
1/44

JJ
II
J
I

Back

Close

March
23

.

Quantum-like modeling

nondistributivity of human logic and

violation of response replicability effect

Andrei Khrennikov and Masanao Ozawa

Center Math Modeling in Physics and Cognitive
Sciences, Linnaeus University, Växjö , Sweden
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The aim of this talk is to promote quantum logic as one

of the basic tools of human reasoning.

We compare it with classical (Boolean) logic and high-

light the role of violation of the distributivity law for

conjunction and disjunction.

It is shown that nondistributivity is equivalent to incom-

patibility of logical variables - the impossibility to assign

jointly the values to these variables.

We motivate that the use of quantum logic, concretely

incompatible variables, speeds up the process of reason-

ing.
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The natural question whether quantum logical nondis-

tributivity can be tested experimentally arises.

We found that testing of the response replicability effect

is equivalent to testing nondistributivity –

under the assumption that the mental state update gen-

erated by observation is described as orthogonal projec-

tion.

The simple test of RRE is suggested.

In contrast to the previous works in quantum-like mod-

eling, we proceed in the state-dependent framework; in

particular, distributivity, compatibility, and RRE are con-

sidered for a fixed mental state.
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Basics of quantum logic

Operations of quantum logic are defined on the set of

subspaces of Hilbert space H or equivalently on the set

of orthogonal projectors P(H).

Subspaces (projectors) are interepreted as mathemati-

cal representations of propositions (events).

Let P be an orthogonal projector. Denote by LP its

image, i.e., LP = PH. For a subspace L, denote by PL

the corresponding orthogonal projector.

For projector P, denote the projector onto the orthog-

onal complement to the subspace LP by the symbol P ,

i.e., H = LP ⊕ LP .
Negation of proposition P is represented by P .
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The operations of conjunction ∧ and disjunction ∨ are

defined as follows.

Let P and Q be an orthogonal projectors representing

some propositions. The conjunction-proposition (event)

P ∧ Q is defined as the projector on intersection of sub-

spaces LP and LQ, i.e., LP∧Q = LP ∩ LQ.
We remark that this operation is well defined even for

noncommuting projectors, i.e., incompatible quantum ob-

servables. Moreover, it is commutative:

(1) P ∧Q = Q ∧ P

The same can be said about the operation of disjunc-

tion. Here subspace LP∨Q is defined as the subspace gen-

erated by the union of subspaces LP and LQ, i.e., P ∨ Q
is projector on this subspace.
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This operation is also well defined for non-commuting

projectors and, moreover, it is commutative:

(2) P ∨Q = Q ∨ P

Thus, quantum logic is commutative logic.

Typically this fact is not highlighted. Thus, in quantum

reasoning noncommutativity is not present at the level of

the basic operations of quantum logic, conjunction and

disjunction.
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Interrelation of distributivity and commutativity

Two propositions We start with the simplest form of

distributivity law, for proposition P and Q and R = Q,

negation of Q.

We remark that, for any proposition Q, we have Q∨Q =

I, identity operator.

Then, the distributivity law can be written in the form:

(3) P = (P ∧Q) ∨ (P ∧Q),

i.e.,

(4) P ∧ (Q ∨R) = (P ∧Q) ∨ (P ∧R)),

in the same way

(5) Q = (Q ∧ P ) ∨ (Q ∧ P ),
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The following theorem is cornerstone of our modeling:

Theorem A. The distributivity law in the form (3), (5)

or equivalently

(6) I = (P ∧Q) ∨ (P ∧Q) + (P ∧Q) ∨ (P ∧Q)

holds if and only if the projectors commute, i.e., [P,Q] =

0.
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We set

(7) com(P,Q) = (P ∧ Q) ∨ (P ∧ Q) + (P ∧ Q) ∨ (P ∧ Q)

and

(8) d(P,Q) = I − com(P,Q).

In quantum logic, quantities com(P,Q) and d(P,Q) are

the measures of distributivity and nondistributivity, re-

spectively; comp(P,Q) = 1 or d(P,Q) = 0 in the dis-

tributive case.

By Theorem A, distributivity of propositions is equiva-

lent their compatibility, i.e., the possibility to assign join

values to them, say P = 1, Q = 1 or P = 0, Q = 1.
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We remark that operator com(P,Q) is Hermitian. By

axiomatics of quantum theory it represents an observable.

Thus, by Theorem A the distributivity law can be rep-

resented via a quantum observable.

Theoretically by measurement of this observable it is

possible to check the distributivity for two propositions.

However, it seems to be difficult to present the concrete

measurement procedure of this observable.

It reflects the similar problem with experimental check-

ing of incompatibility.

Consider the Hermitian operator i[P,Q]. Theoretically

by its measurement it is possible to check compatibility.

However, the measurement procedure is not straightfor-

ward.
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Typically the lattice of projectors P(H) is considered as

union of Boolean algebras, representing classical sub-logic

of quantum logic.

In this construction, the essence of Booleanity is com-

mutativity of projectors.

However, commutativity of projectors has no straight-

forward logical interpretation.

And distributivity of the basic operation conjunction

and disjunction is the basic law of (classical) logic.

Now, in the view of Theorem A, we can characterize

classical logic as the domains of validity of the distribu-

tivity law.
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Three propositions and their negations Consider now

interrelation of commutativity and distributivity for three

propositions {P,Q,R}. Per definition the triple is com-

mutative if and only if each pair {P,Q}, {P,R}, {Q,P}
is commutative.

To couple commutativity and distributivity, we need to

consider not only these propositions, but also their nega-

tions P ,Q,R (otherwise the relation between commuta-

tivity and distributivity is not clear).

By distributivity of {P,Q,R} we mean validity of equal-

ity

(9) X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z)),

where X,Y, Z = P,Q,R, P ,Q,R.

Triple {P,Q,R} is commutative if and only (9) holds,

i.e., the lattice P(P,Q,R) generated by {P, P ,Q,Q,R,R}
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is distributive, or ortholattice generated by {P,Q,R} is

a Boolean algebra.
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These conditions are equivalent to equality

(10) com(P,Q,R) = I,

where

(11)

com(P,Q,R) = (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R)

∨(P ∧Q ∧R) ∨ (P ∧Q ∧R) ∨ (P ∧Q ∧R).
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We also introduce the measure of nondistributivity

(12) d(P,Q,R) = I − com(P,Q,R)

It equals zero in the distributive case.

Operator com(P,Q,R) is Hermitian and it represents a

quantum observable, the distributivity observable. But,

we repeat that design of the corresponding measurement

procedure is not straightforward.
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Classical vs. quantum reasoners Since the seminal works

of Boole [], classical Boolean logic is widely used for mod-

eling of human reasoning, including its probabilistic coun-

terpart in the form of Bayesian inference.

Information processing systems using Boolean and quan-

tum logic, respectively, are called classical and quantum

reasoners.

We remark that reasoners need not be individuals, they

can be special networks in the brain. Our aim is to show

advantages of quantum reasoning.

The main advantage of quantum reasoning is proposi-

tion operating without such a rigid logical constraint as

the distributivity law.

Quantum reasoner can derive conclusions which are non-

derivable by classical reasoner.
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Generality of decision making is not the only advantage

of quantum reasoning.

By Theorem A matching the distributivity law is equiv-

alent commutativity.

The latter has the meaning of assignment of the concrete

values to all observables.

Classical reasoner has to process all such possibilities,

for commuting propositions P1, ..., PN , these are 2N val-

ues. This number is exponentially increasing.

By Theorem A, quantum reasoner processes informa-

tion without assigning the values to propositions.

He “understands” that it cannot be done consistently.

This sort of reasoning save a lot of computation re-

sources and speeds up information processing.

Quantum and classical reasoning can be indirectly linked

to Kahneman’s “fast and slow thinking”.
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Quantum Platonism Reasoning based on quantum logic

is state-independent.

It reflects intrinsic logic of interrelation between propo-

sitions.

We can compare such viewpoint on propositions with

Platonism as universals existing independently of partic-

ulars, in our case systems’ states.

The state-independent reasoning is an important area

of information processing by humans, processing inde-

pendent of human believes.
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State dependent quantum logic Now, let couple “quan-

tum Platonic calculus” to the states of mind - mental

states.

Then, for some states, the distributivity law holds true

(13) Pψ = [(P ∧Q) ∨ (P ∧Q)]ψ

or

(14) ψ = com(P,Q)ψ or d(P,Q)ψ = 0,

even if “Platonic equalities” of section are violated.
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For three statements,

(15) ψ = com(P,Q,R)ψ or d(P,Q,R)ψ = 0,

Consider the lattice P(P,Q,R). If condition (15) holds,

then lattice P(P,Q,R) is distributive for the state ψ :

(16) X ∧ (Y ∨ Z)ψ = [(X ∧ Y ) ∨ (X ∧ Z)]ψ,

where X,Y, Z = P,Q,R, P ,Q,R.
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We set

LQ,P,R = {ψ ∈ H : d(P,Q,R)ψ = 0},

the kernel of the operator d(P,Q,R).

This is a linear subspace of H. We call it the distributivity

subspace of the lattice P(P,Q,R).

For states from this subspace, logic of reasoning is clas-

sical. We remark that such classicality is the delicate

issue.

Logic of propositions P(P,Q,R) can be nonclassical,

i.e., d(P,Q,R) = I − com(P,Q,R) can be nonzero.

But, for states from LQ,P,R, reasoning is classical - the

distributivity law holds true.
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Commutativity We define state dependent commutativ-

ity as

(17) [P,Q]ψ = 0;

for a triple of propositions, it is defined as pairwise state-

commutativity. Condition ψ ∈ L(P,Q,R) is equivalent

to the ψ-commutativity (17).



24/44

JJ
II
J
I

Back

Close

Quantum instruments The space of linear Hermitian

operators in H is linear space over real numbers.

We consider linear operators acting in it, superoperators.

A superoperator is called positive if it maps the set of

positive semi-definite operators into itself.

Any map x→ IA(x), where for each x, the map IA(x)

is a positive superoperator is called quantum instrument. It

represents one of measurement procedures of an observ-

able A.

The probability for the output A = x is given by the

Born rule in the form

(18) Pr{A = x‖ρ} = Tr [IA(x)ρ].
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Measurement with the output A = x generates the state-

update by transformation

(19) ρ→ ρx =
IA(x)ρ

TrIA(x)ρ
.

An observable A can be measured by a variety of in-

struments generating the same probability distribution,

but different state updates.
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Quantum instruments of the projection-type Let

IA(x)ρ = PρP

where P is a projection. Such instrument is called pro-

jection instrument-

RRE as experimental test of distributivity of human logic

We consider two projections P,Q, and their projective

instruments IP and IQ, and a state vector ψ.
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Denote their output probability by

p(Xx, Y y, Zz, ..) = Tr(· · · IZ(z)IY (y)IX(x)|ψ〉〈ψ|)

for X,Y, Z ∈ {P,Q} and x, y, z ∈ {0, 1}. Then we have

p(Xx, Y y, Zz, ..) = ‖ · · ·Z(z)Y (y)X(x)ψ‖2,

where X(0) = X⊥ and X(1) = X for all X ∈ {P,Q}.
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The instruments IP and IQ show the repeatability, i.e.,

p(Px, Px) = p(Px)

and

p(Qx,Qx) = p(Q(x))

for any P,Q and ψ. This is the basic property of projec-

tive state update.

We say that IP and IQ show RRE (the response repli-

cability effect) in ψ iff

p(Px,Qy, Px) = p(Px,Qy)

and

p(Qx, Py,Qx) = p(Qx, Py)

.
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RRE concerns correlations for the answers to sequential

questions.

Suppose that after answering the A-question with the

“yes”, Alice is asked another question B, and gives an

answer to it.

And then she is asked A again. In the social opinion

pools and other natural decision making experiments,

Alice would definitely repeat her original answer to A,

“yes”.

This is A−B−A response replicability. (In the absence

of B-question, we get A−A replicability).

The combination of A−B−A and B−A−B replicability

forms RRE.
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Equivalence of distributivity and RRE The following

theorem holds:

Theorem 0.1. The projective instruments of P and Q show RRE

in a state ψ if and only if com(P,Q)ψ = ψ.
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From the above theorem, we can test the distributiv-

ity of human logic (or by Theorem A, commutativity of

projectors P and Q) in a given state ψ by two projective

instruments IP and IQ namely, P and Q commute in ψ

if and only if

p(P1, Q1, P1) = p(P1, Q1),(20)

p(P1, Q0, P1) = p(P1, Q0),(21)

p(P0, Q1, P0) = p(P0, Q1),(22)

p(P0, Q0, P0) = p(P0, Q0),(23)

p(Q1, P1, Q1) = p(Q1, P1),(24)

p(Q1, P0, Q1) = p(Q1, P0),(25)

p(Q0, P1, Q0) = p(Q0, P1),(26)

p(Q0, P0, Q0) = p(Q0, P0).(27)
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Towards testing distributivity of human logic In this

talk, we highlight the role of the distributivity law in

human reasoning.

We couple violations of classical logic with violation of

distributivity.

Our thoery provides (really unexpected) possibility to

dive into the deepest level of human information process-

ing.

RRE can be checked experimentally, see Eqs. (20)-(27).

We hope that coupling of RRE with logic of human rea-

soning will stimulate psychologists to perform new exper-

iments.
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In the light of paper

Busemeyer, J. and Wang, (2017). Is there a problem

with quantum models of psychological measurements?

PLOS ONE, 12(11), e0187733.

analysis of the methodology and design should precede

experiment.

By finding experimental violation of one of Eqs. (20)–

(23), experimenters can conclude that

• either the distributivity law is violated (for the state

ψ prepared for the experiment),

• or the state update generated by observations can-

not be described straightforwardly as orthogonal pro-

jection.
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We stress that the projective-state update implies the classical

Bayesian update of probability [?, ?] and the use of Bayesian

inference in reasoning. Non-projective instruments gen-

erate the non-Bayesian state updates and new inference

procedures.

Heuristically it is clear that RRE is very common in

human decision making as well as the use of Bayesian

update.

Regarding the latter, there is not so much experimental

evidence of violation of the classical Bayes rule in human

decision making.

Thus, we can conclude that generally humans proceed

with classical logic and do not violate distributivity. Of

course, in the absence of the real experimental results

this is still just speculation.
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What is about “fast thinking?” We can guess (but only

guess!) that here humans use the projective state update,

because it is the simplest for realization.

We still do not know how the brain realizes the men-

tal state update at the neural level. We only know that

brain’s functioning is based on processing of electric sig-

nals generated in neural networks. In engineering of sig-

nal processing, the projection operation is widely used

and its realization is simple, both algorithmically and

technically.

This can serve as an argument in favor of the conjec-

ture that quantum reasoning is based on the projective

state update, i.e., that mathematically it is described by

projectors.
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Fast thinking is processing of in incompatible variables

(without respecting the distributivity law). RRE has to

be violated. Thus, we suggest to search violations of RRE

in experiments exploring fast thinking.
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Towards testing incompatibility of mental observables It

is difficult if possible at all to prove compatibility (incom-

patibility) of mental observables in the theoretical frame-

wor.

It seems that it can be determined only experimentally.

Since commutativity is equivalent to distributivity, the

RRE-test can be used as well for checking compatibility

(incompatibility) of projective type observables.
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QOE: question order effect

QOE is an effect of the dependence of the sequential

joint probability distribution of answers on the questions’

order:

pAB 6= pBA.

Moore, D. W. (2002). Measuring new types of question-

order effects. Public Opin. Q., 60, 80-91.

Its quantum-like modeling with projective instruments:

Wang, Z. and Busemeyer, J. R.: A quantum question

order model supported by empirical tests of an a priori

and precise prediction. Top. Cogn. Sc. 5, 689–710 (2013)
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Impossibility of description by projective instruments of

combination QOE+RRE for one concrete state The pre-

vious considerations were done in the state-dependent

framework.

This gives the possibility to improve essentially the ba-

sic result on the impossibility to describe combination of

QOE and RRE by projective type instruments.

Khrennikov, A., Basieva, I., Dzhafarov, E. N. and Buse-

meyer, J. R. (2014). Quantum models for psychological

measurements: An unsolved problem. PLOS ONE, 9, Art.

e110909.
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This no-go theorem was formulated under the following

stability assumption:

“If ψ is a possible initial state vector for a given mea-

surement sequence in an n-dimensional Hilbert space,

then there is an open ball Br(ψ) centered at ψ with a

sufficiently small radius r > 0, such that any vector ψ+δ

in this ball, normalized by its length ‖ψ+δ‖, is also a pos-

sible initial state vector for this measurement sequence.”

Now, we can omit this stability condition and consider

just one fixed state ψ.

If QOE+RRE holds for this state, then measurements

cannot be described by projective instruments.
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Combination of QOE+RRE+QQ-equality with quan-

tum instruments of non-projective type was modeled in

articles:

Ozawa, M. and Khrennikov, A.: Application of theory

of quantum instruments to psychology: Combination of

question order effect with response replicability effect.

Entropy, 22(1), 37 (2020) 1-9436.

Ozawa, M. and Khrennikov, A.: Modeling combination

of question order effect, response replicability effect, and

QQ-equality with quantum instruments. J. Math. Psych.

100, 102491 (2021)



42/44

JJ
II
J
I

Back

Close

Concluding remarks We discuss the conjecture that quan-

tum logic is a tool of human reasoning; the brain function-

ing includes the special system for information processing

based on quantum logic, the QL-system.

The role of violation of distributivity is highlighted.

As is shown (Theorem A), distributivity is equivalent

to compatibility (and in the quantum formalism, to com-

mutativity of operators).

We point out that reasoning with compatible proposi-

tions implies joint assignment of values to these proposi-

tions. Such reasoning is consumes a lot of computational

resources.

The state-dependent character of quantum reasoning is

emphasized. We think that state-dependent modeling of

quantum reasoning is especially important for applica-

tions to cognition and psychology.
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Our present study is closely coupled to the previous re-

search on quantum-like modeling of QOE and RRE. The

role of RRE was highlighted through coupling to quantum

reasoning, its (non-)distributivity and using (in)compatible

logical variables.

We proposed the experimental test for RRE and it can

be considered as a test of distributivity-compatibility un-

der the assumption of projective type representation of

mental observables.

Finally, we improved the no-go theorem on the impos-

sibility of combination of QOE and RRE.

We hope that this paper would attract attention of psy-

chologists and experts in brain studies to quantum logic

conjecture for human reasoning.
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In experimental research, coupling of RRE with the

basics of quantum reasoning would stimulate its further

testing.


