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Motivation: Geometric inequalities

I Brunn-Minkowski inequality (1887). For convex bodies
K1,K2 ⊂ Rn,

Vol(K1 +K2)1/n ≥ Vol(K1)1/n + Vol(K2)1/n,

where K1 +K2 = {x1 + x2 : x1 ∈ K1 and x2 ∈ K2}.
I Minkowski. For convex bodies K1, . . . ,Km, and
x1, . . . , xm > 0,

Vol(x1K1 + · · ·+ xmKm) =
∑
i1,...,id

V (Ki1 , . . . ,Kin)xi1 · · ·xin ,

where V (K1, . . . ,Kn) ≥ 0 are the mixed volumes.

I Alexandrov-Fenchel inequalities (1937).

V (K1,K2, . . . ,Kn)2 ≥ V (K1,K1,K3 . . . ,Kn)·V (K2,K2,K3, . . . ,Kn)



Motivation: Elements of Hodge theory

I Let

A = R[x1, . . . , xn]
/
I =

d⊕
k=0

Ak

is a graded R-algebra.

I Suppose Ad is one-dimensional, and let

deg : Ad → R

be a linear isomorphism.

I Suppose K ⊂ A1 is an open convex cone.



Kähler package

Desirable properties of A.

Poincaré duality (PD)
The bilinear map,

Ak ×Ad−k −→ R, (x, y) 7−→ deg(xy),

is nondegenerate.

Hard Lefschetz property (HL)
For each 0 ≤ k ≤ d/2, and any `1, `2, . . . , `d−2k ∈ K, the linear
map

Ak −→ Ad−k, x 7−→ `1`2 · · · `d−2kx,

is bijective.



Kähler package

Hodge-Riemann relations (HR)
For each 0 ≤ k ≤ d/2, and any `0, `1, . . . , `d−2k ∈ K, the bilinear
map

Ak ×Ak −→ R, (x, y) 7−→ (−1)k deg(`1`2 · · · `d−2kxy)

is positive definite on {x ∈ Ak : `0`1 · · · `d−2kx = 0}.

Let `1, . . . , `d ∈ K.

(P) For k = 0, (HR) says deg(`1`2 · · · `d) > 0.

(AF) For k = 1, (HR) says

deg(`1`2`3 · · · `d)2 ≥ deg(`1`1`3 · · · `d) deg(`2`2`3 · · · `d).

(LC) In particular, the sequence ak = deg(`k1`
d−k
2 ) is log-concave

a2
k ≥ ak−1ak+1, 0 < k < d.



Examples

I Classical examples of Kähler package comes from compact
Kähler manifolds and projective varieties,

I Polytopes (Stanley, McMullen),

I Chow rings of matroids (Adiprasito, Huh, Katz), and similar
Chow rings.



Beyond Hodge theory

I Is there a common “geometry of polynomials” setting for
these examples?

I The degree map defines a homogeneous degree d polynomial
in R[t1, . . . , tn]:

volA(t) =
1

d!
deg

( n∑
i=1

tixi

)d . (volume polynomial)

I Let ` = a1x1 + · · ·+ anxn ∈ A1, v = (a1, . . . , an) ∈ Rn. Then

Dv volA(t) =

n∑
i=1

ai∂i volA(t) =
1

(d− 1)!
deg

` ·( n∑
i=1

tixi

)d−1


I Iterate: Dv1Dv2 · · ·Dvd volA(t) = deg(`1`2 · · · `d).



Lorentzian polynomials on cones

I Let f ∈ R[t1, . . . , tn] be a homogeneous degree d polynomial.

I Let K be an open convex cone in Rn.

I f is called K-Lorentzian if for all v1, . . . , vd ∈ K,

(P) Dv1 · · ·Dvdf > 0, and

(AF) (Dv1Dv2 · · ·Dvdf)2 ≥ (Dv1Dv1 · · ·Dvdf)(Dv2Dv2 · · ·Dvdf)

I Hence we get K-Lorentzian polynomials from the examples
from Hodge theory above.

I Example. The determinant A 7→ det(A) is Lorentzian on the
cone of positive definite matrices.

I Example. A hyperbolic polynomial (Petrovsky, Gårding) is
Lorentzian on its hyperbolicity cone.

I There are K-Lorentzian polynomials that do not come from
any of the examples from Hodge-theory above.



Hereditary polynomials

I Let V be a finite set and f ∈ R[ti : i ∈ V ] a homogeneous
polynomial of degree d.

I The lineality space of f is

Lf = {v ∈ RV : f(t+ v) = f(t) for all t ∈ RV }
= {v ∈ RV : Dvf ≡ 0}.

I Define a simplicial complex on V by

∆f = {S ⊆ V : ∂Sf 6≡ 0}, ∂S =
∏
i∈S

∂

∂ti
.

I f is hereditary if for each S ∈ ∆f with |S| = d− 1,

{(`i)i∈S : (`i)i∈V ∈ Lf} = RS .



Hereditary polynomials

I Lemma. If f is hereditary and S ∈ ∆f , then

fS(t) := ∂Sf
∣∣
ti=0,i∈S

is hereditary, with ∆fS = lk∆f
(S).

I Lemma. If f is hereditary, then ∆f is pure of dimension d− 1.

I Euler’s formula then implies a recursive formula for hereditary
polynomials:

d · f(t) =
∑
i∈V

ti · f{i}(π{i}(t)),

where πS is a linear projection for which πS(Lf ) ⊆ LfS .

I Corollary. Every hereditary polynomial is determined by its
linear coefficients, given by w(F ) := fF for all facets F ∈ ∆f .



Hereditary polynomials

I Corollary. f hereditary implies for all S ∈ ∆f with |S| = d−1,

fS(t) =
∑
i 6∈S

w(S ∪ {i}) · ti

and fS(t) is identically zero on πS(Lf ).
I Converse is also true.
I Let ∆ be a pure of dim. d− 1, and let L ⊆ RV be linear.
I (∆, L) is hereditary if for each S ∈ ∆ with |S| = d− 1,

{(`i)i∈S : (`i)i∈V ∈ L} = RS .
I Lemma. Let (∆, L) be hereditary. Function w on facets of ∆

defines unique hereditary poly. with ∆f = ∆ and L ⊆ Lf iff∑
i 6∈S

w(S ∪ {i}) · ti

is identically zero on πS(L) for all S ∈ ∆ with |S| = d− 1.
I The function w is analogous to a Minkowski weight on a fan.



Hereditary Lorentzian polynomials

I For a hereditary polynomial f of degree d, there is a
canonically defined open convex cone Kf in RV .

I Kf can be defined inductively via:

I if d = 1 then Kf := {v ∈ RV : f(v) > 0},
I if d ≥ 2 then Kf is the set of all v ∈ RV such that

(1) v + ` ∈ RV
>0 for some ` ∈ Lf , and

(2) π{i}(v) ∈ Kf{i} for all i ∈ V .

I f is called hereditary Lorentzian if fS is KfS -Lorentzian for
all S ∈ ∆f with |S| ≤ d− 1.

I ∆f is H-connected if for each S ∈ ∆f , |S| ≤ d− 3, the graph{
{i, j} : S ∩ {i, j} = ∅ and S ∪ {i, j} ∈ ∆f

}
is connected.



Hereditary Lorentzian polynomials

I Theorem (Brändén-L). Let f be a hereditary polynomial of
degree d with Kf 6= ∅. Then f is hereditary Lorentzian if and
only if

(C) ∆f is H-connected, and
(L) For each S ∈ ∆f with |S| = d− 2, the Hessian of fS has at

most one positive eigenvalue.

I Example. Volume polynomials of matroids.
I Implies the Heron-Rota-Welsh conjecture on the characteristic

polynomial of a matroid.

I Example. Volume polynomials of simple polytopes.
I Implies the Alexandrov-Fenchel inequalities for convex bodies.

I Example. Volume polynomials of Chow rings of fans.
I Both the matroid (Adiprasito-Huh-Katz) and polytope cases

(Stanley-McMullen) fit into this context.



Volume polynomial of a matroid

I Let L be the lattice of flats of a rank-(d+ 1) matroid M on
E, with set of loops K, and let L = L \ {K,E}.

I The faces of the (d− 1)-dim. order complex, ∆(L), are
{F1 < F2 < · · · < Fk}, where Fi ∈ L for all i.

I Define L(L) ⊆ RL as subspace of all modular (yF )F∈L, i.e.

yF =
∑

i∈F\K

ci and
∑

i∈E\K

ci = 0

for some choice of ci ∈ R for all i ∈ E \K.

I (∆(L), L(L)) is hereditary.



Volume polynomial of a matroid

I For every facet T ∈ ∆(L), define w(T ) = 1.

I For all S ∈ ∆(L) with |S| = d− 1,∑
G 6∈S

w(S ∪ {G}) · tG =
∑

Fi≺G≺Fi+1

tG

is identically zero on πS(L(L)), since the rank-one flats of a
matroid partition its non-loop elements.

I The volume polynomial of M is unique hereditary polynomial
fL defined by w, with ∆fL = ∆(L) and L(L) ⊆ LfL .

I Note that ∆fSL
= lk∆(L)(S) =

∏
i ∆([Fi, Fi+1]).

I Uniqueness then implies

fSL (t) =
∏
i

f[Fi,Fi+1](t).



Volume polynomial of a matroid

I The canonical cone KfL is non-empty because it contains the
set of strictly submodular (xS)K⊂S⊂E , i.e.

xS + xT > xS∪T + xS∩T with xK = xE = 0

for uncomparable S, T .

I H-connectivity of ∆(L) follows from semimodularity of L.

I To prove fL is hereditary Lorentzian it remains to consider
fSL (t) for S ∈ ∆(L) with |S| = d− 2.

I Either such a quadratic is product of two linear polynomials, or

I it is the volume polynomial of a matroid of rank 3:(∑
K≺F

tF

)2

−
∑
G≺E

(
tG −

∑
K≺F≺G

tF

)2

,

which has exactly one positive eigenvalue.



Chow rings of simplicial fans

I Let ∆ be a simplicial complex of dimension d− 1 on V .
I Let Σ = {CS}S∈∆ be a collection of |S|-dimensional

polyhedral cones such that
I Each face of CS is a cone in Σ, and
I CS ∩ CT = CS∩T .

I Σ is called a simplicial fan.

I Let ρi, i ∈ V , be specified vectors of the rays C{i}.

I Let L = L(Σ) = {(λ(ρi))i∈V : λ ∈
(
RV
)∗}.

I (∆, L) is hereditary.



Chow rings of simplicial fans

I Define two ideals in R[xi : i ∈ V ]:

I I(∆) is generated by the monomials
∏
i∈T

xi, T 6∈ ∆.

I J(L) is generated by the linear forms
∑
i∈V

`ixi, (`i)i∈V ∈ L.

I The graded ring

A(Σ) =

d⊕
k=0

Ak(Σ) := R[xi : i ∈ V ]
/

(I(∆) + J(L))

is the Chow ring of Σ.
I Important examples of Chow rings that satisfy the Kähler

package are
I The normal fan of a simple polytope (Stanley, McMullen).
I The Chow ring of a matroid (Adiprasito, Huh and Katz), and

related Chow rings.



Volume polynomials of simplicial fans

I Given any α ∈ Ak(Σ)∗,

fα(t) =
1

k!
α

((∑
i∈V

tixi

)k)
is a hereditary polynomial.

I When Ad(Σ) is one-dimensional, then the given hereditary
polynomial is called the volume polynomial of Σ.

I Our main theorem implies a characterization of α for which
fα is hereditary Lorentzian

I Corollary. Characterization of A(Σ) satisfying (P) and (AF),
the Hodge-Riemann relations of degree 0 and 1.

I See also independent work of Dustin Ross.



Edge subdivisions of simplicial fans

I Fans have a natural notion of stellar subdivision:

I Add a new cone C{0} with ray ρ0 in the relative interior of a
cone C in Σ, and break C into many cones incident on C{0}.

I If C ∼ {ρ1, ρ2} is two-dimensional, call it an edge subdivision.

I The support of a fan Σ is defined as
⋃
C∈ΣC

I Stellar subdivisions of fans preserve the support of the fan, and

I whether or not a simplicial fan satisfies the Kähler package
depends only on the support of the fan (Ardila-Denham-Huh)



Edge subdivisions of hereditary polynomials

I How does edge subdivision of {ρ1, ρ2} act on ∆ and L?
I Get ∆12 by replacing {1, 2} by {1, 0} or {0, 2} in faces of ∆,
I If ρ0 = c1ρ1 + c2ρ2 for c1, c2 > 0 then

L12 = {(`0, `) ∈ R{0}∪V : ` ∈ L, `0 = c1`2 + c1`2}.

I Let (∆, L) be hereditary, and let Pd(∆, L) be the degree d
hereditary polynomials f such that ∆f ⊆ ∆ and L ⊆ Lf .

I Proposition. Suppose {1, 2} ∈ ∆ and fix c1, c2 > 0. There is
an injective linear map

sub12 : Pd(∆, L)→ Pd(∆12, L12)

which generalizes the map between the volume polynomials of
fans. If dim(∆) = d− 1 then sub12 is a bijection.



Edge subdivisions of hereditary polynomials

I For hereditary polynomials f, g, write f ∼ g if f and g are
connected by a sequence of subij or sub−1

ij operations.

I Theorem (Brändén-L). If f ∼ g and Kf and Kg are
non-empty, then f is hereditary Lorentzian if and only if g is
hereditary Lorentzian.

I Corollary. Applies to volume polynomials of simplicial fans
which have the same support.



Volume polynomials of simple polytopes

I Let P ⊂ E be a d-dim. simple polytope with facets P1, . . . , Pn
and associated facet unit (outward) normal vectors ζ1, . . . , ζn.

I Given Q with the same facet normals, define support numbers

ti(Q) = max
q∈Q
〈ζi, q〉 for 1 ≤ i ≤ n.

I The set of all such t ∈ Rn forms an open convex cone KP .

I There is volume polynomial fP such that fP (t(Q)) = vol(Q).

I Let ∆P be the simplicial complex associated to the normal
fan of P , and let LP be defined via

LP = {(〈v, ζi〉)ni=1 : v ∈ E}.

I (∆P , LP ) is hereditary and fP ∈ Pd(∆P , LP ).



Volume polynomials of simple polytopes

I Note that ∂ifP (t(Q)) = vol(Qi), where Qi is the facet of Q.

I This implies (see e.g. Schneider)

∂ifP (t) = fPi

((
tj − ti cos(θij)

sin(θij)

)
j

)

where θij is the angle between ζi and ζj .
I To prove that fP is hereditary Lorentzian:

I ∆P is H-connected since the boundary of P is connected.
I Need to show the Hessian of fP has at most one positive

eigenvalue, for any convex polygon P .

I If P is a triangle (simplex), then fP (t) = (a1t1 + a2t2 + a3t3)2

and P2(∆P , LP ) is one-dimensional since dim(LP ) = 2.

I Apply edge subdivisions (vertex truncations) to obtain fP for
any convex polygon P ; theorem implies hereditary Lorentzian.


