The Universal Tutte Polynomial

Fields Institute, October 2022

Outline/Motivation

1. Generalizing the Tutte polynomial to hypergraphs and polymatroids polymatroids
$\mathbf{T}_{P}(x, y)$

Outline/Motivation

1. Generalizing the Tutte polynomial to hypergraphs and polymatroids

*completing results by Kálmán, Kálmán-Postnikov, and Cameron-Fink

Outline/Motivation

1. Generalizing the Tutte polynomial to hypergraphs and polymatroids
\rightarrow extending known results from matroids to polymatroids, \rightarrow reflecting back on classical setting (e.g. Brilawsky identities), \rightarrow hypergraph invariants, knot invariants.

Outline/Motivation

1. Generalizing the Tutte polynomial to hypergraphs and polymatroids
\rightarrow extending known results from matroids to polymatroids, \rightarrow reflecting back on classical setting (e.g. Brilawsky identities), \rightarrow hypergraph invariants, knot invariants.
2. Universal Tutte polynomial

$$
\mathbf{T}_{n}(x, y ; \mathbf{z})
$$

\mathbf{T}_{n} parametrizes Tutte polynomial of polymatroids on $[n]$

Outline/Motivation

1. Generalizing the Tutte polynomial to hypergraphs and polymatroids
\rightarrow extending known results from matroids to polymatroids, \rightarrow reflecting back on classical setting (e.g. Brilawsky identities), \rightarrow hypergraph invariants, knot invariants.
2. Universal Tutte polynomial
\rightarrow coeffs of Tutte polynomials are polynomial in rank function,
\rightarrow explicit expression of \mathbf{T}_{n},
\rightarrow connection with Postnikov's multi-Ehrhart polynomial of generalized permutahedra.

Background on polymatroids

Matroids

Def 1. A matroid on a set E is a set $M \subseteq 2^{E}$ of bases satisfying: Exchange Axiom: $\forall A, B \in M, \forall i \in A \backslash B$, $\exists j \in B \backslash A$ such that $A \cup\{j\} \backslash\{i\} \in M$ and $B \cup\{i\} \backslash\{j\} \in M$.

Matroids

Def 1. A matroid on a set E is a set $M \subseteq 2^{E}$ of bases satisfying: Exchange Axiom: $\forall A, B \in M, \forall i \in A \backslash B$, $\exists j \in B \backslash A$ such that $A \cup\{j\} \backslash\{i\} \in M$ and $B \cup\{i\} \backslash\{j\} \in M$.

Example: $\quad E=\{1,2,3,4\}$

$$
\begin{aligned}
M= & \{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\} \\
& \{1,3,5\},\{1,4,5\},\{2,3,5\},\{2,4,5\}\}
\end{aligned}
$$

Matroids

Def 1. A matroid on a set E is a set $M \subseteq 2^{E}$ of bases satisfying: Exchange Axiom: $\forall A, B \in M, \forall i \in A \backslash B$, $\exists j \in B \backslash A$ such that $A \cup\{j\} \backslash\{i\} \in M$ and $B \cup\{i\} \backslash\{j\} \in M$.

Def 2. (Base polytope) A matroid on E is a polytope in \mathbb{R}^{E} vertices in $\{0,1\}^{E}$ and edges in $\left\{\mathbf{e}_{i}-\mathbf{e}_{j}, i, j \in E\right\}$.
(notation: $\left\{\mathbf{e}_{i}, i \in E\right\}$ denotes the cannonical basis of \mathbb{R}^{E})

Matroids

Def 1. A matroid on a set E is a set $M \subseteq 2^{E}$ of bases satisfying: Exchange Axiom: $\forall A, B \in M, \forall i \in A \backslash B$,
$\exists j \in B \backslash A$ such that $A \cup\{j\} \backslash\{i\} \in M$ and $B \cup\{i\} \backslash\{j\} \in M$.

Def 2. (Base polytope) A matroid on E is a polytope in \mathbb{R}^{E} vertices in $\{0,1\}^{E}$ and edges in $\left\{\mathbf{e}_{i}-\mathbf{e}_{j}, i, j \in E\right\}$.

Example:
$E=\{1,2,3\}$
$M=\{\{1,2\},\{2,3\},\{1,3\}\}$

Matroids

Def 1. A matroid on a set E is a set $M \subseteq 2^{E}$ of bases satisfying:
Exchange Axiom: $\forall A, B \in M, \forall i \in A \backslash B$,
$\exists j \in B \backslash A$ such that $A \cup\{j\} \backslash\{i\} \in M$ and $B \cup\{i\} \backslash\{j\} \in M$.

Def 2. (Base polytope) A matroid on E is a polytope in \mathbb{R}^{E} vertices in $\{0,1\}^{E}$ and edges in $\left\{\mathbf{e}_{i}-\mathbf{e}_{j}, i, j \in E\right\}$.

Def 3. (Rank function) A matroid on E is a polytope in \mathbb{R}^{E}, with faces of the form $\sum_{i \in S} x_{i} \leq f(S)$, and $\sum_{i \in E} x_{i}=f(E)$, where $f: 2^{E} \rightarrow \mathbb{N}$ is a submodular function such that $f(\{i\}) \leq 1$.
$\forall S, T, \quad f(S)+f(T) \geq f(S \cup T)+f(S \cap T)$, with $f(\emptyset)=0$.
Rank function $=$ unique submodular function f defining the facets.

Polymatroids

Def. A polymatroid on E is a finite set $P \subseteq \mathbb{Z}^{E}$ of bases satisfying Exchange Axiom: $\forall \mathbf{a}, \mathbf{b} \in P, \forall i$ s.t. $a_{i}>b_{i}$,

$$
\exists j \text { s.t. } b_{j}>a_{j} \text { and } \mathbf{a}+\mathbf{e}_{j}-\mathbf{e}_{i} \in P \quad \text { and } \quad \mathbf{b}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P .
$$

Polymatroids

Def. A polymatroid on E is a finite set $P \subseteq \mathbb{Z}^{E}$ of bases satisfying Exchange Axiom: $\forall \mathbf{a}, \mathbf{b} \in P, \forall i$ s.t. $a_{i}>b_{i}$,

$$
\exists j \text { s.t. } b_{j}>a_{j} \text { and } \mathbf{a}+\mathbf{e}_{j}-\mathbf{e}_{i} \in P \quad \text { and } \quad \mathbf{b}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P .
$$

Def 2. (Base polytope) A polymatroid on E is a polytope in \mathbb{R}^{E} with vertices in \mathbb{Z}^{E} and edge directions in $\left\{\mathbf{e}_{i}-\mathbf{e}_{j}, i, j \in E\right\}$.

Polymatroids

Def. A polymatroid on E is a finite set $P \subseteq \mathbb{Z}^{E}$ of bases satisfying Exchange Axiom: $\forall \mathbf{a}, \mathbf{b} \in P, \forall i$ s.t. $a_{i}>b_{i}$,

$$
\exists j \text { s.t. } b_{j}>a_{j} \text { and } \mathbf{a}+\mathbf{e}_{j}-\mathbf{e}_{i} \in P \quad \text { and } \quad \mathbf{b}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P .
$$

Def 2. (Base polytope) A polymatroid on E is a polytope in \mathbb{R}^{E} with vertices in \mathbb{Z}^{E} and edge directions in $\left\{\mathbf{e}_{i}-\mathbf{e}_{j}, i, j \in E\right\}$.
$E=\{1,2,3\}$

"generalized permutahedra"

Polymatroids

Def. A polymatroid on E is a finite set $P \subseteq \mathbb{Z}^{E}$ of bases satisfying Exchange Axiom: $\forall \mathbf{a}, \mathbf{b} \in P, \forall i$ s.t. $a_{i}>b_{i}$,

$$
\exists j \text { s.t. } b_{j}>a_{j} \text { and } \mathbf{a}+\mathbf{e}_{j}-\mathbf{e}_{i} \in P \quad \text { and } \quad \mathbf{b}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P .
$$

Def 2. (Base polytope) A polymatroid on E is a polytope in \mathbb{R}^{E} with vertices in \mathbb{Z}^{E} and edge directions in $\left\{\mathbf{e}_{i}-\mathbf{e}_{j}, i, j \in E\right\}$.

Def 3. (Rank function) A polymatroid on E is a polytope in \mathbb{R}^{E}, with faces of the form $\sum_{i \in S} x_{i} \leq f(S)$, and $\sum_{i \in E} x_{i}=f(E)$, where $f: 2^{E} \rightarrow \mathbb{Z}$ is a submodular function (rank function).

Matroids from graphs

Prop. For any connected graph $G=(V, E)$,

$$
M_{G}:=\{T \subseteq E \text { spanning tree }\}
$$

is a matroid on E.

Matroids from graphs

Prop. For any connected graph $G=(V, E)$,

$$
M_{G}:=\{T \subseteq E \text { spanning tree }\}
$$

is a matroid on E.

Example.

Polymatroids from hypergraphs

Def: A hypergraph on a set V, is a multiset E of subsets of V.

Example:

$\mathbf{R k}:$ Graph $=$ hypergraph where every hyperedge $e \in E$ has size 2 .

Polymatroids from hypergraphs

Def: Let $H=(V, E)$ be a hypergraph.
Let B_{H} be the corresponding bipartite graph.
A spanning hypertree of H is a point $a \in \mathbb{N}^{E}$ for which there exists a spanning tree T of B_{H} such that

$$
\forall i \in E, \quad a_{i}=\operatorname{deg}_{T}(i)-1
$$

Example:

has 3 hypertrees: $(2,0),(1,1),(0,2)$

Polymatroids from hypergraphs

Def: Let $H=(V, E)$ be a hypergraph.
Let B_{H} be the corresponding bipartite graph.
A spanning hypertree of H is a point $\mathrm{a} \in \mathbb{N}^{E}$ for which there exists a spanning tree T of B_{H} such that

$$
\forall i \in E, \quad a_{i}=\operatorname{deg}_{T}(i)-1
$$

Example:

has 3 hypertrees: $(2,0),(1,1),(0,2)$

Remark: If a hypergraph H corresponds to a graph G, then the spanning hypertrees of H are in bijection with the spanning trees of G.

Polymatroids from hypergraphs

Prop: For any hypergraph $H=(V, E)$, the set of spanning hypertrees of H forms a polymatroid P_{H} on E.

Example:

The space of polymatroids

\{hypergraphs\} contains a full dim, infinite, cone

Tutte polynomial of polymatroids

Tutte polynomial of matroids

Def: For a matroid M on E,

$$
T_{M}(x, y)=\sum_{S \subseteq E}(x-1)^{\operatorname{cork}(S)}(y-1)^{\operatorname{null}(S)}
$$

where
$\operatorname{cork}(S)=\#$ elements to add in order to contain a basis,
$\operatorname{null}(S)=\#$ elements to delete in order to be contained in a basis.

Tutte polynomial of matroids

Def: For a matroid M on E,

$$
T_{M}(x, y)=\sum_{S \subseteq E}(x-1)^{\operatorname{cork}(S)}(y-1)^{\operatorname{null}(S)}
$$

where
$\operatorname{cork}(S)=\#$ elements to add in order to contain a basis,
$\operatorname{null}(S)=\#$ elements to delete in order to be contained in a basis.

Example:

$$
T_{G}(x, y)=x^{3}+2 x^{2}+2 x y+y^{2}+x+y
$$

Tutte polynomial of matroids

The Tutte poly $T_{G}(x, y)$ of a graph G captures a lot of information:
\# spanning trees, \# forests, \# connected subgraphs, \# acyclic orientations, \# totally cyclic orientations, Chromatic polynomial, Potts polynomial, G-parking functions by degree, Reliability polynomial...

Tutte polynomial of matroids

Thm: The Tutte polynomial is universal among invariants satysfying linear deletion-contraction formulas:

$$
\forall i \in E \text { neither loop nor coloop, } \quad X_{M}=\alpha X_{M \backslash i}+\beta X_{M / i}
$$

$$
\begin{gathered}
\forall i \in E \text { loop, } \quad X_{M}=\gamma X_{M \backslash i} \\
\forall i \in E \text { coloop, } \quad X_{M}=\delta X_{M / i}
\end{gathered}
$$

(The Tutte polynomial corresponds to $\alpha=\beta=1, \gamma=y, \delta=x$)

Tutte polynomial of matroids

Thm [Tutte/Crapo] For any total order \prec on E,

$$
T_{M}(x, y)=\sum_{A \text { basis }} x^{|\mathrm{IA}(A)|} y^{|\mathrm{EA}(A)|}
$$

$\mathrm{IA}(A)=\{i \in A \mid \nexists j \prec i$ such that $A-i+j$ is a basis $\}$
$\mathrm{EA}(A)=\{i \notin A \mid \nexists j \prec i$ such that $A+i-j$ is a basis $\}$

Tutte polynomial of matroids

Thm [Tutte/Crapo] For any total order \prec on E,

$$
T_{M}(x, y)=\sum_{A \text { basis }} x^{|\mathrm{IA}(A)|} y^{|\mathrm{EA}(A)|}
$$

$\mathrm{IA}(A)=\{i \in A \mid \nexists j \prec i$ such that $A-i+j$ is a basis $\}$
$\mathrm{EA}(A)=\{i \notin A \mid \nexists j \prec i$ such that $A+i-j$ is a basis $\}$

Example:

$$
\begin{aligned}
& \mathrm{IA}(T)=\{1\} \\
& \mathrm{EA}(T)=\{3\}
\end{aligned}
$$

Tutte polynomial of matroids

Thm [Tutte/Crapo] For any total order \prec on E,

$$
T_{M}(x, y)=\sum_{A \text { basis }} x^{|\mathrm{IA}(A)|} y^{|\mathrm{EA}(A)|}
$$

$\mathrm{IA}(A)=\{i \in A \mid \nexists j \prec i$ such that $A-i+j$ is a basis $\}$
$\mathrm{EA}(A)=\{i \notin A \mid \nexists j \prec i$ such that $A+i-j$ is a basis $\}$

Example:

x^{2}

y^{2}

$$
T_{G}(x, y)=x^{3}+2 x^{2}+2 x y+y^{2}+x+y
$$

Relation between the two expressions of $T_{M}(x, y)$?
Example:

"Crapo's interval partition"

Tutte polynomial of polymatroids?

Tutte polynomial of polymatroids?

Tentative definition: Let $P \subseteq \mathbb{Z}^{n}$ be a polymatroid.
For $\mathrm{a} \in P$, let

$$
\begin{aligned}
& \mathrm{IA}(\mathbf{a}) \stackrel{?}{=} \quad\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}-\mathbf{e}_{i}+\mathbf{e}_{j} \in P\right\}, \\
& \mathrm{EA}(\mathbf{a}) \stackrel{?}{=}\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P\right\} .
\end{aligned}
$$

$$
T_{P}(x, y): \stackrel{?}{=} \sum_{\mathbf{a} \text { basis }} x^{|\mathrm{AA}(\mathbf{a})|} y^{|\mathrm{EA}(\mathbf{a})|}
$$

Tutte polynomial of polymatroids?

Tentative definition: Let $P \subseteq \mathbb{Z}^{n}$ be a polymatroid.
For $\mathrm{a} \in P$, let

$$
\begin{aligned}
& \mathrm{IA}(\mathbf{a}) \stackrel{?}{=}\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}-\mathbf{e}_{i}+\mathbf{e}_{j} \in P\right\}, \\
& \mathrm{EA}(\mathbf{a}) \stackrel{?}{=}\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P\right\} .
\end{aligned}
$$

$$
T_{P}(x, y): \stackrel{?}{=} \sum_{\mathbf{a} \text { basis }} x^{|\mathrm{AA}(\mathbf{a})|} y^{|\mathrm{EA}(\mathbf{a})|}
$$

Example:

Tutte polynomial of polymatroids?

Tentative definition: Let $P \subseteq \mathbb{Z}^{n}$ be a polymatroid.
For $\mathrm{a} \in P$, let

$$
\begin{aligned}
& \mathrm{IA}(\mathbf{a}) \stackrel{?}{=}\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}-\mathbf{e}_{i}+\mathbf{e}_{j} \in P\right\}, \\
& \mathrm{EA}(\mathbf{a}) \stackrel{?}{=}\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P\right\} .
\end{aligned}
$$

$$
T_{P}(x, y): \stackrel{?}{=} \sum_{\mathbf{a} \text { basis }} x^{|\mathrm{A}(\mathbf{a})|} y^{|\mathrm{EA}(\mathbf{a})|}
$$

Does not work! Not invariant under reordering of $[n]$.

Tutte polynomial of polymatroids?

Tentative definition: Let $P \subseteq \mathbb{Z}^{n}$ be a polymatroid.
For $\mathrm{a} \in P$, let

$$
\begin{aligned}
& \text { IA(a) } \stackrel{?}{=}\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}-\mathbf{e}_{i}+\mathbf{e}_{j} \in P\right\}, \\
& \mathrm{EA}(\mathbf{a}) \stackrel{?}{=}\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P\right\} .
\end{aligned}
$$

$$
T_{P}(x, y): \stackrel{?}{=} \sum_{\mathbf{a} \text { basis }} x^{|\mathrm{IA}(\mathbf{a})|} y^{|\mathrm{EA}(\mathbf{a})|}
$$

Does not work! Not invariant under reordering of $[n]$.
However $T_{P}(x, 1)$ and $T_{P}(1, y)$ are invariant under reordering of $[n]$. [Kalman 13, Kalman \& Postnikov 17]

Tutte polynomial of polymatroids?

Tentative definition: Let $P \subseteq \mathbb{Z}^{n}$ be a polymatroid.
For $\mathrm{a} \in P$, let
IA(a) $\stackrel{?}{=}\left\{i \in[n] \mid \nexists j<i\right.$ such that $\left.\mathbf{a}-\mathbf{e}_{i}+\mathbf{e}_{j} \in P\right\}$,
$\mathrm{EA}(\mathbf{a}) \stackrel{?}{=}\left\{i \in[n] \mid \nexists j<i\right.$ such that $\left.\mathbf{a}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P\right\}$.

$$
T_{P}(x, y): \stackrel{?}{=} \sum_{\mathbf{a} \text { basis }} x^{|\mathrm{IA}(\mathrm{a})|} y^{|\mathrm{EA}(\mathrm{a})|}
$$

Does not work! Not invariant under reordering of $[n]$.
However $T_{P}(x, 1)$ and $T_{P}(1, y)$ are invariant under reordering of $[n]$. [Kalman 13, K\&man \& Postnikov 17]

$$
\simeq \text { "Ehrhart polynomial" }\left|(P+q \Delta) \cap \mathbb{Z}^{n}\right|
$$

Cameron \& Fink's fix
Def: The Cameron-Fink invariant for a polymatroid $P \subseteq \mathbb{Z}^{n}$ is the unique polynomial $Q_{P}(x, y)$ such that $\forall k, \ell \in \mathbb{Z}_{\geq 0}$,

$$
Q_{P}(k, \ell)=\left|(P+k \nabla+\ell \Delta) \cap \mathbb{Z}^{n}\right|,
$$

where $\Delta=\operatorname{conv}\left(\mathbf{e}_{i}, i \in[n]\right)$ and $\nabla=\operatorname{conv}\left(-\mathbf{e}_{i}, i \in[n]\right)$.

Example:

Prop [Cameron-Fink]: For a matroid $M, Q_{M}(x, y) \simeq T_{P(M)}(x, y)$
same information

Tutte polynomial of polymatroids.

Definition [BKP]: Let $P \subseteq \mathbb{Z}^{n}$ be a polymatroid.
For $\mathrm{a} \in P$

$$
\begin{aligned}
& \mathrm{IA}(\mathbf{a})=\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}-\mathbf{e}_{i}+\mathbf{e}_{j} \in P\right\} \\
& \mathrm{EA}(\mathbf{a})=\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P\right\}
\end{aligned}
$$

$$
\mathbf{T}_{P}(x, y)=\sum_{\mathbf{a} \text { basis }} x^{|\mathrm{IA}(\mathbf{a}) \backslash \mathrm{EA}(\mathbf{a})|} y^{|\mathrm{EA}(\mathbf{a}) \backslash \mathrm{IA}(\mathbf{a})|}(x+y-1)^{|\mathrm{IA}(\mathbf{a}) \cap \mathrm{EA}(\mathbf{a})|}
$$

Tutte polynomial of polymatroids?

Definition [BKP]: Let $P \subseteq \mathbb{Z}^{n}$ be a polymatroid.
For $\mathrm{a} \in P$

$$
\begin{aligned}
& \mathrm{IA}(\mathbf{a})=\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}-\mathbf{e}_{i}+\mathbf{e}_{j} \in P\right\} \\
& \mathrm{EA}(\mathbf{a})=\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P\right\}
\end{aligned}
$$

$$
\mathbf{T}_{P}(x, y)=\sum_{\mathbf{a} \text { basis }} x^{|\mathrm{AA}(\mathbf{a}) \backslash \mathrm{EA}(\mathbf{a})|} y^{|\mathrm{EA}(\mathbf{a}) \backslash| \mathrm{A}(\mathbf{a}) \mid}(x+y-1)^{|\mathrm{IA}(\mathbf{a}) \cap \mathrm{EA}(\mathbf{a})|} .
$$

Example:

$$
\mathbf{T}_{P}(x, y)=(x+y-1)\left(x^{2}+2 x y+y^{2}+2 y+3 x+2 y+2\right)
$$

Tutte polynomial of polymatroids?

Definition [BKP]: Let $P \subseteq \mathbb{Z}^{n}$ be a polymatroid.
For $\mathbf{a} \in P$

$$
\begin{aligned}
& \mathrm{IA}(\mathbf{a})=\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}-\mathbf{e}_{i}+\mathbf{e}_{j} \in P\right\} \\
& \mathrm{EA}(\mathbf{a})=\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P\right\}
\end{aligned}
$$

$$
\mathbf{T}_{P}(x, y)=\sum_{\mathbf{a} \text { basis }} x^{|\mathrm{AA}(\mathbf{a}) \backslash \mathrm{EA}(\mathbf{a})|} y^{|\mathrm{EA}(\mathbf{a}) \backslash| \mathrm{A}(\mathbf{a}) \mid}(x+y-1)^{|\mathrm{IA}(\mathbf{a}) \cap \mathrm{EA}(\mathbf{a})|} .
$$

Thm [BKP] This polynomial is invariant under reordering of $[n]$.

Tutte polynomial of polymatroids.

Definition [BKP]: Let $P \subseteq \mathbb{Z}^{n}$ be a polymatroid.
For $\mathbf{a} \in P$

$$
\begin{aligned}
& \mathrm{IA}(\mathbf{a})=\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}-\mathbf{e}_{i}+\mathbf{e}_{j} \in P\right\} \\
& \mathrm{EA}(\mathbf{a})=\left\{i \in[n] \mid \nexists j<i \text { such that } \mathbf{a}+\mathbf{e}_{i}-\mathbf{e}_{j} \in P\right\}
\end{aligned}
$$

$$
\mathbf{T}_{P}(x, y)=\sum_{\mathbf{a} \text { basis }} x^{|\mathrm{IA}(\mathbf{a}) \backslash \mathrm{EA}(\mathbf{a})|} y^{|\mathrm{EA}(\mathbf{a}) \backslash| \mathrm{A}(\mathbf{a}) \mid}(x+y-1)^{|\mathrm{IA}(\mathbf{a}) \cap \mathrm{EA}(\mathbf{a})|}
$$

Thm [BKP] This polynomial is invariant under reordering of $[n]$.
Moreover, for any matroid M of rank d on $E=[n]$,

$$
\mathbf{T}_{P(M)}(x, y)=x^{n-d} y^{d} T_{M}\left(\frac{x+y-1}{y}, \frac{x+y-1}{x}\right) .
$$

Tutte polynomial of polymatroids.

$$
\mathbf{T}_{P}(x, y)=\sum_{\mathbf{a} \in \mathbb{Z}^{b}} ? ? ?
$$

Interval partition?

Tutte polynomial of polymatroids.

Thm [BKP] For any polymatroid $P \subseteq \mathbb{Z}^{n}$,

$$
\begin{aligned}
& \quad \mathbf{T}_{P}\left(\frac{1}{1-u}, \frac{1}{1-v}\right)=\sum_{\mathbf{c} \in \mathbb{Z}^{n}} u^{\operatorname{cork}(\mathbf{c})} v^{\operatorname{null}(\mathbf{c})}, \\
& \text { where } \quad \operatorname{cork}(\mathbf{c})=\min (|\mathbf{b}| \mid \mathbf{c}+\mathbf{b} \geq \mathbf{a} \in P) \\
& \operatorname{null}(\mathbf{c})=\min (|\mathbf{b}| \mid \mathbf{c}-\mathbf{b} \leq \mathbf{a} \in P)
\end{aligned}
$$

Tutte polynomial of polymatroids.

Relation: Crapo-type partition.
Let $P \subseteq \mathbb{Z}^{n}$ be a polynomatroid. For $\mathrm{a} \in P$ we define the cone

$$
C(\mathbf{a})=\mathbf{a}+\sum_{i \in \mathrm{IA}(\mathbf{a}) \backslash \mathrm{EA}(\mathbf{a})} \mathbb{Z}_{\leq 0} \mathbf{e}_{i}+\sum_{i \in \mathrm{EA}(\mathbf{a}) \backslash \mathrm{IA}(\mathbf{a})} \mathbb{Z}_{\geq 0} \mathbf{e}_{i}+\sum_{i \in \mathrm{IA}(\mathbf{a}) \cap \mathrm{EA}(\mathbf{a})} \mathbb{Z} \mathbf{e}_{i}
$$

Tutte polynomial of polymatroids.

Relation: Crapo-type partition.

Let $P \subseteq \mathbb{Z}^{n}$ be a polynomatroid. For $\mathbf{a} \in P$ we define the cone

Example: $\quad i \in \mathrm{IA}(\mathrm{a}) \backslash \mathrm{EA}(\mathrm{a})$

$$
i \in \mathrm{EA}(\mathbf{a}) \backslash \mathrm{IA}(\mathbf{a})
$$

Tutte polynomial of polymatroids.

Relation: Crapo-type partition.

Let $P \subseteq \mathbb{Z}^{n}$ be a polynomatroid. For $\mathbf{a} \in P$ we define the cone

$$
C(\mathbf{a})=\mathbf{a}+\sum_{i \in \mathrm{IA}(\mathbf{a}) \backslash \mathrm{EA}(\mathbf{a})} \mathbb{Z}_{\leq 0} \mathbf{e}_{i}+\sum_{i \in \mathrm{EA}(\mathbf{a}) \backslash \mathrm{IA}(\mathbf{a})} \mathbb{Z}_{\geq 0} \mathbf{e}_{i}+\sum_{i \in \mathrm{IA}(\mathbf{a}) \cap \mathrm{EA}(\mathbf{a})} \mathbb{Z} \mathbf{e}_{i} .
$$

Lemma [BKP] For any polymatroid $P \subseteq \mathbb{Z}^{n}$,

$$
\biguplus_{\mathbf{a} \in P} C(\mathbf{a})=\mathbb{Z}^{n}
$$

Tutte polynomial of polymatroids.

Relation: Crapo-type partition.

Let $P \subseteq \mathbb{Z}^{n}$ be a polynomatroid. For $\mathbf{a} \in P$ we define the cone

$$
C(\mathbf{a})=\mathbf{a}+\sum_{i \in \mathrm{IA}(\mathbf{a}) \backslash \mathrm{EA}(\mathbf{a})} \mathbb{Z}_{\leq 0} \mathbf{e}_{i}+\sum_{i \in \mathrm{EA}(\mathbf{a}) \backslash \mathrm{IA}(\mathbf{a})} \mathbb{Z}_{\geq 0} \mathbf{e}_{i}+\sum_{i \in \mathrm{IA}(\mathbf{a}) \cap \mathrm{EA}(\mathbf{a})} \mathbb{Z} \mathbf{e}_{i} .
$$

Lemma [BKP] For any polymatroid $P \subseteq \mathbb{Z}^{n}$,

$$
\biguplus_{\mathbf{a} \in P} C(\mathbf{a})=\mathbb{Z}^{n} .
$$

Moreover, for all basis a $\in P$,

$$
\begin{aligned}
\sum_{\mathbf{c} \in C(\mathbf{a})} u^{\operatorname{cork}(\mathbf{c})} v^{\mathrm{null}(\mathbf{c})}= & \left(\frac{1}{1-u}\right)^{|\mathrm{IA}(\mathbf{a}) \backslash \mathrm{EA}(\mathbf{a})|}\left(\frac{1}{1-v}\right)^{|\mathrm{EA}(\mathbf{a}) \backslash \mathrm{IA}(\mathbf{a})|} \\
& \left(\frac{1}{1-u}+\frac{1}{1-v}-1\right)^{|\mathrm{IA}(\mathbf{a}) \cap \mathrm{EA}(\mathbf{a})|}
\end{aligned}
$$

Relation with Cameron-Fink invariant

Prop [BKP]:

$$
Q_{P}(x, y)=\sum_{i, j} c_{i, j}\binom{x}{i}\binom{y}{j}
$$

where $c_{i, j}=\left[x^{i} y^{j}\right] \frac{\mathbf{T}_{P}(x+1, y+1)}{x+y+1}$.

Some properties of polymatroid Tutte polynomial

Prop. $P \subset \mathbb{R}^{n}$.

- $\mathrm{T}_{P}(x, y)$ is invariant under translation of P, and under permutation $[n]$.
- Duality: $\mathbf{T}_{-P}(x, y)=\mathbf{T}_{P}(y, x)$.

Some properties of polymatroid Tutte polynomial

Prop. $P \subset \mathbb{R}^{n}$.

- $\mathrm{T}_{P}(x, y)$ is invariant under translation of P, and under permutation $[n]$.
- Duality: $\mathbf{T}_{-P}(x, y)=\mathbf{T}_{P}(y, x)$.
- Brylawski identities:

$$
\left.\operatorname{deg}\left(\mathbf{T}_{P}(x, y)\right)=n\right) \text { and }\left[x^{k} y^{n-k}\right] \mathbf{T}_{P}(x, y)=\binom{n}{k} .
$$

Cor:[Brylawski 72] For any matroid $M \subseteq 2^{[n]}$, the coefficients $t_{i, j}=\left[x^{i} y^{j}\right] T_{M}(x, y)$ satisfy

$$
\forall p<n, \quad \sum_{i=0}^{p} \sum_{j=0}^{i}\binom{p-i}{j}(-1)^{j} t_{i, j}=0 .
$$

Universal Tutte Polynomial

Universal Tutte polynomial

Thm [BKP]. The Tutte polynomial is polynomial in the rank function.

Universal Tutte polynomial

Thm [BKP]. Let $n \in \mathbb{Z}_{>0}$, and let $\mathbf{z}=\left(z_{S}\right)_{\emptyset \neq S \subseteq[n]}$ be variables. There exists a unique polynomial $\mathbf{T}_{n}(x, y ; z)$ such that for all polymatroids on [n],

$$
\mathbf{T}_{P}(x, y)=\mathbf{T}_{n}(x, y ; \mathbf{z})_{\mid z_{S}=f_{P}(S)}
$$

where f_{P} is the rank funtion of P.

Universal Tutte polynomial

Thm [BKP]. Let $n \in \mathbb{Z}_{>0}$, and let $\mathbf{z}=\left(z_{S}\right)_{\emptyset \neq S \subseteq[n]}$ be variables.
There exists a unique polynomial $\mathbf{T}_{n}(x, y ; \mathbf{z})$ such that for all polymatroids on [n],

$$
\mathbf{T}_{P}(x, y)=\mathbf{T}_{n}(x, y ; \mathbf{z})_{\mid z_{S}=f_{P}(S)}
$$

where f_{P} is the rank funtion of P.
Example: $\mathbf{n}=\mathbf{3}$

$$
\begin{aligned}
\frac{\mathbf{T}_{3}(x, y ; \mathbf{z})}{x+y-1}= & x^{2}+2 x y+y^{2} \\
& +\left(z_{1}+z_{2}+z_{3}-z_{123}-2\right) x \\
& +\left(z_{12}+z_{13}+z_{23}-2 z_{123}-2\right) y \\
& +\frac{1}{2}\left(z_{123}^{2}-z_{12}^{2}-z_{13}^{2}-z_{23}^{2}-z_{1}^{2}-z_{2}^{2}-z_{3}^{2}\right) \\
& -z_{123}\left(z_{1}+z_{2}+z_{3}\right) \\
& +\left(z_{1} z_{12}+z_{1} z_{13}+z_{2} z_{12}+z_{2} z_{23}+z_{3} z_{13}+z_{3} z_{23}\right) \\
& +\frac{1}{2}\left(3 z_{123}-z_{12}-z_{13}-z_{23}-z_{1}-z_{2}-z_{3}\right)+1 .
\end{aligned}
$$

Proof:

Uniqueness:

Space Ω_{n} of polymatroids on $[n]$ contains a cone of dimension $2^{n}-1$.

$$
z_{S}+z_{T} \geq z_{S \cup T}+z_{S \cap T}
$$

Proof:

Uniqueness:

Space Ω_{n} of polymatroids on $[n]$ contains a cone of dimension $2^{n}-1$.

Existence:

- In the bulk of Ω_{n} : activity constant in the interior of each face, and number of points in each face is polynomial in $\left(z_{S}\right)_{S \subseteq[n]}$.

Proof:

Uniqueness:

Space Ω_{n} of polymatroids on $[n]$ contains a cone of dimension $2^{n}-1$.

Existence:

- In the bulk of Ω_{n} : activity constant in the interior of each face, and number of points in each face is polynomial in $\left(z_{S}\right)_{S \subseteq[n]}$.
- At the boundary of Ω the contribution of "collapsing" faces behaves polynomially.

$\Omega_{2}: z_{1,2} \leq z_{1}+z_{2}$
$\mathbf{T}_{2}(x, y ; \mathbf{z})=(x+y-1) x+(x+y-1) y+\left(z_{1}+z_{2}-z_{1,2}-1\right)(x+y-1)$

Explicit formula for T_{n}

Def:[Postnikov] $\left(d_{I}\right)_{\emptyset \neq I \subseteq[n]} \in \mathbb{Z}_{\geq 0}^{2^{n}}$ is draconian if

$$
\forall I_{1}, \ldots, I_{k} \subseteq[n], \quad d_{I_{1}}+\cdots+d_{I_{k}} \leq\left|I_{1} \cup \cdots \cup I_{k}\right|-1,
$$

and

$$
\sum_{I \subseteq[n]} d_{I}=n-1 .
$$

Explicit formula for T_{n}

Def: [Postnikov] $\left(d_{I}\right)_{\emptyset \neq I \subseteq[n]} \in \mathbb{Z}_{\geq 0}^{2^{n}}$ is draconian if

$$
\forall I_{1}, \ldots, I_{k} \subseteq[n], \quad d_{I_{1}}+\cdots+d_{I_{k}} \leq\left|I_{1} \cup \cdots \cup I_{k}\right|-1
$$

and

$$
\sum_{I \subseteq[n]} d_{I}=n-1
$$

The dragon polynomial is the following polynomial in $\mathbf{t}=\left(t_{I}\right)_{\emptyset \neq I \subseteq[n]}$

$$
D_{n}(\mathbf{t})=\sum_{\left(d_{I}\right) \text { draconian }}\binom{t_{[n]}-1}{d_{[n]}} \prod_{\emptyset \neq I \subsetneq[n]}\binom{t_{I}}{d_{I}},
$$

where $\binom{t}{d}:=\frac{t(t-1) \cdots(t-d+1)}{d!}$.

Explicit formula for T_{n}

Thm [BKP]:

The reparametrization $\widehat{\mathbf{T}}_{n}(x, y ; \mathbf{t}):=\mathbf{T}_{n}(x, y ; \mathbf{z})_{\left.\right|_{I}=\sum_{J \subseteq[n], J \cap I \neq \varnothing} t_{J}}$ has the following explicit formula:

$$
\widehat{\mathbf{T}}_{n}(x, y ; \mathbf{t})=(x+y-1) \sum_{\substack{B=\left(B_{1}, \ldots, B_{\ell}\right) \\ \uplus B_{k}=[n]}}(-1)^{\ell-1} D_{n}\left(\mathbf{t}^{B}\right) x^{l r(B)-1} y^{r l(B)-1},
$$

where

- $\mathrm{t}^{B}=\left(t_{I}^{B}\right)$ with $t_{I}^{B}=\mid \sum_{\substack{J \subseteq \cup_{i<k} B_{i} \\ 0 \text { otherwise }}} t_{I \cup J}$ if $I \subseteq B_{k}$ for some k
- $\operatorname{lr}(B)$ is the number of left-to-right minima of B,
- $r l(B)$ is the number of right-to-left minima of B.

Some explanation/intuition for the formula:

$$
\begin{gathered}
\widehat{\mathbf{T}}_{n}(x, y ; \mathbf{t})=(x+y-1) \sum_{\substack{B=\left(B_{1}, \ldots, B_{\ell}\right) \\
\uplus B_{k}=[n]}}(-1)^{\ell-1} D_{n}\left(\mathbf{t}^{B}\right) x^{l r(B)-1} y^{r l(B)-1}, \\
\hline
\end{gathered}
$$

- Change of variables $\mathbf{z} \rightarrow \mathbf{t}$:

The tuple $\mathbf{z}=\left(z_{I}\right)$ given by $z_{I}=\quad \sum \quad t_{J}$ is the rank function

$$
J \subseteq[n]: J \cap I \neq \emptyset
$$

$$
\text { of } \mathcal{P}=\sum_{I \subseteq[n]} t_{I} \Delta_{I}, \text { where } \Delta_{I}=\operatorname{conv}\left(\mathbf{e}_{i}, i \in I\right)
$$

Some explanation/intuition for the formula:

$$
\widehat{\mathbf{T}}_{n}(x, y ; \mathbf{t})=(x+y-1) \sum_{\substack{B=\left(B_{1}, \ldots, B_{\ell}\right) \\ \biguplus B_{k}=[n]}}(-1)^{\ell-1} D_{n}\left(\mathbf{t}^{B}\right) x^{l r(B)-1} y^{r l(B)-1},
$$

- Change of variables $\mathbf{z} \rightarrow \mathbf{t}$:

The tuple $\mathbf{z}=\left(z_{I}\right)$ given by $z_{I}=\sum t_{J}$ is the rank function

$$
\text { of } \mathcal{P}=\sum_{I \subseteq[n]} t_{I} \Delta_{I}, \text { where } \Delta_{I}=\operatorname{conv}\left(\mathbf{e}_{i}, i \in I\right)
$$

- The partitions B indexes the faces of a generic permutahedron. The tuple t^{B} gives the rank function of the face.

Some explanation/intuition for the formula:

$$
\widehat{\mathbf{T}}_{n}(x, y ; \mathbf{t})=(x+y-1) \sum_{\substack{B=\left(B_{1}, \ldots, B_{\ell}\right) \\ \uplus B_{k}=[n]}}(-1)^{\ell-1} D_{n}\left(\mathbf{t}^{B}\right) x^{l r(B)-1} y^{r l(B)-1},
$$

- Change of variables $\mathrm{z} \rightarrow \mathrm{t}$:

The tuple $\mathrm{z}=\left(z_{I}\right)$ given by $z_{I}=\quad \sum \quad t_{J}$ is the rank function $J \subseteq[n]: J \cap I \neq \emptyset$
of $\mathcal{P}=\sum_{I \subseteq[n]} t_{I} \Delta_{I}$, where $\Delta_{I}=\operatorname{conv}\left(\mathbf{e}_{i}, i \in I\right)$.

- The partitions B indexes the faces of a generic permutahedron. The tuple t^{B} gives the rank function of the face.
- The dragon polynomial $D_{n}(\mathbf{t})$ gives the number of lattice points in the interior of a permutahedron [Postnikov 06].
The draconian sequences correspond to the hypertrees of the complete hypergraph H_{n} on [n] having one hyperedge for each $I \subseteq[n]$.

Application: Tutte polynomial of zonotopes

Example: The classical permutahedron

$$
P_{n}=\operatorname{conv}\left\{(\pi(1), \pi(2), \ldots, \pi(n)), \pi \in \mathfrak{S}_{n}\right\} \cap \mathbb{Z}^{n}
$$

has Tutte polynomial

$$
\mathbf{T}_{P_{n}}(x, y)=\sum_{F \text { forest on }[n]}(x+y-1)^{\# \text { connected components. }} .
$$

$\mathrm{n}=3$:

$$
\mathbf{T}_{P_{3}}(x, y)=(x+y-1)^{3}+3(x+y-1)^{2}+3(x+y-1) .
$$

Thanks.

