The Universal Tutte Polynomial

Olivier Bernardi (Brandeis University) - Joint work with -Tamás Kálmán (Tokyo IT) & Alex Postnikov (MIT)

Fields Institute, October 2022

 $\label{eq:linear} \textbf{1.} Generalizing the Tutte polynomial to hypergraphs and polymatroids$

1. Generalizing the Tutte polynomial to hypergraphs and polymatroids

*completing results by Kálmán, Kálmán-Postnikov, and Cameron-Fink

- 1. Generalizing the Tutte polynomial to hypergraphs and polymatroids
 - \rightarrow extending known results from matroids to polymatroids,
 - \rightarrow reflecting back on classical setting (e.g. Brilawsky identities),
 - \rightarrow hypergraph invariants, knot invariants.

- 1. Generalizing the Tutte polynomial to hypergraphs and polymatroids
 - ightarrow extending known results from matroids to polymatroids,
 - \rightarrow reflecting back on classical setting (e.g. Brilawsky identities),
 - \rightarrow hypergraph invariants, knot invariants.

- 1. Generalizing the Tutte polynomial to hypergraphs and polymatroids
 - \rightarrow extending known results from matroids to polymatroids,
 - \rightarrow reflecting back on classical setting (e.g. Brilawsky identities),
 - \rightarrow hypergraph invariants, knot invariants.

- 2. Universal Tutte polynomial
 - \rightarrow coeffs of Tutte polynomials are polynomial in rank function,
 - ightarrow explicit expression of \mathbf{T}_n ,
 - \rightarrow connection with Postnikov's multi-Ehrhart polynomial of generalized permutahedra.

Background on polymatroids

Def 1. A matroid on a set E is a set $M \subseteq 2^E$ of bases satisfying: **Exchange Axiom:** $\forall A, B \in M, \forall i \in A \setminus B,$ $\exists j \in B \setminus A$ such that $A \cup \{j\} \setminus \{i\} \in M$ and $B \cup \{i\} \setminus \{j\} \in M.$

Def 1. A matroid on a set E is a set $M \subseteq 2^E$ of bases satisfying: **Exchange Axiom:** $\forall A, B \in M, \forall i \in A \setminus B,$ $\exists j \in B \setminus A$ such that $A \cup \{j\} \setminus \{i\} \in M$ and $B \cup \{i\} \setminus \{j\} \in M.$

Example: $E = \{1, 2, 3, 4\}$ $M = \{\{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 3, 5\}, \{1, 4, 5\}, \{2, 3, 5\}, \{2, 4, 5\}\}$

Def 1. A matroid on a set E is a set $M \subseteq 2^E$ of bases satisfying: **Exchange Axiom:** $\forall A, B \in M, \forall i \in A \setminus B,$ $\exists j \in B \setminus A$ such that $A \cup \{j\} \setminus \{i\} \in M$ and $B \cup \{i\} \setminus \{j\} \in M.$

Def 2. (Base polytope) A matroid on E is a polytope in \mathbb{R}^E vertices in $\{0,1\}^E$ and edges in $\{\mathbf{e}_i - \mathbf{e}_j, i, j \in E\}$.

(notation: $\{\mathbf{e}_i, i \in E\}$ denotes the cannonical basis of \mathbb{R}^E)

Def 1. A matroid on a set E is a set $M \subseteq 2^E$ of bases satisfying: **Exchange Axiom:** $\forall A, B \in M, \forall i \in A \setminus B,$ $\exists j \in B \setminus A$ such that $A \cup \{j\} \setminus \{i\} \in M$ and $B \cup \{i\} \setminus \{j\} \in M.$

Def 2. (Base polytope) A matroid on E is a polytope in \mathbb{R}^E vertices in $\{0,1\}^E$ and edges in $\{\mathbf{e}_i - \mathbf{e}_j, i, j \in E\}$.

Def 1. A matroid on a set E is a set $M \subseteq 2^E$ of bases satisfying: **Exchange Axiom:** $\forall A, B \in M, \forall i \in A \setminus B,$ $\exists j \in B \setminus A$ such that $A \cup \{j\} \setminus \{i\} \in M$ and $B \cup \{i\} \setminus \{j\} \in M.$

Def 2. (Base polytope) A matroid on E is a polytope in \mathbb{R}^E vertices in $\{0,1\}^E$ and edges in $\{\mathbf{e}_i - \mathbf{e}_j, i, j \in E\}$.

Def 3. (Rank function) A matroid on E is a polytope in \mathbb{R}^E , with faces of the form $\sum_{i \in S} x_i \leq f(S)$, and $\sum_{i \in E} x_i = f(E)$, where $f: 2^E \to \mathbb{N}$ is a submodular function such that $f(\{i\}) \leq 1$.

 $\forall S, T, f(S) + f(T) \ge f(S \cup T) + f(S \cap T), \text{ with } f(\emptyset) = 0.$ **Rank function**= unique submodular function f defining the facets.

Def. A polymatroid on E is a finite set $P \subseteq \mathbb{Z}^E$ of bases satisfying **Exchange Axiom:** $\forall \mathbf{a}, \mathbf{b} \in P, \forall i \text{ s.t. } a_i > b_i,$ $\exists j \text{ s.t. } b_j > a_j \text{ and } \mathbf{a} + \mathbf{e}_j - \mathbf{e}_i \in P \text{ and } \mathbf{b} + \mathbf{e}_i - \mathbf{e}_j \in P.$

Def. A polymatroid on E is a finite set $P \subseteq \mathbb{Z}^E$ of bases satisfying **Exchange Axiom:** $\forall \mathbf{a}, \mathbf{b} \in P, \forall i \text{ s.t. } a_i > b_i,$ $\exists j \text{ s.t. } b_j > a_j \text{ and } \mathbf{a} + \mathbf{e}_j - \mathbf{e}_i \in P \text{ and } \mathbf{b} + \mathbf{e}_i - \mathbf{e}_j \in P.$

Def 2. (Base polytope) A polymatroid on E is a polytope in \mathbb{R}^E with vertices in \mathbb{Z}^E and edge directions in $\{\mathbf{e}_i - \mathbf{e}_j, i, j \in E\}$.

Def. A polymatroid on E is a finite set $P \subseteq \mathbb{Z}^E$ of bases satisfying **Exchange Axiom:** $\forall \mathbf{a}, \mathbf{b} \in P, \forall i \text{ s.t. } a_i > b_i,$ $\exists j \text{ s.t. } b_j > a_j \text{ and } \mathbf{a} + \mathbf{e}_j - \mathbf{e}_i \in P \text{ and } \mathbf{b} + \mathbf{e}_i - \mathbf{e}_j \in P.$

Def 2. (Base polytope) A polymatroid on E is a polytope in \mathbb{R}^E with vertices in \mathbb{Z}^E and edge directions in $\{\mathbf{e}_i - \mathbf{e}_j, i, j \in E\}$.

"generalized permutahedra"

Def. A polymatroid on E is a finite set $P \subseteq \mathbb{Z}^E$ of bases satisfying **Exchange Axiom:** $\forall \mathbf{a}, \mathbf{b} \in P, \forall i \text{ s.t. } a_i > b_i,$ $\exists j \text{ s.t. } b_j > a_j \text{ and } \mathbf{a} + \mathbf{e}_j - \mathbf{e}_i \in P \text{ and } \mathbf{b} + \mathbf{e}_i - \mathbf{e}_j \in P.$

Def 2. (Base polytope) A polymatroid on E is a polytope in \mathbb{R}^E with vertices in \mathbb{Z}^E and edge directions in $\{\mathbf{e}_i - \mathbf{e}_j, i, j \in E\}$.

Def 3. (Rank function) A polymatroid on E is a polytope in \mathbb{R}^E , with faces of the form $\sum_{i \in S} x_i \leq f(S)$, and $\sum_{i \in E} x_i = f(E)$, where $f: 2^E \to \mathbb{Z}$ is a submodular function (rank function).

Matroids from graphs

Prop. For any connected graph G = (V, E),

 $M_G := \{T \subseteq E \text{ spanning tree}\}$

is a matroid on E.

Matroids from graphs

Prop. For any connected graph G = (V, E), $M_G := \{T \subseteq E \text{ spanning tree}\}$

is a matroid on E.

Def: A hypergraph on a set V, is a multiset E of subsets of V.

Example:

Rk: Graph = hypergraph where every hyperedge $e \in E$ has size 2.

Def: Let H = (V, E) be a hypergraph. Let B_H be the corresponding bipartite graph.

A spanning hypertree of H is a point $\mathbf{a} \in \mathbb{N}^E$ for which there exists a spanning tree T of B_H such that

$$\forall i \in E, \ a_i = \deg_T(i) - 1.$$

Def: Let H = (V, E) be a hypergraph. Let B_H be the corresponding bipartite graph.

A spanning hypertree of H is a point $\mathbf{a} \in \mathbb{N}^E$ for which there exists a spanning tree T of B_H such that

$$\forall i \in E, \ a_i = \deg_T(i) - 1.$$

Remark: If a hypergraph H corresponds to a graph G, then the spanning hypertrees of H are in bijection with the spanning trees of G.

Prop: For any hypergraph H = (V, E), the set of spanning hypertrees of H forms a polymatroid P_H on E.

{hypergraphs} contains a full dim, infinite, cone

Def: For a matroid M on E,

$$T_M(x,y) = \sum_{S \subseteq E} (x-1)^{\operatorname{cork}(S)} (y-1)^{\operatorname{null}(S)},$$

where

 $\operatorname{cork}(S) = \#$ elements to add in order to contain a basis,

 $\operatorname{null}(S) = \#$ elements to delete in order to be contained in a basis.

Def: For a matroid M on E,

$$T_M(x,y) = \sum_{S \subseteq E} (x-1)^{\operatorname{cork}(S)} (y-1)^{\operatorname{null}(S)},$$

where

 $\operatorname{cork}(S) = \#$ elements to add in order to contain a basis,

 $\operatorname{null}(S) = \#$ elements to delete in order to be contained in a basis.

 $T_G(x,y) = x^3 + 2x^2 + 2xy + y^2 + x + y.$

The Tutte poly $T_G(x, y)$ of a graph G captures a lot of information:

spanning trees, # forests, # connected subgraphs,
acyclic orientations, # totally cyclic orientations,
Chromatic polynomial, Potts polynomial,
G-parking functions by degree, Reliability polynomial...

Thm: The Tutte polynomial is universal among invariants satysfying linear **deletion-contraction** formulas:

 $\begin{aligned} \forall i \in E \text{ neither loop nor coloop,} \quad X_M &= \alpha \, X_{M \setminus i} + \beta \, X_{M/i} \\ \forall i \in E \text{ loop,} \quad X_M &= \gamma \, X_{M \setminus i} \\ \forall i \in E \text{ coloop,} \quad X_M &= \delta \, X_{M/i} \end{aligned}$

(The Tutte polynomial corresponds to $\alpha = \beta = 1$, $\gamma = y$, $\delta = x$)

Thm [Tutte/Crapo] For any total order \prec on E, $T_M(x, y) = \sum_{A \text{ basis}} x^{|\mathsf{IA}(A)|} y^{|\mathsf{EA}(A)|},$

 $\begin{aligned} \mathsf{IA}(A) &= \{i \in A \mid \not \exists j \prec i \text{ such that } A - i + j \text{ is a basis} \} \\ \mathsf{EA}(A) &= \{i \notin A \mid \not \exists j \prec i \text{ such that } A + i - j \text{ is a basis} \} \end{aligned}$

Thm [Tutte/Crapo] For any total order \prec on E, $T_M(x, y) = \sum_{A \text{ basis}} x^{|\mathsf{IA}(A)|} y^{|\mathsf{EA}(A)|},$

 $\begin{aligned} \mathsf{IA}(A) &= \{i \in A \mid \not \exists j \prec i \text{ such that } A - i + j \text{ is a basis} \} \\ \mathsf{EA}(A) &= \{i \notin A \mid \not \exists j \prec i \text{ such that } A + i - j \text{ is a basis} \} \end{aligned}$

Example:

 $\mathsf{IA}(T) = \{1\}$ $\mathsf{EA}(T) = \{3\}$

Thm [Tutte/Crapo] For any total order \prec on E, $T_M(x, y) = \sum_{A \text{ basis}} x^{|\mathsf{IA}(A)|} y^{|\mathsf{EA}(A)|},$

 $\begin{aligned} \mathsf{IA}(A) &= \{i \in A \mid \not \exists j \prec i \text{ such that } A - i + j \text{ is a basis} \} \\ \mathsf{EA}(A) &= \{i \notin A \mid \not \exists j \prec i \text{ such that } A + i - j \text{ is a basis} \} \end{aligned}$

Example:

 $T_G(x,y) = x^3 + 2x^2 + 2xy + y^2 + x + y.$

Relation between the two expressions of $T_M(x, y)$?

Example: M

"Crapo's interval partition"

Tentative definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $\mathbf{a} \in P$, let $|\mathsf{A}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not\exists j < i \text{ such that } \mathbf{a} - \mathbf{e}_i + \mathbf{e}_j \in P\},$ $\mathsf{EA}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not\exists j < i \text{ such that } \mathbf{a} + \mathbf{e}_i - \mathbf{e}_j \in P\}.$ $T_P(x, y) \stackrel{?}{:=} \sum x^{|\mathsf{IA}(\mathbf{a})|} y^{|\mathsf{EA}(\mathbf{a})|}.$

a basis

Tentative definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $\mathbf{a} \in P$, let $|\mathsf{A}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not\exists j < i \text{ such that } \mathbf{a} - \mathbf{e}_i + \mathbf{e}_j \in P\},$ $\mathsf{EA}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not\exists j < i \text{ such that } \mathbf{a} + \mathbf{e}_i - \mathbf{e}_j \in P\}.$ $T_P(x, y) := \sum_{\mathbf{h} \in I} x^{|\mathsf{IA}(\mathbf{a})|} y^{|\mathsf{EA}(\mathbf{a})|}.$

a basis

Tentative definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $\mathbf{a} \in P$, let $|\mathsf{A}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not\exists j < i \text{ such that } \mathbf{a} - \mathbf{e}_i + \mathbf{e}_j \in P\},\$ $\mathsf{EA}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not\exists j < i \text{ such that } \mathbf{a} + \mathbf{e}_i - \mathbf{e}_j \in P\}.$ $T_P(x, y) \stackrel{?}{:=} \sum_{\mathbf{a} \text{ basis}} x^{|\mathsf{IA}(\mathbf{a})|} y^{|\mathsf{EA}(\mathbf{a})|}.$

Does not work! Not invariant under reordering of [n].

Tentative definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $\mathbf{a} \in P$, let $|\mathbf{A}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not\exists j < i \text{ such that } \mathbf{a} - \mathbf{e}_i + \mathbf{e}_j \in P\},\$ $|\mathbf{E}\mathbf{A}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not\exists j < i \text{ such that } \mathbf{a} + \mathbf{e}_i - \mathbf{e}_j \in P\}.$ $T_P(x, y) \stackrel{?}{:=} \sum_{\mathbf{a} \text{ basis}} x^{|\mathbf{I}\mathbf{A}(\mathbf{a})|} y^{|\mathbf{E}\mathbf{A}(\mathbf{a})|}.$

Does not work! Not invariant under reordering of [n].

However $T_P(x,1)$ and $T_P(1,y)$ are invariant under reordering of [n]. [Kalman 13, Kalman & Postnikov 17]

Tentative definition: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $\mathbf{a} \in P$, let $|\mathbf{A}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} - \mathbf{e}_i + \mathbf{e}_j \in P\},\$ $|\mathbf{E}\mathbf{A}(\mathbf{a}) \stackrel{?}{=} \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} + \mathbf{e}_i - \mathbf{e}_j \in P\}.$ $T_P(x, y) \stackrel{?}{:=} \sum_{\mathbf{a} \text{ basis}} x^{|\mathbf{I}\mathbf{A}(\mathbf{a})|} y^{|\mathbf{E}\mathbf{A}(\mathbf{a})|}.$

Does not work! Not invariant under reordering of [n].

However $T_P(x,1)$ and $T_P(1,y)$ are invariant under reordering of [n]. [Kalman 13, Kaman & Postnikov 17]

 \simeq "Ehrhart polynomial" $|(P + q\Delta) \cap \mathbb{Z}^n|$

Cameron & Fink's fix

Def: The **Cameron-Fink invariant** for a polymatroid $P \subseteq \mathbb{Z}^n$ is the unique polynomial $Q_P(x, y)$ such that $\forall k, \ell \in \mathbb{Z}_{>0}$,

$$Q_P(k,\ell) = \left| \left(P + k \,\nabla + \ell \,\Delta \right) \cap \mathbb{Z}^n \right|,$$

where $\Delta = \operatorname{conv}(\mathbf{e}_i, i \in [n])$ and $\nabla = \operatorname{conv}(-\mathbf{e}_i, i \in [n])$.

Prop [Cameron-Fink]: For a matroid M, $Q_M(x, y) \simeq T_{P(M)}(x, y)$ same information

Definition [BKP]: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $\mathbf{a} \in P$

$$\begin{aligned} \mathsf{IA}(\mathbf{a}) &= \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} - \mathbf{e}_i + \mathbf{e}_j \in P\} \\ \mathsf{EA}(\mathbf{a}) &= \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} + \mathbf{e}_i - \mathbf{e}_j \in P\} \end{aligned}$$

$$\mathbf{T}_{P}(x,y) = \sum_{\mathbf{a} \text{ basis}} x^{|\mathsf{IA}(\mathbf{a}) \setminus \mathsf{EA}(\mathbf{a})|} y^{|\mathsf{EA}(\mathbf{a}) \setminus \mathsf{IA}(\mathbf{a})|} (x+y-1)^{|\mathsf{IA}(\mathbf{a}) \cap \mathsf{EA}(\mathbf{a})|}.$$

Definition [BKP]: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $\mathbf{a} \in P$

 $\begin{aligned} \mathsf{IA}(\mathbf{a}) &= \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} - \mathbf{e}_i + \mathbf{e}_j \in P\} \\ \mathsf{EA}(\mathbf{a}) &= \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} + \mathbf{e}_i - \mathbf{e}_j \in P\} \end{aligned}$

Definition [BKP]: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $\mathbf{a} \in P$

$$\begin{aligned} \mathsf{IA}(\mathbf{a}) &= \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} - \mathbf{e}_i + \mathbf{e}_j \in P\} \\ \mathsf{EA}(\mathbf{a}) &= \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} + \mathbf{e}_i - \mathbf{e}_j \in P\} \end{aligned}$$

$$\mathbf{T}_{P}(x,y) = \sum_{\mathbf{a} \text{ basis}} x^{|\mathsf{IA}(\mathbf{a}) \setminus \mathsf{EA}(\mathbf{a})|} y^{|\mathsf{EA}(\mathbf{a}) \setminus \mathsf{IA}(\mathbf{a})|} (x+y-1)^{|\mathsf{IA}(\mathbf{a}) \cap \mathsf{EA}(\mathbf{a})|}.$$

Thm [BKP] This polynomial is invariant under reordering of [n].

Definition [BKP]: Let $P \subseteq \mathbb{Z}^n$ be a polymatroid. For $\mathbf{a} \in P$

$$\begin{aligned} \mathsf{IA}(\mathbf{a}) &= \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} - \mathbf{e}_i + \mathbf{e}_j \in P\} \\ \mathsf{EA}(\mathbf{a}) &= \{i \in [n] \mid \not \exists j < i \text{ such that } \mathbf{a} + \mathbf{e}_i - \mathbf{e}_j \in P\} \end{aligned}$$

$$\mathbf{T}_{P}(x,y) = \sum_{\mathbf{a} \text{ basis}} x^{|\mathsf{IA}(\mathbf{a}) \setminus \mathsf{EA}(\mathbf{a})|} y^{|\mathsf{EA}(\mathbf{a}) \setminus \mathsf{IA}(\mathbf{a})|} (x+y-1)^{|\mathsf{IA}(\mathbf{a}) \cap \mathsf{EA}(\mathbf{a})|}.$$

Thm [BKP] This polynomial is invariant under reordering of [n]. Moreover, for any matroid M of rank d on E = [n],

$$\mathbf{T}_{P(M)}(x,y) = x^{n-d} y^d T_M\left(\frac{x+y-1}{y}, \frac{x+y-1}{x}\right).$$

$$\mathbf{T}_P(x,y) = \sum_{\mathbf{a} \in \mathbb{Z}^b} ???$$

Interval partition?

Thm [BKP] For any polymatroid $P \subseteq \mathbb{Z}^n$, $\mathbf{T}_P\left(\frac{1}{1-u}, \frac{1}{1-v}\right) = \sum_{\mathbf{c} \in \mathbb{Z}^n} u^{\operatorname{cork}(\mathbf{c})} v^{\operatorname{null}(\mathbf{c})},$ where $\operatorname{cork}(\mathbf{c}) = \min(|\mathbf{b}| | \mathbf{c} + \mathbf{b} \ge \mathbf{a} \in P)$, $\operatorname{null}(\mathbf{c}) = \min(|\mathbf{b}| | \mathbf{c} - \mathbf{b} \le \mathbf{a} \in P)$.

Relation: Crapo-type partition.

Let $P \subseteq \mathbb{Z}^n$ be a polynomatroid. For $\mathbf{a} \in P$ we define the cone

$$C(\mathbf{a}) = \mathbf{a} + \sum_{i \in \mathsf{IA}(\mathbf{a}) \setminus \mathsf{EA}(\mathbf{a})} \mathbb{Z}_{\leq 0} \, \mathbf{e}_i + \sum_{i \in \mathsf{EA}(\mathbf{a}) \setminus \mathsf{IA}(\mathbf{a})} \mathbb{Z}_{\geq 0} \, \mathbf{e}_i + \sum_{i \in \mathsf{IA}(\mathbf{a}) \cap \mathsf{EA}(\mathbf{a})} \mathbb{Z} \, \mathbf{e}_i.$$

Relation: Crapo-type partition.

Let $P \subseteq \mathbb{Z}^n$ be a polynomatroid. For $\mathbf{a} \in P$ we define the cone

Relation: Crapo-type partition.

Let $P \subseteq \mathbb{Z}^n$ be a polynomatroid. For $\mathbf{a} \in P$ we define the cone

Relation: Crapo-type partition. Let $P \subseteq \mathbb{Z}^n$ be a polynomatroid. For $\mathbf{a} \in P$ we define the cone $C(\mathbf{a}) = \mathbf{a} + \sum \mathbb{Z}_{\leq 0} \mathbf{e}_i + \sum \mathbb{Z}_{\geq 0} \mathbf{e}_i + \sum$ $\mathbb{Z}\mathbf{e}_i$. $i \in IA(\mathbf{a}) \setminus EA(\mathbf{a})$ $i \in EA(\mathbf{a}) \setminus IA(\mathbf{a})$ $i \in IA(\mathbf{a}) \cap EA(\mathbf{a})$ **Lemma [BKP]** For any polymatroid $P \subseteq \mathbb{Z}^n$, $[+] C(\mathbf{a}) = \mathbb{Z}^n.$ $\mathbf{a} \in P$

Moreover, for all basis $\mathbf{a} \in P$,

$$\sum_{\mathbf{c}\in C(\mathbf{a})} u^{\operatorname{cork}(\mathbf{c})} v^{\operatorname{null}(\mathbf{c})} = \left(\frac{1}{1-u}\right)^{|\mathsf{IA}(\mathbf{a})\setminus\mathsf{EA}(\mathbf{a})|} \left(\frac{1}{1-v}\right)^{|\mathsf{EA}(\mathbf{a})\setminus\mathsf{IA}(\mathbf{a})|} \left(\frac{1}{1-u} + \frac{1}{1-v} - 1\right)^{|\mathsf{IA}(\mathbf{a})\cap\mathsf{EA}(\mathbf{a})|} .$$

Relation with Cameron-Fink invariant

Prop [BKP]:

$$Q_P(x,y) = \sum_{i,j} c_{i,j} \binom{x}{i} \binom{y}{j},$$
where $c_{i,j} = [x^i y^j] \frac{\mathbf{T}_P(x+1,y+1)}{x+y+1}.$

Some properties of polymatroid Tutte polynomial

Prop. $P \subset \mathbb{R}^n$.

- $\mathbf{T}_P(x, y)$ is **invariant** under translation of P, and under permutation [n].
- Duality: $\mathbf{T}_{-P}(x,y) = \mathbf{T}_{P}(y,x)$.

Some properties of polymatroid Tutte polynomial

Prop. $P \subset \mathbb{R}^n$.

- $\mathbf{T}_P(x, y)$ is **invariant** under translation of P, and under permutation [n].
- Duality: $\mathbf{T}_{-P}(x,y) = \mathbf{T}_{P}(y,x)$.
- Brylawski identities:

$$\deg(\mathbf{T}_P(x,y)) = n) \text{ and } [x^k y^{n-k}]\mathbf{T}_P(x,y) = \binom{n}{k}.$$

Cor:[Brylawski 72] For any matroid $M \subseteq 2^{[n]}$, the coefficients $t_{i,j} = [x^i y^j] T_M(x, y)$ satisfy

$$\forall p < n, \quad \sum_{i=0}^{p} \sum_{j=0}^{i} {p-i \choose j} (-1)^{j} t_{i,j} = 0.$$

Universal Tutte Polynomial

Universal Tutte polynomial

Thm [BKP]. The Tutte polynomial is polynomial in the rank function.

Universal Tutte polynomial

Thm [BKP]. Let $n \in \mathbb{Z}_{>0}$, and let $\mathbf{z} = (z_S)_{\emptyset \neq S \subseteq [n]}$ be variables. There exists a unique polynomial $\mathbf{T}_n(x, y; \mathbf{z})$ such that for all polymatroids on [n],

$$\mathbf{T}_P(x,y) = \mathbf{T}_n(x,y;\mathbf{z})_{|z_S=f_P(S)},$$

where f_P is the rank function of P.

Universal Tutte polynomial

Thm [BKP]. Let $n \in \mathbb{Z}_{>0}$, and let $\mathbf{z} = (z_S)_{\emptyset \neq S \subseteq [n]}$ be variables. There exists a unique polynomial $\mathbf{T}_n(x, y; \mathbf{z})$ such that for all polymatroids on [n],

$$\mathbf{T}_P(x,y) = \mathbf{T}_n(x,y;\mathbf{z})_{|z_S=f_P(S)},$$

where f_P is the rank function of P.

Example: n=3

$$\frac{T_3(x, y; z)}{x + y - 1} = x^2 + 2xy + y^2 + (z_1 + z_2 + z_3 - z_{123} - 2)x + (z_{12} + z_{13} + z_{23} - 2z_{123} - 2)y + \frac{1}{2}(z_{123}^2 - z_{12}^2 - z_{13}^2 - z_{23}^2 - z_1^2 - z_2^2 - z_3^2) + (z_1z_{12} + z_1z_{13} + z_2z_{12} + z_2z_{23} + z_3z_{13} + z_3z_{23}) + \frac{1}{2}(3z_{123} - z_{12} - z_{13} - z_{23} - z_1 - z_2 - z_3) + 1.$$

Proof:

Uniqueness:

Space Ω_n of polymatroids on [n] contains a cone of dimension $2^n - 1$.

 $z_S + z_T \ge z_{S \cup T} + z_{S \cap T}$

Proof:

Uniqueness:

Space Ω_n of polymatroids on [n] contains a cone of dimension $2^n - 1$.

Existence:

• In the bulk of Ω_n : activity constant in the interior of each face, and number of points in each face is polynomial in $(z_S)_{S \subseteq [n]}$.

Proof:

Uniqueness:

Space Ω_n of polymatroids on [n] contains a cone of dimension $2^n - 1$.

Existence:

• In the bulk of Ω_n : activity constant in the interior of each face, and number of points in each face is polynomial in $(z_S)_{S \subseteq [n]}$.

• At the boundary of Ω the contribution of "collapsing" faces behaves polynomially.

 $\mathbf{T}_2(x,y;\mathbf{z}) = (x+y-1)x + (x+y-1)y + (z_1+z_2-z_{1,2}-1)(x+y-1)$

Explicit formula for \mathbf{T}_n

Def:[Postnikov] $(d_I)_{\emptyset \neq I \subseteq [n]} \in \mathbb{Z}_{\geq 0}^{2^n}$ is draconian if $\forall I_1, \dots, I_k \subseteq [n], \quad d_{I_1} + \dots + d_{I_k} \leq |I_1 \cup \dots \cup I_k| - 1,$ and $\sum_{I \subseteq [n]} d_I = n - 1.$

Explicit formula for T_n

Def:[Postnikov] $(d_I)_{\emptyset \neq I \subseteq [n]} \in \mathbb{Z}_{\geq 0}^{2^n}$ is draconian if $\forall I_1, \dots, I_k \subseteq [n], \quad d_{I_1} + \dots + d_{I_k} \leq |I_1 \cup \dots \cup I_k| - 1,$ and $\sum_{I \subseteq [n]} d_I = n - 1.$

The dragon polynomial is the following polynomial in $\mathbf{t} = (t_I)_{\emptyset \neq I \subseteq [n]}$

$$D_{n}(\mathbf{t}) = \sum_{(d_{I}) \text{ draconian}} \binom{t_{[n]} - 1}{d_{[n]}} \prod_{\emptyset \neq I \subsetneq [n]} \binom{t_{I}}{d_{I}},$$

where $\binom{t}{d} := \frac{t(t-1)\cdots(t-d+1)}{d!}.$

Explicit formula for \mathbf{T}_n

Thm [BKP]:

The reparametrization $\widehat{\mathbf{T}}_n(x, y; \mathbf{t}) := \mathbf{T}_n(x, y; \mathbf{z})_{|z_I = \sum_{J \subseteq [n], J \cap I \neq \emptyset} t_J}$ has the following explicit formula:

$$\widehat{\mathbf{T}}_{n}(x,y;\mathbf{t}) = (x+y-1) \sum_{\substack{B = (B_{1},...,B_{\ell})\\ \biguplus B_{k} = [n]}} (-1)^{\ell-1} D_{n}(\mathbf{t}^{B}) x^{lr(B)-1} y^{rl(B)-1},$$

where

•
$$\mathbf{t}^B = (t^B_I)$$
 with $t^B_I = \begin{vmatrix} \sum_{J \subseteq \bigcup_{i < k} B_i} t_{I \cup J} & \text{if } I \subseteq B_k \text{ for some } k \\ 0 & \text{otherwise} \end{vmatrix}$,

• lr(B) is the number of left-to-right minima of B,

• rl(B) is the number of right-to-left minima of B.

Some explanation/intuition for the formula:

$$\widehat{\mathbf{T}}_{n}(x,y;\mathbf{t}) = (x+y-1) \sum_{\substack{B = (B_{1},\dots,B_{\ell})\\ \biguplus B_{k} = [n]}} (-1)^{\ell-1} D_{n}(\mathbf{t}^{B}) x^{lr(B)-1} y^{rl(B)-1},$$

• Change of variables $\mathbf{z} \to \mathbf{t}$: The tuple $\mathbf{z} = (z_I)$ given by $z_I = \sum_{J \subseteq [n] : J \cap I \neq \emptyset} t_J$ is the rank function of $\mathcal{P} = \sum_{I \subseteq [n]} t_I \Delta_I$, where $\Delta_I = \operatorname{conv}(\mathbf{e}_i, i \in I)$. Some explanation/intuition for the formula:

$$\widehat{\mathbf{T}}_{n}(x,y;\mathbf{t}) = (x+y-1) \sum_{\substack{B = (B_{1},\dots,B_{\ell})\\ \biguplus B_{k} = [n]}} (-1)^{\ell-1} D_{n}(\mathbf{t}^{B}) x^{lr(B)-1} y^{rl(B)-1},$$

- Change of variables $\mathbf{z} \to \mathbf{t}$: The tuple $\mathbf{z} = (z_I)$ given by $z_I = \sum_{J \subseteq [n] : J \cap I \neq \emptyset} t_J$ is the rank function of $\mathcal{P} = \sum_{I \subset [n]} t_I \Delta_I$, where $\Delta_I = \operatorname{conv}(\mathbf{e}_i, i \in I)$.
- The partitions B indexes the faces of a generic permutahedron. The tuple \mathbf{t}^B gives the rank function of the face.

Some explanation/intuition for the formula:

$$\widehat{\mathbf{T}}_{n}(x,y;\mathbf{t}) = (x+y-1) \sum_{\substack{B = (B_{1},\dots,B_{\ell})\\ \biguplus B_{k} = [n]}} (-1)^{\ell-1} D_{n}(\mathbf{t}^{B}) x^{lr(B)-1} y^{rl(B)-1},$$

• Change of variables $\mathbf{z} \to \mathbf{t}$: The tuple $\mathbf{z} = (z_I)$ given by $z_I = \sum_{J \subseteq [n] : J \cap I \neq \emptyset} t_J$ is the rank function of $\mathcal{P} = \sum_{I \subset [n]} t_I \Delta_I$, where $\Delta_I = \operatorname{conv}(\mathbf{e}_i, i \in I)$.

• The partitions B indexes the faces of a generic permutahedron. The tuple \mathbf{t}^B gives the rank function of the face.

• The dragon polynomial $D_n(\mathbf{t})$ gives the number of lattice points in the interior of a permutahedron [Postnikov 06].

The draconian sequences correspond to the hypertrees of the complete hypergraph H_n on [n] having one hyperedge for each $I \subseteq [n]$.

Application: Tutte polynomial of zonotopes

Example: The classical permutahedron

 $P_n = \operatorname{conv}\{(\pi(1), \pi(2), \dots, \pi(n)), \ \pi \in \mathfrak{S}_n\} \cap \mathbb{Z}^n$

has Tutte polynomial

$$\mathbf{T}_{P_n}(x,y) = \sum_{F \text{ forest on } [n]} (x+y-1)^{\# \text{ connected components}}.$$

Thanks.

