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Outline/Motivation

1. Generalizing the Tutte polynomial to hypergraphs and polymatroids

→ extending known results from matroids to polymatroids,
→ reflecting back on classical setting (e.g. Brilawsky identities),
→ hypergraph invariants, knot invariants.
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1. Generalizing the Tutte polynomial to hypergraphs and polymatroids
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→ extending known results from matroids to polymatroids,
→ reflecting back on classical setting (e.g. Brilawsky identities),
→ hypergraph invariants, knot invariants.

Tn parametrizes Tutte polynomial
of polymatroids on [n]



Outline/Motivation

1. Generalizing the Tutte polynomial to hypergraphs and polymatroids

2. Universal Tutte polynomial

→ extending known results from matroids to polymatroids,
→ reflecting back on classical setting (e.g. Brilawsky identities),
→ hypergraph invariants, knot invariants.

→ coeffs of Tutte polynomials are polynomial in rank function,
→ explicit expression of Tn,
→ connection with Postnikov’s multi-Ehrhart polynomial of

generalized permutahedra.
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Matroids

Def 1. A matroid on a set E is a set M ⊆ 2E of bases satisfying:

Exchange Axiom: ∀A,B ∈M, ∀i ∈ A \B,
∃j ∈ B \A such that A ∪ {j} \ {i} ∈M and B ∪ {i} \ {j} ∈M.



Matroids

Def 1. A matroid on a set E is a set M ⊆ 2E of bases satisfying:

Exchange Axiom: ∀A,B ∈M, ∀i ∈ A \B,
∃j ∈ B \A such that A ∪ {j} \ {i} ∈M and B ∪ {i} \ {j} ∈M.

E = {1, 2, 3, 4}
M = { {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},

{1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5} }

Example:



Matroids

Def 1. A matroid on a set E is a set M ⊆ 2E of bases satisfying:

Exchange Axiom: ∀A,B ∈M, ∀i ∈ A \B,
∃j ∈ B \A such that A ∪ {j} \ {i} ∈M and B ∪ {i} \ {j} ∈M.

Def 2. (Base polytope) A matroid on E is a polytope in RE

vertices in {0, 1}E and edges in {ei − ej , i, j ∈ E}.

(notation: {ei, i ∈ E} denotes the cannonical basis of RE)



Matroids

Def 1. A matroid on a set E is a set M ⊆ 2E of bases satisfying:

Exchange Axiom: ∀A,B ∈M, ∀i ∈ A \B,
∃j ∈ B \A such that A ∪ {j} \ {i} ∈M and B ∪ {i} \ {j} ∈M.

Def 2. (Base polytope) A matroid on E is a polytope in RE

vertices in {0, 1}E and edges in {ei − ej , i, j ∈ E}.

3

1
2

E = {1, 2, 3}
M = {{1, 2}, {2, 3}, {1, 3}}

P (M) = conv(M)
Example:



Matroids

Def 1. A matroid on a set E is a set M ⊆ 2E of bases satisfying:

Exchange Axiom: ∀A,B ∈M, ∀i ∈ A \B,
∃j ∈ B \A such that A ∪ {j} \ {i} ∈M and B ∪ {i} \ {j} ∈M.

Def 2. (Base polytope) A matroid on E is a polytope in RE

vertices in {0, 1}E and edges in {ei − ej , i, j ∈ E}.

Def 3. (Rank function) A matroid on E is a polytope in RE ,
with faces of the form

∑
i∈S xi ≤ f(S), and

∑
i∈E xi = f(E),

where f : 2E → N is a submodular function such that f({i}) ≤ 1.

∀S, T, f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ), with f(∅) = 0.
Rank function= unique submodular function f defining the facets.



Polymatroids

Def. A polymatroid on E is a finite set P ⊆ ZE of bases satisfying

Exchange Axiom: ∀a,b ∈ P, ∀i s.t. ai > bi,

∃j s.t. bj > aj and a + ej − ei ∈ P and b + ei − ej ∈ P.



Polymatroids

Def 2. (Base polytope) A polymatroid on E is a polytope in RE

with vertices in ZE and edge directions in {ei − ej , i, j ∈ E}.

Def. A polymatroid on E is a finite set P ⊆ ZE of bases satisfying

Exchange Axiom: ∀a,b ∈ P, ∀i s.t. ai > bi,

∃j s.t. bj > aj and a + ej − ei ∈ P and b + ei − ej ∈ P.



Polymatroids

Def 2. (Base polytope) A polymatroid on E is a polytope in RE

with vertices in ZE and edge directions in {ei − ej , i, j ∈ E}.

E = {1, 2, 3}

Def. A polymatroid on E is a finite set P ⊆ ZE of bases satisfying

Exchange Axiom: ∀a,b ∈ P, ∀i s.t. ai > bi,

∃j s.t. bj > aj and a + ej − ei ∈ P and b + ei − ej ∈ P.

P (M) = conv(M)

“generalized permutahedra”



Polymatroids

Def 2. (Base polytope) A polymatroid on E is a polytope in RE

with vertices in ZE and edge directions in {ei − ej , i, j ∈ E}.

Def 3. (Rank function) A polymatroid on E is a polytope in RE ,
with faces of the form

∑
i∈S xi ≤ f(S), and

∑
i∈E xi = f(E),

where f : 2E → Z is a submodular function (rank function).

Def. A polymatroid on E is a finite set P ⊆ ZE of bases satisfying

Exchange Axiom: ∀a,b ∈ P, ∀i s.t. ai > bi,

∃j s.t. bj > aj and a + ej − ei ∈ P and b + ei − ej ∈ P.
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Matroids from graphs

Prop. For any connected graph G = (V,E),

MG := {T ⊆ E spanning tree}

is a matroid on E.



Matroids from graphs

Prop. For any connected graph G = (V,E),

MG := {T ⊆ E spanning tree}

is a matroid on E.

Example.

1 2
5
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5
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5
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5
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5
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5

1 2
5

MG = { {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},
{1, 3, 5}, {1, 4, 5}, {2, 3, 5}, {2, 4, 5} }

3 4 3 4 3 4 3 4 3 4 3 43 43 43 44



Polymatroids from hypergraphs

Def: A hypergraph on a set V , is a multiset E of subsets of V .

V

E

Example:

Rk: Graph = hypergraph where every hyperedge e ∈ E has size 2.



Polymatroids from hypergraphs

Def: Let H = (V,E) be a hypergraph.
Let BH be the corresponding bipartite graph.

A spanning hypertree of H is a point a ∈ NE for which there exists
a spanning tree T of BH such that

∀i ∈ E, ai = degT (i)− 1.

Example:

H = has 3 hypertrees: (2, 0), (1, 1), (0, 2)

2 0 1 201



Polymatroids from hypergraphs

Def: Let H = (V,E) be a hypergraph.
Let BH be the corresponding bipartite graph.

A spanning hypertree of H is a point a ∈ NE for which there exists
a spanning tree T of BH such that

∀i ∈ E, ai = degT (i)− 1.

Example:

H = has 3 hypertrees: (2, 0), (1, 1), (0, 2)

2 0 1 201

Remark: If a hypergraph H corresponds to a graph G, then the
spanning hypertrees of H are in bijection with the spanning trees of G.



Polymatroids from hypergraphs

Prop: For any hypergraph H = (V,E), the set of spanning hypertrees
of H forms a polymatroid PH on E.

Example:

H =

PH

0 1

2

21



The space of polymatroids

polymatroids on [n] Ωn ⊂ R2n−1

(zS)∅6=S⊆[n]
values of rank function

Ωn is a full dim, infinite, polyhedra

{hypergraphs} contains a full dim, infinite, cone

zS + zT ≥ zS∪T + zS∩T

Space of polymatroids on [n]



Tutte polynomial of polymatroids



Tutte polynomial of matroids

Def: For a matroid M on E,

TM (x, y) =
∑
S⊆E

(x− 1)cork(S)(y − 1)null(S),

where
cork(S) = # elements to add in order to contain a basis,
null(S) = # elements to delete in order to be contained in a basis.



Tutte polynomial of matroids

Def: For a matroid M on E,

TM (x, y) =
∑
S⊆E

(x− 1)cork(S)(y − 1)null(S),

where
cork(S) = # elements to add in order to contain a basis,
null(S) = # elements to delete in order to be contained in a basis.

Example:

G S
S contributes
(x− 1)(y − 1)

TG(x, y) = x3 + 2x2 + 2xy + y2 + x+ y.



Tutte polynomial of matroids

The Tutte poly TG(x, y) of a graph G captures a lot of information:

# spanning trees, # forests, # connected subgraphs,
# acyclic orientations, # totally cyclic orientations,
Chromatic polynomial, Potts polynomial,
G-parking functions by degree, Reliability polynomial...



Tutte polynomial of matroids

Thm: The Tutte polynomial is universal among invariants satysfying
linear deletion-contraction formulas:

∀i ∈ E neither loop nor coloop, XM = αXM\i + β XM/i

∀i ∈ E loop, XM = γ XM\i

∀i ∈ E coloop, XM = δ XM/i

(The Tutte polynomial corresponds to α = β = 1, γ = y, δ = x)



Tutte polynomial of matroids

Thm [Tutte/Crapo] For any total order ≺ on E,

TM (x, y) =
∑

A basis

x|IA(A)|y|EA(A)|,

IA(A) = {i ∈ A | 6 ∃ j ≺ i such that A− i+ j is a basis}
EA(A) = {i /∈ A | 6 ∃ j ≺ i such that A+ i− j is a basis}



Tutte polynomial of matroids

Thm [Tutte/Crapo] For any total order ≺ on E,

TM (x, y) =
∑

A basis

x|IA(A)|y|EA(A)|,

IA(A) = {i ∈ A | 6 ∃ j ≺ i such that A− i+ j is a basis}
EA(A) = {i /∈ A | 6 ∃ j ≺ i such that A+ i− j is a basis}

Example:

1 2

3 4

5T

IA(T ) = {1}
EA(T ) = {3}



Tutte polynomial of matroids

Thm [Tutte/Crapo] For any total order ≺ on E,

TM (x, y) =
∑

A basis

x|IA(A)|y|EA(A)|,

IA(A) = {i ∈ A | 6 ∃ j ≺ i such that A− i+ j is a basis}
EA(A) = {i /∈ A | 6 ∃ j ≺ i such that A+ i− j is a basis}

Example:

1 2

3 4

5
1 2

3 4

5
1 2

3 4

5
1 2

3 4

5
1 2

3 4
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x2

TG(x, y) = x3 + 2x2 + 2xy + y2 + x+ y.

x3 x y x2 xy xy y2



Example:

Relation between the two expressions of TM (x, y)?

M

TM (x, y) = x2 + x + y.

1 2

3

1 2 1 2

33

“Crapo’s interval partition”



Tutte polynomial of polymatroids?

M ⊆ {0, 1}n

P ⊆ Zn
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Tutte polynomial of polymatroids?

TP (x, y) :=
∑

a basis

x|IA(a)|y|EA(a)|.

Tentative definition: Let P ⊆ Zn be a polymatroid.
For a ∈ P , let

IA(a) = {i ∈ [n] | 6 ∃ j < i such that a− ei + ej ∈ P},
EA(a) = {i ∈ [n] | 6 ∃ j < i such that a + ei − ej ∈ P}.

?

?

?



Tutte polynomial of polymatroids?

TP (x, y) :=
∑

a basis

x|IA(a)|y|EA(a)|.

Tentative definition: Let P ⊆ Zn be a polymatroid.
For a ∈ P , let

IA(a) = {i ∈ [n] | 6 ∃ j < i such that a− ei + ej ∈ P},
EA(a) = {i ∈ [n] | 6 ∃ j < i such that a + ei − ej ∈ P}.

?

?

?

Example:

1

2

3

∅
2 ∈ IA

2 ∈ EA
∅IA = {1, 2}

EA = {1, 2, 3}
=>x2y3

∅ ∅
3 ∈ IA

∅ ∅3 ∈ EA



Tutte polynomial of polymatroids?

TP (x, y) :=
∑

a basis

x|IA(a)|y|EA(a)|.

Does not work! Not invariant under reordering of [n].

Tentative definition: Let P ⊆ Zn be a polymatroid.
For a ∈ P , let

IA(a) = {i ∈ [n] | 6 ∃ j < i such that a− ei + ej ∈ P},
EA(a) = {i ∈ [n] | 6 ∃ j < i such that a + ei − ej ∈ P}.

?

?

?



Tutte polynomial of polymatroids?

TP (x, y) :=
∑

a basis

x|IA(a)|y|EA(a)|.

Does not work! Not invariant under reordering of [n].

Tentative definition: Let P ⊆ Zn be a polymatroid.
For a ∈ P , let

IA(a) = {i ∈ [n] | 6 ∃ j < i such that a− ei + ej ∈ P},
EA(a) = {i ∈ [n] | 6 ∃ j < i such that a + ei − ej ∈ P}.

?

?

?

However TP (x, 1) and TP (1, y) are invariant under reordering of [n].
[Kalman 13, Kalman & Postnikov 17]



Tutte polynomial of polymatroids?

TP (x, y) :=
∑

a basis

x|IA(a)|y|EA(a)|.

Does not work! Not invariant under reordering of [n].

Tentative definition: Let P ⊆ Zn be a polymatroid.
For a ∈ P , let

IA(a) = {i ∈ [n] | 6 ∃ j < i such that a− ei + ej ∈ P},
EA(a) = {i ∈ [n] | 6 ∃ j < i such that a + ei − ej ∈ P}.

?

?

?

' “Ehrhart polynomial” |(P + q∆) ∩ Zn|

However TP (x, 1) and TP (1, y) are invariant under reordering of [n].
[Kalman 13, Kalman & Postnikov 17]



Cameron & Fink’s fix

Def: The Cameron-Fink invariant for a polymatroid P ⊆ Zn is the
unique polynomial QP (x, y) such that ∀k, ` ∈ Z≥0,

QP (k, `) = |(P + k∇+ `∆) ∩ Zn| ,

where ∆ = conv(ei, i ∈ [n]) and ∇ = conv(−ei, i ∈ [n]).

P ∆ ∇+ +

Example:

k· `·

Prop [Cameron-Fink]: For a matroid M , QM (x, y) ' TP (M)(x, y)

same information



Definition [BKP]: Let P ⊆ Zn be a polymatroid.
For a ∈ P

IA(a) = {i ∈ [n] | 6 ∃ j < i such that a− ei + ej ∈ P}
EA(a) = {i ∈ [n] | 6 ∃ j < i such that a + ei − ej ∈ P}

TP (x, y) =
∑

a basis

x|IA(a)\EA(a)| y|EA(a)\IA(a)| (x+ y − 1)|IA(a)∩EA(a)|.

Tutte polynomial of polymatroids.



Tutte polynomial of polymatroids?

Definition [BKP]: Let P ⊆ Zn be a polymatroid.
For a ∈ P

IA(a) = {i ∈ [n] | 6 ∃ j < i such that a− ei + ej ∈ P}
EA(a) = {i ∈ [n] | 6 ∃ j < i such that a + ei − ej ∈ P}

TP (x, y) =
∑

a basis

x|IA(a)\EA(a)| y|EA(a)\IA(a)| (x+ y − 1)|IA(a)∩EA(a)|.

Example:

1

2

3

TP (x, y) = (x+ y − 1)(x2 + 2xy + y2 + 2y + 3x+ 2y + 2)

∅
2 ∈ IA

2 ∈ EA
∅

∅ ∅
3 ∈ IA

∅ ∅3 ∈ EA

IA = {1, 2}
EA = {1, 2, 3}
=> (x+ y − 1)2y



Tutte polynomial of polymatroids?

Definition [BKP]: Let P ⊆ Zn be a polymatroid.
For a ∈ P

IA(a) = {i ∈ [n] | 6 ∃ j < i such that a− ei + ej ∈ P}
EA(a) = {i ∈ [n] | 6 ∃ j < i such that a + ei − ej ∈ P}

TP (x, y) =
∑

a basis

x|IA(a)\EA(a)| y|EA(a)\IA(a)| (x+ y − 1)|IA(a)∩EA(a)|.

Thm [BKP] This polynomial is invariant under reordering of [n].



Definition [BKP]: Let P ⊆ Zn be a polymatroid.
For a ∈ P

IA(a) = {i ∈ [n] | 6 ∃ j < i such that a− ei + ej ∈ P}
EA(a) = {i ∈ [n] | 6 ∃ j < i such that a + ei − ej ∈ P}

TP (x, y) =
∑

a basis

x|IA(a)\EA(a)| y|EA(a)\IA(a)| (x+ y − 1)|IA(a)∩EA(a)|.

Thm [BKP] This polynomial is invariant under reordering of [n].

Moreover, for any matroid M of rank d on E = [n],

TP (M)(x, y) = xn−d yd TM

(
x+ y − 1

y
,
x+ y − 1

x

)
.

Tutte polynomial of polymatroids.



Tutte polynomial of polymatroids.

TP (x, y) =
∑
a∈Zb

???

Interval partition?



Tutte polynomial of polymatroids.

Thm [BKP] For any polymatroid P ⊆ Zn,

TP

(
1

1− u
,

1

1− v

)
=
∑
c∈Zn

ucork(c)vnull(c),

where cork(c)= min( |b| | c + b ≥ a ∈ P ),
null(c) = min( |b| | c− b ≤ a ∈ P ).



Relation: Crapo-type partition.
Let P ⊆ Zn be a polynomatroid. For a ∈ P we define the cone

C(a) = a +
∑

i∈IA(a)\EA(a)

Z≤0 ei +
∑

i∈EA(a)\IA(a)

Z≥0 ei +
∑

i∈IA(a)∩EA(a)

Z ei.

Tutte polynomial of polymatroids.



Relation: Crapo-type partition.
Let P ⊆ Zn be a polynomatroid. For a ∈ P we define the cone

C(a) = a +
∑

i∈IA(a)\EA(a)

Z≤0 ei +
∑

i∈EA(a)\IA(a)

Z≥0 ei +
∑

i∈IA(a)∩EA(a)

Z ei.

Example:

1

2

3 3

2

Tutte polynomial of polymatroids.



Relation: Crapo-type partition.
Let P ⊆ Zn be a polynomatroid. For a ∈ P we define the cone

C(a) = a +
∑

i∈IA(a)\EA(a)

Z≤0 ei +
∑

i∈EA(a)\IA(a)

Z≥0 ei +
∑

i∈IA(a)∩EA(a)

Z ei.

Lemma [BKP] For any polymatroid P ⊆ Zn,⊎
a∈P

C(a) = Zn.

Tutte polynomial of polymatroids.



Relation: Crapo-type partition.
Let P ⊆ Zn be a polynomatroid. For a ∈ P we define the cone

C(a) = a +
∑

i∈IA(a)\EA(a)

Z≤0 ei +
∑

i∈EA(a)\IA(a)

Z≥0 ei +
∑

i∈IA(a)∩EA(a)

Z ei.

Lemma [BKP] For any polymatroid P ⊆ Zn,⊎
a∈P

C(a) = Zn.

Tutte polynomial of polymatroids.

Moreover, for all basis a ∈ P ,

∑
c∈C(a)

ucork(c)vnull(c) =

(
1

1− u

)|IA(a)\EA(a)|(
1

1− v

)|EA(a)\IA(a)|

(
1

1− u
+

1

1− v
− 1

)|IA(a)∩EA(a)|

.



Relation with Cameron-Fink invariant

Prop [BKP]:

QP (x, y) =
∑
i,j

ci,j

(
x

i

)(
y

j

)
,

where ci,j = [xiyj ]
TP (x+ 1, y + 1)

x+ y + 1
.



Some properties of polymatroid Tutte polynomial

Prop. P ⊂ Rn.

• TP (x, y) is invariant under translation of P ,
and under permutation [n].

• Duality: T−P (x, y) = TP (y, x).



Some properties of polymatroid Tutte polynomial

Prop. P ⊂ Rn.

• TP (x, y) is invariant under translation of P ,
and under permutation [n].

• Duality: T−P (x, y) = TP (y, x).

Cor:[Brylawski 72] For any matroid M ⊆ 2[n],
the coefficients ti,j = [xiyj ]TM (x, y) satisfy

∀p < n,

p∑
i=0

i∑
j=0

(
p− i
j

)
(−1)j ti,j = 0.

• Brylawski identities:

deg(TP (x, y)) = n) and [xkyn−k]TP (x, y) =

(
n

k

)
.
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Universal Tutte polynomial

Thm [BKP]. The Tutte polynomial is polynomial in the rank function.



Universal Tutte polynomial

Thm [BKP]. Let n ∈ Z>0, and let z = (zS)∅6=S⊆[n] be variables.

There exists a unique polynomial Tn(x, y; z) such that for all polyma-
troids on [n],

TP (x, y) = Tn(x, y; z)|zS=fP (S),

where fP is the rank funtion of P .



Universal Tutte polynomial

Thm [BKP]. Let n ∈ Z>0, and let z = (zS)∅6=S⊆[n] be variables.

There exists a unique polynomial Tn(x, y; z) such that for all polyma-
troids on [n],

TP (x, y) = Tn(x, y; z)|zS=fP (S),

where fP is the rank funtion of P .

T3(x, y; z)

x+ y − 1
=x2 + 2xy + y2

+(z1 + z2 + z3 − z123 − 2)x
+(z12 + z13 + z23 − 2z123 − 2) y
+ 1

2 (z2123 − z212 − z213 − z223 − z21 − z22 − z23)
−z123(z1 + z2 + z3)
+(z1z12 + z1z13 + z2z12 + z2z23 + z3z13 + z3z23)
+ 1

2 (3z123 − z12 − z13 − z23 − z1 − z2 − z3) + 1.

Example: n=3



Proof:

Uniqueness:
Space Ωn of polymatroids on [n] contains a cone of dimension 2n − 1.

Ωn ⊂ R2n−1

(zS)∅6=S⊆[n]
value of rank function

zS + zT ≥ zS∪T + zS∩T



Proof:

Uniqueness:
Space Ωn of polymatroids on [n] contains a cone of dimension 2n − 1.

Existence:
• In the bulk of Ωn: activity constant in the interior of each face,
and number of points in each face is polynomial in (zS)S⊆[n].

z2,3

z3

z1,3

z1
z1,2

z2

z1,2,3



Proof:

Uniqueness:
Space Ωn of polymatroids on [n] contains a cone of dimension 2n − 1.

Existence:
• In the bulk of Ωn: activity constant in the interior of each face,
and number of points in each face is polynomial in (zS)S⊆[n].
• At the boundary of Ω the contribution of “collapsing” faces behaves
polynomially.

z2

z1

T2(x, y; z) = (x+ y − 1)x+ (x+ y − 1)y + (z1 + z2 − z1,2 − 1)(x+ y − 1)

Ω2 : z1,2 ≤ z1 + z2z1,2
n = 2



Explicit formula for Tn

Def:[Postnikov] (dI)∅6=I⊆[n] ∈ Z2n

≥0 is draconian if

∀I1, . . . , Ik ⊆ [n], dI1 + · · ·+ dIk ≤ |I1 ∪ · · · ∪ Ik| − 1,

and
∑
I⊆[n]

dI = n− 1.



Explicit formula for Tn

Def:[Postnikov] (dI)∅6=I⊆[n] ∈ Z2n

≥0 is draconian if

∀I1, . . . , Ik ⊆ [n], dI1 + · · ·+ dIk ≤ |I1 ∪ · · · ∪ Ik| − 1,

and
∑
I⊆[n]

dI = n− 1.

The dragon polynomial is the following polynomial in t = (tI)∅6=I⊆[n]

Dn(t) =
∑

(dI) draconian

(
t[n] − 1

d[n]

) ∏
∅6=I([n]

(
tI
dI

)
,

where

(
t

d

)
:=

t(t− 1) · · · (t− d+ 1)

d!
.



Explicit formula for Tn

Thm [BKP]:

The reparametrization T̂n(x, y; t) := Tn(x, y; z)|zI=
∑

J⊆[n], J∩I 6=∅ tJ

has the following explicit formula:

T̂n(x, y; t) = (x+ y − 1)
∑

B=(B1,...,B`)⊎
Bk=[n]

(−1)`−1Dn(tB)xlr(B)−1 yrl(B)−1,

where

• tB = (tBI ) with tBI =

∣∣∣∣∣∣
∑

J⊆
⋃

i<k Bi

tI∪J if I ⊆ Bk for some k

0 otherwise

,

• lr(B) is the number of left-to-right minima of B,
• rl(B) is the number of right-to-left minima of B.



Some explanation/intuition for the formula:

• Change of variables z→ t:

The tuple z = (zI) given by zI =
∑

J⊆[n] : J∩I 6=∅

tJ is the rank function

of P =
∑

I⊆[n] tI ∆I , where ∆I = conv(ei, i ∈ I).
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Bk=[n]

(−1)`−1Dn(tB)xlr(B)−1 yrl(B)−1,
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Some explanation/intuition for the formula:

• Change of variables z→ t:

The tuple z = (zI) given by zI =
∑

J⊆[n] : J∩I 6=∅

tJ is the rank function

of P =
∑

I⊆[n] tI ∆I , where ∆I = conv(ei, i ∈ I).

• The partitions B indexes the faces of a generic permutahedron.
The tuple tB gives the rank function of the face.

• The dragon polynomial Dn(t) gives the number of lattice points in
the interior of a permutahedron [Postnikov 06].

The draconian sequences correspond to the hypertrees of the complete
hypergraph Hn on [n] having one hyperedge for each I ⊆ [n].

T̂n(x, y; t) = (x+ y − 1)
∑

B=(B1,...,B`)⊎
Bk=[n]

(−1)`−1Dn(tB)xlr(B)−1 yrl(B)−1,



Application: Tutte polynomial of zonotopes

Example: The classical permutahedron

Pn = conv{(π(1), π(2), . . . , π(n)), π ∈ Sn} ∩ Zn

has Tutte polynomial

TPn
(x, y) =

∑
F forest on [n]

(x+ y − 1)# connected components.

n=3:

P3

TP3
(x, y) = (x+ y − 1)3 + 3(x+ y − 1)2 + 3(x+ y − 1).



Thanks.


