metric, all topologically equivalent spaces
are indistinguishable.

� There are no longer continuous quantities whose changes are described
by usual differential equations.

� The only characteristics that distinguish different topological spaces
are discrete characteristics – such as homotopy and homology groups.

� Physics does not have much experience with dynamics of such discrete
structures.



15. Beyond the current quantum computing, to topological
quantum computing (cont-d)

� Interestingly, from the computational viewpoint:

– this discrete character is exactly what the doctor ordered,

– since all computations are, by definition, discrete.

� When we get to this level, we will not face the usual challenge of
simulating discrete structures on a continuous domain.

� The domain will be discrete by definition.



16. This is related to Sakharov’s ideas

� This discreteness is related to the old idea of Andrei Sakharov that:

– all physically observable discrete quantities (like electric and other
charges)

– are actually discrete characteristics of the underlying micro-level
topological structure.

� This explains their discrete character.

� If this idea is true, then topological quantum computers may be easier
to design than it may seem.

� Indeed, the mysterious topological characteristics may be something
like charges that we observe (and handle) anyway.



17. Conclusion

� What is the relation between decision making and quantum physics?

� In pre-quantum physics, in non-conflict situations, deterministic de-
cisions are optimal.

� However, if we take quantum effects into account, optimal decisions
become stochastic.

� This stochastic character makes it more difficult to compute optimal
decisions.

� In many practical situations, we need to make a decision fast.

� How can we speed up computations?

� It turns out that the need for this speed-up naturally leads us to the
need to utilize quantum effects – i.e., to quantum computing.

� And in the distant future, we will need to use topological quantum
computing.
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20. Traditional Decision Theory: Reminder

� To make a decision, we must:

– find out the user’s preference, and

– help the user select an alternative which is the best – according
to these preferences.

� Traditional approach is based on an assumption that for each two
alternatives A′ and A′′, a user can tell:

– whether the first alternative is better for him/her; we will denote
this by A′′ < A′;

– or the second alternative is better; we will denote this by A′ < A′′;

– or the two given alternatives are of equal value to the user; we
will denote this by A′ = A′′.



21. The Notion of Utility

� Under the above assumption, we can form a natural numerical scale
for describing preferences.

� Let us select a very bad alternative A0 and a very good alternative A1.

� Then, most other alternatives are better than A0 but worse than A1.

� For every prob. p ∈ [0, 1], we can form a lottery L(p) in which we get
A1 w/prob. p and A0 w/prob. 1− p.

� When p = 0, this lottery simply coincides with the alternative A0:
L(0) = A0.

� The larger the probability p of the positive outcome increases, the
better the result:

p′ < p′′ implies L(p′) < L(p′′).



22. The Notion of Utility (cont-d)

� Finally, for p = 1, the lottery coincides with the alternative A1:
L(1) = A1.

� Thus, we have a continuous scale of alternatives L(p) that monoton-
ically goes from L(0) = A0 to L(1) = A1.

� Due to monotonicity, when p increases, we first have L(p) < A, then
we have L(p) > A.

� The threshold value is called the utility of the alternative A:

u(A)
def
= sup{p : L(p) < A} = inf{p : L(p) > A}.

� Then, for every ε > 0, we have

L(u(A)− ε) < A < L(u(A) + ε).

� We will describe such (almost) equivalence by ≡, i.e., we will write
that A ≡ L(u(A)).



23. Fast Iterative Process for Determining u(A)

� Initially: we know the values u = 0 and u = 1 such that A ≡ L(u(A))
for some u(A) ∈ [u, u].

� What we do: we compute the midpoint umid of the interval [u, u] and
compare A with L(umid).

� Possibilities: A ≤ L(umid) and L(umid) ≤ A.

� Case 1: if A ≤ L(umid), then u(A) ≤ umid, so

u ∈ [u, umid].

� Case 2: if L(umid) ≤ A, then umid ≤ u(A), so

u ∈ [umid, u].

� After each iteration, we decrease the width of the interval [u, u] by
half.

� After k iterations, we get an interval of width 2−k which contains
u(A) – i.e., we get u(A) w/accuracy 2−k.



24. How to Make a Decision Based on Utility Values

� Suppose that we have found the utilities u(A′), u(A′′), . . . , of the
alternatives A′, A′′, . . .

� Which of these alternatives should we choose?

� By definition of utility, we have:

• A ≡ L(u(A)) for every alternative A, and

• L(p′) < L(p′′) if and only if p′ < p′′.

� We can thus conclude that A′ is preferable to A′′ if and only if u(A′) >
u(A′′).

� In other words, we should always select an alternative with the largest
possible value of utility.

� Interval techniques can help in finding the optimizing decision.



25. How to Estimate Utility of an Action

� For each action, we usually know possible outcomes S1, . . . , Sn.

� We can often estimate the prob. p1, . . . , pn of these outcomes.

� By definition of utility, each situation Si is equiv. to a lottery L(u(Si))
in which we get:

• A1 with probability u(Si) and

• A0 with the remaining probability 1− u(Si).

� Thus, the action is equivalent to a complex lottery in which:

• first, we select one of the situations Si with probability pi: P (Si) =
pi;

• then, depending on Si, we get A1 with probability P (A1 |Si) =
u(Si) and A0 w/probability 1− u(Si).



26. How to Estimate Utility of an Action (cont-d)

� Reminder:

• first, we select one of the situations Si with probability pi: P (Si) =
pi;

• then, depending on Si, we get A1 with probability P (A1 |Si) =
u(Si) and A0 w/probability 1− u(Si).

� The prob. of getting A1 in this complex lottery is:

P (A1) =
n∑

i=1

P (A1 |Si) · P (Si) =
n∑

i=1

u(Si) · pi.

� In the complex lottery, we get:

• A1 with prob. u =
n∑

i=1

pi · u(Si), and

• A0 w/prob. 1− u.

� So, we should select the action with the largest value of expected
utility u =

∑
pi · u(Si).
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