Lorentzian polynomials on cones. Part II

Jonathan Leake
University of Waterloo
based on joint work with
Petter Brändén
KTH Royal Institute of Technology

Fields Institute, March 9, 2023

Motivation: Geometric inequalities

- Brunn-Minkowski inequality (1887). For convex bodies $K_{1}, K_{2} \subset \mathbb{R}^{n}$,

$$
\operatorname{Vol}\left(K_{1}+K_{2}\right)^{1 / n} \geq \operatorname{Vol}\left(K_{1}\right)^{1 / n}+\operatorname{Vol}\left(K_{2}\right)^{1 / n}
$$

where $K_{1}+K_{2}=\left\{x_{1}+x_{2}: x_{1} \in K_{1}\right.$ and $\left.x_{2} \in K_{2}\right\}$.

- Minkowski. For convex bodies K_{1}, \ldots, K_{m}, and $x_{1}, \ldots, x_{m}>0$,
$\operatorname{Vol}\left(x_{1} K_{1}+\cdots+x_{m} K_{m}\right)=\sum_{i_{1}, \ldots, i_{d}} V\left(K_{i_{1}}, \ldots, K_{i_{n}}\right) x_{i_{1}} \cdots x_{i_{n}}$,
where $V\left(K_{1}, \ldots, K_{n}\right) \geq 0$ are the mixed volumes.
- Alexandrov-Fenchel inequalities (1937).
$V\left(K_{1}, K_{2}, \ldots, K_{n}\right)^{2} \geq V\left(K_{1}, K_{1}, K_{3} \ldots, K_{n}\right) \cdot V\left(K_{2}, K_{2}, K_{3}, \ldots, K_{n}\right)$

Motivation: Elements of Hodge theory

- Let

$$
A=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / I=\bigoplus_{k=0}^{d} A^{k}
$$

is a graded \mathbb{R}-algebra.

- Suppose A^{d} is one-dimensional, and let

$$
\operatorname{deg}: A^{d} \rightarrow \mathbb{R}
$$

be a linear isomorphism.

- Suppose $\mathcal{K} \subset A^{1}$ is an open convex cone.

Kähler package

Desirable properties of A.
Poincaré duality (PD)
The bilinear map,

$$
A^{k} \times A^{d-k} \longrightarrow \mathbb{R}, \quad(x, y) \longmapsto \operatorname{deg}(x y)
$$

is nondegenerate.
Hard Lefschetz property (HL)
For each $0 \leq k \leq d / 2$, and any $\ell_{1}, \ell_{2}, \ldots, \ell_{d-2 k} \in \mathcal{K}$, the linear map

$$
A^{k} \longrightarrow A^{d-k}, \quad x \longmapsto \ell_{1} \ell_{2} \cdots \ell_{d-2 k} x
$$

is bijective.

Kähler package

Hodge-Riemann relations (HR)
For each $0 \leq k \leq d / 2$, and any $\ell_{0}, \ell_{1}, \ldots, \ell_{d-2 k} \in \mathcal{K}$, the bilinear map

$$
A^{k} \times A^{k} \longrightarrow \mathbb{R}, \quad(x, y) \longmapsto(-1)^{k} \operatorname{deg}\left(\ell_{1} \ell_{2} \cdots \ell_{d-2 k} x y\right)
$$

is positive definite on $\left\{x \in A^{k}: \ell_{0} \ell_{1} \cdots \ell_{d-2 k} x=0\right\}$.
Let $\ell_{1}, \ldots, \ell_{d} \in \mathcal{K}$.
(P) For $k=0,(H R)$ says $\operatorname{deg}\left(\ell_{1} \ell_{2} \cdots \ell_{d}\right)>0$.
(AF) For $k=1$, (HR) says

$$
\operatorname{deg}\left(\ell_{1} \ell_{2} \ell_{3} \cdots \ell_{d}\right)^{2} \geq \operatorname{deg}\left(\ell_{1} \ell_{1} \ell_{3} \cdots \ell_{d}\right) \operatorname{deg}\left(\ell_{2} \ell_{2} \ell_{3} \cdots \ell_{d}\right) .
$$

(LC) In particular, the sequence $a_{k}=\operatorname{deg}\left(\ell_{1}^{k} \ell_{2}^{d-k}\right)$ is log-concave

$$
a_{k}^{2} \geq a_{k-1} a_{k+1}, \quad 0<k<d
$$

Examples

- Classical examples of Kähler package comes from compact Kähler manifolds and projective varieties,
- Polytopes (Stanley, McMullen),
- Chow rings of matroids (Adiprasito, Huh, Katz), and similar Chow rings.

Beyond Hodge theory

- Is there a common "geometry of polynomials" setting for these examples?
- The degree map defines a homogeneous degree d polynomial in $\mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$:

$$
\operatorname{vol}_{A}(t)=\frac{1}{d!} \operatorname{deg}\left(\left(\sum_{i=1}^{n} t_{i} x_{i}\right)^{d}\right) . \quad \text { (volume polynomial) }
$$

- Let $\ell=a_{1} x_{1}+\cdots+a_{n} x_{n} \in A^{1}, v=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. Then

$$
D_{v} \operatorname{vol}_{A}(t)=\sum_{i=1}^{n} a_{i} \partial_{i} \operatorname{vol}_{A}(t)=\frac{1}{(d-1)!} \operatorname{deg}\left(\ell \cdot\left(\sum_{i=1}^{n} t_{i} x_{i}\right)^{d-1}\right)
$$

- Iterate: $D_{v_{1}} D_{v_{2}} \cdots D_{v_{d}} \operatorname{vol}_{A}(t)=\operatorname{deg}\left(\ell_{1} \ell_{2} \cdots \ell_{d}\right)$.

Lorentzian polynomials on cones

- Let $f \in \mathbb{R}\left[t_{1}, \ldots, t_{n}\right]$ be a homogeneous degree d polynomial.
- Let \mathcal{K} be an open convex cone in \mathbb{R}^{n}.
- f is called \mathcal{K}-Lorentzian if for all $v_{1}, \ldots, v_{d} \in \mathcal{K}$,
(P) $D_{v_{1}} \cdots D_{v_{d}} f>0$, and
(AF) $\left(D_{v_{1}} D_{v_{2}} \cdots D_{v_{d}} f\right)^{2} \geq\left(D_{v_{1}} D_{v_{1}} \cdots D_{v_{d}} f\right)\left(D_{v_{2}} D_{v_{2}} \cdots D_{v_{d}} f\right)$
- Hence we get \mathcal{K}-Lorentzian polynomials from the examples from Hodge theory above.
- Example. The determinant $A \mapsto \operatorname{det}(A)$ is Lorentzian on the cone of positive definite matrices.
- Example. A hyperbolic polynomial (Petrovsky, Gårding) is Lorentzian on its hyperbolicity cone.
- There are \mathcal{K}-Lorentzian polynomials that do not come from any of the examples from Hodge-theory above.

Hereditary polynomials

- Let V be a finite set and $f \in \mathbb{R}\left[t_{i}: i \in V\right]$ a homogeneous polynomial of degree d.
- The lineality space of f is

$$
\begin{aligned}
L_{f} & =\left\{v \in \mathbb{R}^{V}: f(t+v)=f(t) \text { for all } t \in \mathbb{R}^{V}\right\} \\
& =\left\{v \in \mathbb{R}^{V}: D_{v} f \equiv 0\right\}
\end{aligned}
$$

- Define a simplicial complex on V by

$$
\Delta_{f}=\left\{S \subseteq V: \partial^{S} f \not \equiv 0\right\}, \quad \partial^{S}=\prod_{i \in S} \frac{\partial}{\partial t_{i}}
$$

- f is hereditary if for each $S \in \Delta_{f}$ with $|S|=d-1$,

$$
\left\{\left(\ell_{i}\right)_{i \in S}:\left(\ell_{i}\right)_{i \in V} \in L_{f}\right\}=\mathbb{R}^{S}
$$

Hereditary polynomials

- Lemma. If f is hereditary and $S \in \Delta_{f}$, then

$$
f^{S}(t):=\left.\partial^{S} f\right|_{t_{i}=0, i \in S}
$$

is hereditary, with $\Delta_{f S}=\mathrm{lk}_{\Delta_{f}}(S)$.

- Lemma. If f is hereditary, then Δ_{f} is pure of dimension $d-1$.
- Euler's formula then implies a recursive formula for hereditary polynomials:

$$
d \cdot f(t)=\sum_{i \in V} t_{i} \cdot f^{\{i\}}\left(\pi_{\{i\}}(t)\right),
$$

where π_{S} is a linear projection for which $\pi_{S}\left(L_{f}\right) \subseteq L_{f}$.

- Corollary. Every hereditary polynomial is determined by its linear coefficients, given by $w(F):=f^{F}$ for all facets $F \in \Delta_{f}$.

Hereditary polynomials

- Corollary. f hereditary implies for all $S \in \Delta_{f}$ with $|S|=d-1$,

$$
f^{S}(t)=\sum_{i \notin S} w(S \cup\{i\}) \cdot t_{i}
$$

and $f^{S}(t)$ is identically zero on $\pi_{S}\left(L_{f}\right)$.

- Converse is also true.
- Let Δ be a pure of $\operatorname{dim} . d-1$, and let $L \subseteq \mathbb{R}^{V}$ be linear.
- (Δ, L) is hereditary if for each $S \in \Delta$ with $|S|=d-1$,

$$
\left\{\left(\ell_{i}\right)_{i \in S}:\left(\ell_{i}\right)_{i \in V} \in L\right\}=\mathbb{R}^{S}
$$

- Lemma. Let (Δ, L) be hereditary. Function w on facets of Δ defines unique hereditary poly. with $\Delta_{f}=\Delta$ and $L \subseteq L_{f}$ iff

$$
\sum_{i \notin S} w(S \cup\{i\}) \cdot t_{i}
$$

is identically zero on $\pi_{S}(L)$ for all $S \in \Delta$ with $|S|=d-1$.

- The function w is analogous to a Minkowski weight on a fan.

Hereditary Lorentzian polynomials

- For a hereditary polynomial f of degree d, there is a canonically defined open convex cone \mathcal{K}_{f} in \mathbb{R}^{V}.
- \mathcal{K}_{f} can be defined inductively via:
- if $d=1$ then $\mathcal{K}_{f}:=\left\{v \in \mathbb{R}^{V}: f(v)>0\right\}$,
- if $d \geq 2$ then \mathcal{K}_{f} is the set of all $v \in \mathbb{R}^{V}$ such that
(1) $v+\ell \in \mathbb{R}_{>0}^{V}$ for some $\ell \in L_{f}$, and
(2) $\pi_{\{i\}}(v) \in \mathcal{K}_{f(i\}}$ for all $i \in V$.
- f is called hereditary Lorentzian if f^{S} is \mathcal{K}_{f}-Lorentzian for all $S \in \Delta_{f}$ with $|S| \leq d-1$.
- Δ_{f} is H -connected if for each $S \in \Delta_{f},|S| \leq d-3$, the graph

$$
\left\{\{i, j\}: S \cap\{i, j\}=\varnothing \text { and } S \cup\{i, j\} \in \Delta_{f}\right\}
$$

is connected.

Hereditary Lorentzian polynomials

- Theorem (Brändén-L). Let f be a hereditary polynomial of degree d with $\mathcal{K}_{f} \neq \varnothing$. Then f is hereditary Lorentzian if and only if
(C) Δ_{f} is H -connected, and
(L) For each $S \in \Delta_{f}$ with $|S|=d-2$, the Hessian of f^{S} has at most one positive eigenvalue.
- Example. Volume polynomials of matroids.
- Implies the Heron-Rota-Welsh conjecture on the characteristic polynomial of a matroid.
- Example. Volume polynomials of simple polytopes.
- Implies the Alexandrov-Fenchel inequalities for convex bodies.
- Example. Volume polynomials of Chow rings of fans.
- Both the matroid (Adiprasito-Huh-Katz) and polytope cases (Stanley-McMullen) fit into this context.

Volume polynomial of a matroid

- Let \mathcal{L} be the lattice of flats of a rank $-(d+1)$ matroid M on E, with set of loops K, and let $\underline{\mathcal{L}}=\mathcal{L} \backslash\{K, E\}$.
- The faces of the $(d-1)$-dim. order complex, $\Delta(\mathcal{L})$, are $\left\{F_{1}<F_{2}<\cdots<F_{k}\right\}$, where $F_{i} \in \underline{\mathcal{L}}$ for all i.
- Define $L(\mathcal{L}) \subseteq \mathbb{R} \underline{\mathcal{L}}$ as subspace of all modular $\left(y_{F}\right)_{F \in \mathcal{L}}$, i.e.

$$
y_{F}=\sum_{i \in F \backslash K} c_{i} \quad \text { and } \quad \sum_{i \in E \backslash K} c_{i}=0
$$

for some choice of $c_{i} \in \mathbb{R}$ for all $i \in E \backslash K$.

- $(\Delta(\mathcal{L}), L(\mathcal{L}))$ is hereditary.

Volume polynomial of a matroid

- For every facet $T \in \Delta(\mathcal{L})$, define $w(T)=1$.
- For all $S \in \Delta(\mathcal{L})$ with $|S|=d-1$,

$$
\sum_{G \notin S} w(S \cup\{G\}) \cdot t_{G}=\sum_{F_{i} \prec G \prec F_{i+1}} t_{G}
$$

is identically zero on $\pi_{S}(L(\mathcal{L}))$, since the rank-one flats of a matroid partition its non-loop elements.

- The volume polynomial of M is unique hereditary polynomial $f_{\mathcal{L}}$ defined by w, with $\Delta_{f_{\mathcal{L}}}=\Delta(\mathcal{L})$ and $L(\mathcal{L}) \subseteq L_{f_{\mathcal{L}}}$.
- Note that $\Delta_{f_{\mathcal{L}}^{S}}=\mathrm{lk}_{\Delta(\mathcal{L})}(S)=\prod_{i} \Delta\left(\left[F_{i}, F_{i+1}\right]\right)$.
- Uniqueness then implies

$$
f_{\mathcal{L}}^{S}(t)=\prod f_{\left[F_{i}, F_{i+1}\right]}(t)
$$

Volume polynomial of a matroid

- The canonical cone $\mathcal{K}_{f_{\mathcal{L}}}$ is non-empty because it contains the set of strictly submodular $\left(x_{S}\right)_{K \subset S \subset E}$, i.e.

$$
x_{S}+x_{T}>x_{S \cup T}+x_{S \cap T} \quad \text { with } \quad x_{K}=x_{E}=0
$$

for uncomparable S, T.

- H-connectivity of $\Delta(\mathcal{L})$ follows from semimodularity of \mathcal{L}.
- To prove $f_{\mathcal{L}}$ is hereditary Lorentzian it remains to consider $f_{\mathcal{L}}^{S}(t)$ for $S \in \Delta(\mathcal{L})$ with $|S|=d-2$.
- Either such a quadratic is product of two linear polynomials, or
- it is the volume polynomial of a matroid of rank 3:

$$
\left(\sum_{K \prec F} t_{F}\right)^{2}-\sum_{G \prec E}\left(t_{G}-\sum_{K \prec F \prec G} t_{F}\right)^{2},
$$

which has exactly one positive eigenvalue.

Chow rings of simplicial fans

- Let Δ be a simplicial complex of dimension $d-1$ on V.
- Let $\Sigma=\left\{C_{S}\right\}_{S \in \Delta}$ be a collection of $|S|$-dimensional polyhedral cones such that
- Each face of C_{S} is a cone in Σ, and
- $C_{S} \cap C_{T}=C_{S \cap T}$.
- Σ is called a simplicial fan.
- Let $\rho_{i}, i \in V$, be specified vectors of the rays $C_{\{i\}}$.
- Let $L=L(\Sigma)=\left\{\left(\lambda\left(\rho_{i}\right)\right)_{i \in V}: \lambda \in\left(\mathbb{R}^{V}\right)^{*}\right\}$.
- (Δ, L) is hereditary.

Chow rings of simplicial fans

- Define two ideals in $\mathbb{R}\left[x_{i}: i \in V\right]$:
- $I(\Delta)$ is generated by the monomials $\prod_{i \in T} x_{i}, \quad T \notin \Delta$.
- $J(L)$ is generated by the linear forms $\sum_{i \in V} \ell_{i} x_{i}, \quad\left(\ell_{i}\right)_{i \in V} \in L$.
- The graded ring

$$
A(\Sigma)=\bigoplus_{k=0}^{d} A^{k}(\Sigma):=\mathbb{R}\left[x_{i}: i \in V\right] /(I(\Delta)+J(L))
$$

is the Chow ring of Σ.

- Important examples of Chow rings that satisfy the Kähler package are
- The normal fan of a simple polytope (Stanley, McMullen).
- The Chow ring of a matroid (Adiprasito, Huh and Katz), and related Chow rings.

Volume polynomials of simplicial fans

- Given any $\alpha \in A^{k}(\Sigma)^{*}$,

$$
f_{\alpha}(t)=\frac{1}{k!} \alpha\left(\left(\sum_{i \in V} t_{i} x_{i}\right)^{k}\right)
$$

is a hereditary polynomial.

- When $A^{d}(\Sigma)$ is one-dimensional, then the given hereditary polynomial is called the volume polynomial of Σ.
- Our main theorem implies a characterization of α for which f_{α} is hereditary Lorentzian
- Corollary. Characterization of $A(\Sigma)$ satisfying (P) and (AF), the Hodge-Riemann relations of degree 0 and 1.
- See also independent work of Dustin Ross.

Edge subdivisions of simplicial fans

- Fans have a natural notion of stellar subdivision:
- Add a new cone $C_{\{0\}}$ with ray ρ_{0} in the relative interior of a cone C in Σ, and break C into many cones incident on $C_{\{0\}}$.
- If $C \sim\left\{\rho_{1}, \rho_{2}\right\}$ is two-dimensional, call it an edge subdivision.
- The support of a fan Σ is defined as $\bigcup_{C \in \Sigma} C$
- Stellar subdivisions of fans preserve the support of the fan, and
- whether or not a simplicial fan satisfies the Kähler package depends only on the support of the fan (Ardila-Denham-Huh)

Edge subdivisions of hereditary polynomials

- How does edge subdivision of $\left\{\rho_{1}, \rho_{2}\right\}$ act on Δ and L ?
- Get Δ_{12} by replacing $\{1,2\}$ by $\{1,0\}$ or $\{0,2\}$ in faces of Δ,
- If $\rho_{0}=c_{1} \rho_{1}+c_{2} \rho_{2}$ for $c_{1}, c_{2}>0$ then

$$
L_{12}=\left\{\left(\ell_{0}, \ell\right) \in \mathbb{R}^{\{0\} \cup V}: \ell \in L, \ell_{0}=c_{1} \ell_{2}+c_{1} \ell_{2}\right\} .
$$

- Let (Δ, L) be hereditary, and let $\mathcal{P}^{d}(\Delta, L)$ be the degree d hereditary polynomials f such that $\Delta_{f} \subseteq \Delta$ and $L \subseteq L_{f}$.
- Proposition. Suppose $\{1,2\} \in \Delta$ and fix $c_{1}, c_{2}>0$. There is an injective linear map

$$
\operatorname{sub}_{12}: \mathcal{P}^{d}(\Delta, L) \rightarrow \mathcal{P}^{d}\left(\Delta_{12}, L_{12}\right)
$$

which generalizes the map between the volume polynomials of fans. If $\operatorname{dim}(\Delta)=d-1$ then sub_{12} is a bijection.

Edge subdivisions of hereditary polynomials

- For hereditary polynomials f, g, write $f \sim g$ if f and g are connected by a sequence of $\operatorname{sub}_{i j}$ or sub $_{i j}^{-1}$ operations.
- Theorem (Brändén-L). If $f \sim g$ and \mathcal{K}_{f} and \mathcal{K}_{g} are non-empty, then f is hereditary Lorentzian if and only if g is hereditary Lorentzian.
- Corollary. Applies to volume polynomials of simplicial fans which have the same support.

Volume polynomials of simple polytopes

- Let $P \subset \mathcal{E}$ be a d-dim. simple polytope with facets P_{1}, \ldots, P_{n} and associated facet unit (outward) normal vectors $\zeta_{1}, \ldots, \zeta_{n}$.
- Given Q with the same facet normals, define support numbers

$$
t_{i}(Q)=\max _{q \in Q}\left\langle\zeta_{i}, q\right\rangle \quad \text { for } \quad 1 \leq i \leq n
$$

- The set of all such $t \in \mathbb{R}^{n}$ forms an open convex cone \mathcal{K}_{P}.
- There is volume polynomial f_{P} such that $f_{P}(t(Q))=\operatorname{vol}(Q)$.
- Let Δ_{P} be the simplicial complex associated to the normal fan of P, and let L_{P} be defined via

$$
L_{P}=\left\{\left(\left\langle v, \zeta_{i}\right\rangle\right)_{i=1}^{n}: v \in \mathcal{E}\right\}
$$

- $\left(\Delta_{P}, L_{P}\right)$ is hereditary and $f_{P} \in \mathcal{P}^{d}\left(\Delta_{P}, L_{P}\right)$.

Volume polynomials of simple polytopes

- Note that $\partial_{i} f_{P}(t(Q))=\operatorname{vol}\left(Q_{i}\right)$, where Q_{i} is the facet of Q.
- This implies (see e.g. Schneider)

$$
\partial_{i} f_{P}(t)=f_{P_{i}}\left(\left(\frac{t_{j}-t_{i} \cos \left(\theta_{i j}\right)}{\sin \left(\theta_{i j}\right)}\right)_{j}\right)
$$

where $\theta_{i j}$ is the angle between ζ_{i} and ζ_{j}.

- To prove that f_{P} is hereditary Lorentzian:
- Δ_{P} is H -connected since the boundary of P is connected.
- Need to show the Hessian of f_{P} has at most one positive eigenvalue, for any convex polygon P.
- If P is a triangle (simplex), then $f_{P}(t)=\left(a_{1} t_{1}+a_{2} t_{2}+a_{3} t_{3}\right)^{2}$ and $\mathcal{P}^{2}\left(\Delta_{P}, L_{P}\right)$ is one-dimensional since $\operatorname{dim}\left(L_{P}\right)=2$.
- Apply edge subdivisions (vertex truncations) to obtain f_{P} for any convex polygon P; theorem implies hereditary Lorentzian.

