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Matroids

Matroids: Definition

A matroid is an ordered pair M = (E , I) such that E , the ground set of
M, is a finite set and I is a collection of subsets of E , called independent
sets, satisfying

I1) ∅ ∈ I;

I2) if I ∈ I and I ′ ⊆ I , then I ′ ∈ I;

I3) if I1, I2 ∈ I and |I1| < |I2|, ∃e ∈ I2 − I1 s.t. I1 + e ∈ I.

E

∅
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Matroids

Matroids: Bases and circuits

E

∅

Maximal independents sets are called bases and by I3 all bases have the
same cardinality. The common cardinality is called the rank of the matroid
and its denoted r(M).
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Matroids

Matroids: Bases and circuits

E

∅

Minimal subsets of E that are not independents are called circuits.
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Simplicial complexes

Simplicial complex

Associated to any (d − 1)-dimensional simplicial complex ∆ we have its
face enumerator

f∆(x) =
∑

F∈∆

xd−|F | =
d∑

i=0

fix
d−i ,

and the corresponding f-vector (f0, f1, . . . , fd). A simplicial complex is pure
if all its facets have the same cardinality.

Theorem (Lenz 2013)

The sequence (f0, f1, . . . , fd) is log-concave for the matroid complex of a
representable matroid.
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Simplicial complexes

Simplicial complex

For a pure simplicial complex ∆, a shelling is a linear order of the facets
F1, F2, . . ., Ft such that each facets meets the complex generated by its
predecessors in a non-void union of maximal proper faces. A complex is
said to be shellable if it is pure and admits a shelling.
Let ∆i the subcomplex generated by the facets F1, . . ., Fi and let R(Fi )
be the unique minimal face of Fi which lies in ∆i −∆i−1.
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Simplicial complexes

Simplicial complex

Associated to any (d-1)-dimensional shellable simplicial complex ∆ we
have its shelling polynomial

h∆(x) =
t∑

i=1

xd−|R(Fi )| =
d∑

i=0

hix
d−i ,

and the corresponding h-vector (h0, h1, . . . , hd).

Theorem (Huh 2015)

The sequence (h0, h1, . . . , hd) is log-concave for the matroid complex of a
matroid representable over a field of characteristic zero.
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Simplicial complexes

Example

1

23

4

(1,4,6)

f
∆
=x2+4x+6
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Simplicial complexes

Example

12 14 2423 3413

21

∅

3 4

1

2

3
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Simplicial complexes

Example

(1,2,3) 1

23

4

h
∆
=x2+2x+3
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Simplicial complexes

Simplicial complex

Theorem (McMullen;1970)

f∆(x) = h∆(x + 1).

Thus, we obtain that

Observation

h0 + h1 + · · ·+ hd = fd .

hk =
k∑

i=0

(−1)i+k

(
d − i

k − i

)
fi .
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Simplicial complexes

Matroid complexes

Let M = (E , I) be a matroid, the family I forms a simplicial complex
∆(M) of dimension r(M)− 1, called matroid complex. The facets of
∆(M) are the bases of M and therefore ∆(M) is pure.

Theorem (Provan 1977)

The matroid complex ∆(M) is shellable.
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Paving matroids

Paving matroid

A matroid M is paving if all it’s circuits have size at least r(M)
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Paving matroids

Paving matroid

A matroid M is paving if all it’s circuits have size at least r(M)
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Paving matroids

Paving matroid

A matroid M is paving if all it’s circuits have size at least r(M)

Fano
1

2

3
45

6
7

123 345147 156 246 257 367

Criel Merino (UNAM) Matroid complexes Combinatorics, Algebra & Geometry 11 / 59



Paving matroids

Importance of paving matroids

1973 J. E. Blackburn, H. H. Crapo, and D. A. Higgs. A catalogue of
combinatorial geometries.

1976 Dominic Welsh ask if most matroids are paving.

2008 D. Mayhew and G.F. Royle. Matroids with nine elements

2010 D. Mayhew, M. Newman, D. Welsh, and G. Whittle. Conjecture that
asymptotically most matroids are paving. limn→∞

sn
mn

= 1

2015 R. A. Pendavingh, J. G. Van Der Pol. logmn ≤ (1 + o(1)) log sn as
n→∞
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Paving matroids

h-vector for paving matroids

How is the h-vector of a paving matroid?.

f -vector is (

(
n

0

)
,

(
n

1

)
, . . . ,

(
n

r − 1

)
, b(M))

E

D
ep

en
d
en
t
se
ts

In
d
ep

en
d
en
t
sets∅

r(M)

k-subset

Note: It is enough to consider paving matroids with no loops nor coloops.
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Paving matroids

h-vector for paving matroids

Using the relation between the fi ’s and hi ’s, the h-vector of a paving
matroid is

(

(
n − r − 1

0

)
,

(
n − r

1

)
, . . . ,

(
n − 2

r − 1

)
, b(M)−

(
n − 1

r − 1

)
).

It only rest to know

hr = b(M)−
(
n − 1

r − 1

)
.
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Paving matroids

Multicomplex

Note that

hk =

(
n − r − 1 + k

k

)
.

This expression correspond to the number of monomials over n − r
variables with degree k, for 0 ≤ k ≤ r − 1.
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Paving matroids

Multicomplex

Let us consider the ring Z[z1, . . . , zd ]. The set of all (monic) monomials
over z1, . . . , zd is a poset with the divisibility relation.

Definition

A multicomplex Σ is a subset of monomials (in this poset ) which is closed
under divisibility. If all the maximal elements of Σ have the same degree
we said that Σ is pure.

x4 

x2y2 

xy3 
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Paving matroids

Example: 3 variables, maximal degree 4

x

y

z

x2

xy

y2

yz

z2

xz

x3

x2y

xy2

y3

zy2

yz2

z3

xz2

x2z

x2y2

1

x3z

x2z2 y3z

yz3

xyz xy2z
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Paving matroids

Multicomplexes

Definition

An integer sequence (h0, h1, . . .) is an O-sequence if there exists a
multicomplex with hi monomials of degree i . The O-sequence is pure if
the multicomplex is pure.

x4 

x2y2 

xy3 

the pure O-sequence here is (1,2,3,4,3).
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Paving matroids

Example

x

y

z

x2

xy

y2

yz

z2

xz

x3

x2y

xy2

y3

zy2

yz2

z3

xz2

x2z

x2y2

1

x3z

x2z2 y3z

yz3

xyz xy2z

Here the pure O-sequence is (1,3,6,10,6).
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Paving matroids

Stanley’s conjecture on h-vectors

Conjecture (R. Stanley 1977)

The h-vector of a matroid complex is a pure O-sequence.
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Paving matroids

Stanley’s conjecture on h-vectors

Cographic matroids. Biggs-Merino1997.

Lattice-path matroids. Schweig 2010

Graphic matroids of coned graphs. Kook 2012;

Paving matroids Merino, Noble, Raḿırez-Ibañez and Villarroel-Flores,
2012

Rank 3 matroids, corank 2 matroids, and all matroids with at most 9
elements. De Loera, Kemper, and Klee 2012
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Paving matroids

Stanley’s conjecture on h-vectors

Conjecture

The h-vector of a matroid complex is a pure O-sequence.

Rank 3 matroids, Há, Stokes, and Zanello 2013

Cotransversal matroids Oh 2013; Sarmiento 2018

Truncation of a matroid, generalized Catalan matroids, rank d
matroids with hd ≤ 5, Constantinescu, Kahle, and Varbaro 2014

rank 4 matroids, Kleen and Samper 2015

Graphic matroids of biconed graphs. Cranford, Dochterman,
Haithcock , Marsh,. Oh, and Truman 2021.
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Paving matroids

Stanley’s conjeture and paving matroids

To prove the conjecture for paving matroids it is enough to prove that
there is a pure multicomplex for which the quantity hr fits to get a pure
multicomplex from the one that we already have construct for
h0, h1, . . . , hr−1.
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Paving matroids

Proof idea

Mr−1,n−r multicomplex with maximal elements

the monomials of degree r − 1 over z1, z2, . . . , zn−r
We define the multicomplex Mr ,d to be the pure multicomplex in which
the maximal elements are all the monomials of degree r in d
indeterminates z1, . . . , zd . This multicomplex gives an O-sequence
(h0, . . . , hr ), where hk =

(d+k−1
k

)
.
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Paving matroids

Proof idea
g(r, n) = min {b(M)−

(
n−1
r−1

)
|M ∈ P r,n}.

Mr−1,n−r multicomplex with maximal elements

the monomials of degree r − 1 over z1, z2, . . . , zn−r

Now, let us define

g(r , n) = min
{
b(M)−

(
n − 1

r − 1

)
|M ∈ Pr ,n

}
.

Observe that g(r , n) equals the minimum value of hr among all h-vectors
of matroids in Pr ,n.
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Paving matroids

Proof idea

f(r, n− r) = min {hr|(h0, . . . , hr) is the O-sequence

g(r, n) = min {b(M)−
(
n−1
r−1

)
|M ∈ P r,n}.

ofM⊃M r−1,n−r}.

Mr−1,n−r multicomplex with maximal elements

the monomials of degree r − 1 over z1, z2, . . . , zn−r

Finally, take

f (r , d) = min{hr | (h0, . . . hr ) is the pure O-sequence of M⊃Mr−1,d}.

Thus, to prove Stanley’s conjecture for paving matroids is enough to show
that g(r , n) ≥ f (r , n − r).
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Paving matroids

Proof idea

Theorem (Merino,Noble,Raḿırez, Villarroel)

For all rank-r loopless and coloopless paving matroid M with n elements
we have that g(r , n) is at least f (r , n − r).

Proof.

paving matroids are closed under minors;

Contraction-deletion

Careful induction on r + n;

structural theorem for rank-r coloopless paving matroid M such that
every element e of M , M \ e has a coloop.
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A conjecture

Extremal multicomplex

Let Xr ,d be the set of (monic) monomials over d variables of degree r .

The cardinality of Xr ,d is
(d+r−1

r

)
.

Definition

Let Gr ,d be the the graph with vertices the elements in Xr ,d and two
monomials m and m′ are adjacent if there exists i 6= j such that
zim = zjm

′.
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A conjecture

Example

Here is G5,3 with
(7

5

)
vertices.
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0 x

2
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0 x

3
1

x4
0 x2 x3

0 x
2
2

x3
0 x1x2

x2
0 x

2
1 x2

x2
0 x1x

2
2

x2
0 x

3
2

x0x
4
1

x5
1

x0x
4
2

x5
2
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1 x2

x3
1 x

2
2

x2
1 x

3
2

x1x
4
2

x0x1x
3
2

x0x
2
1 x

2
2

x0x
3
1 x2
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A conjecture

Standard colouring

We define the standard colouring of Gr ,d as the colouring that assigns to
za0

0 · · · z
ad−1

d−1 the colour (0, . . . , d − 1) · (a0, . . . , ad−1) mod d . It is easy to
check that this is a proper colouring. We also define

f (r , d) = minimum size of a chromatic class.
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2
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A conjecture

Extremal multicomplexes f (r , d) and f (r , d)

Conjetura MNRV

f (r , d) = f (r , d) = L2(r , d).

Where L2(r , d) is the number of aperiodic binary necklaces with r white
and d black beads. Example
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A conjecture

The second part of the conjecture: Number theory

In ”Combinatorics of necklaces and ”hermite reciprocity” ”, Elashvili,
Jibladze and Pataraiase study the quantity ak(r , d), the number of no
negative solutions to the system:

d−1∑

j=0

jλj ≡ k (mod d);
d−1∑

i=0

λi = r ;

The number of monomials Gr ,d with color k is ak(r , d). They results prove
(indirectly). Thanks to Tristram Bogart for pointing this out.

Corollary

L2(r , d) = a1(r , d) = f (r , d).
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A conjecture

First part of conjecture: partial results

We have the following results.

Theorem

f (r , d) = f (r , d) for the values

1 d = 2, 3, 4 all r ≥ 1

2 r = 2, 3, 4 all d ≥ 1

3 r = 5, d odd.
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A conjecture

Second part of conjecture: partial results
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Cographic matroids

Counting bases in graphic matroids

Let M be the graphic matroid of a connected graph G with n + 1 vertices.
The Laplacian of G is the (n + 1)× (n + 1) matrix L(G ) = L given by

Li ,j =

{
−a(vi , vj), if i 6= j ,

deg(vi ), if i = j ,

where a(vi , vj) denotes the number of edges joining vi and vj , and deg(vi )
denotes the number of non-loop edges incident to v . The reduced
Laplacian of G , Lq(G ), is obtained from L(G ) by deleting the row and
column corresponding to a vertex q in G .

Theorem (Kirchhoff 1847; Sylvester 1857; Borchardt 1860; Maxwell 1892)

The number of bases of M(G ) is given by

b(M) = det(Lq(G ))
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Cographic matroids

The chip firing game

We consider the equivalence relation over Zn, where two configurations σ1

and σ2 are related iff σ1 − σ2 ∈< Lq(G ) > The number of equivalent
clases is det(Lq(G )). But which representative in each class can give us an
interesting combinatorial object?
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Cographic matroids

The chip firing game

The rows of Lq are Rv1 ,. . . , Rvn . Each of these rows define a rule: You can
add −Rvi to a configuration σ if σ − Rvi ≥ 0. We also have a special rule
corresponding to vertex q that consist of adding vector equal to the sum
of the rows of Lq. If no normal rule applies, we use the special rule.

2 -1 0
-1 3 -1
0 -1 2
1 1 1
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Cographic matroids

The chip firing game

-2 1 0

3 5 1

1 6 1
2 3 2
0 4 2
0 5 0
1 2 1
2 3 2
0 4 2
0 5 0
1 2 1
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Cographic matroids

The chip firing game

1 -3 1

3 5 1
1 6 1

2 3 2
0 4 2
0 5 0
1 2 1
2 3 2
0 4 2
0 5 0
1 2 1
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Cographic matroids

The chip firing game

0 1 -2

3 5 1
1 6 1
2 3 2
0 4 2

0 5 0
1 2 1
2 3 2
0 4 2
0 5 0
1 2 1
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Cographic matroids

The chip firing game

1 1 1

3 5 1
1 6 1
2 3 2
0 4 2
0 5 0
1 2 1

2 3 2
0 4 2
0 5 0
1 2 1
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Cographic matroids

The chip firing game
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Cographic matroids

The chip firing game

3 5 1
1 6 1
2 3 2
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Cographic matroids

The chip firing game

Critical configurations are configurations that are stable, i.e. entry v is at
most deg(v)− 1, and that they recur under the chip firing game.

There is unique critical configuration in each congruence class

There is a maximal critical configuration σm, where
σm(v) = deg(v)− 1 for all v 6= q.

The chip firing game (sandpile model) have appeared independently
in Mathematics and Physics.
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σm(v) = deg(v)− 1 for all v 6= q.

The chip firing game (sandpile model) have appeared independently
in Mathematics and Physics.
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Cographic matroids

The chip firing game

Associated to each critical configuration is the weight of a configuration σ,
w(σ), define as the sum of its entries. If σ is a critical configuration, we
define its level as level(σ) = w(σ)− |E (G )|+ deg(q). Then,
0 ≤ level(σ) ≤ |E (G )| − |V (G )|+ 1 = r∗(M(G )).
Let G = (V ,E ) be a graph with q ∈ V and, for i ≥ 0, let ci (q) be the
number of critical configurations with level i in the chip-firing game. Then
the critical configuation polynomial (generating function of critical
configurations by level) is

P(G , q; y) =

r∗(M(G))∑

i=0

ci (q)y i .
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Cographic matroids

The chip firing game

Example K4 \ e: the critical configurations (1,2,1) has level 2;
configurations (0,2,1), (1,1,1) and (1,2,0) have level 1; and (0,2,0),
(0,1,1), (1,0,1) and (1,1,0) have level 0. Thus, the critical configuration
polynomial is y2 + 3y + 4.
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Cographic matroids

The chip firing game

Example K4 \ e, different vertex q: Critical configurations (2,1,2) has level
2; (2,0,2), (2,1,1) and (1,1,2) have level 1; and (2,1,0), (0,1,2), (2,0,1)
and (1,0,2) have level 0. The critical configuration polynomial is again
y2 + 3y + 4.
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Cographic matroids

The chip firing game

Theorem (Merino 1997)

For a connected graph G with special vertex q we have that

r∗∑

i=0

hix
r∗−i = h∆(M∗(G))(y) = P(G , q; y) =

r∗(M(G))∑

i=0

ci (q)y i .
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Cographic matroids

Proof idea

The shelling polynomial satisfies contraction-deletion:

h∆(M) = h∆(M\e) + h∆(M/e) for e not a loop of a coloop;

If e is a loop h∆(M) = h∆(M\e) ;

if e is a coloop h∆(M) = xh∆(M/e);

if M is U0,1, h∆(M)(x) is 1 and if M is U1,1, h∆(M)(x) is x.

Criel Merino (UNAM) Matroid complexes Combinatorics, Algebra & Geometry 44 / 59



Cographic matroids

Proof idea

Fix an edge {q, v}, not a loop or coloop, with v of degree k . The critical
configurations of G/e are (the projection of) the critical configurations
with v -entry equal to k − 1. While the critical configurations of G \ e are
the critical configurations with v -entry strictly less than k − 1.

Criel Merino (UNAM) Matroid complexes Combinatorics, Algebra & Geometry 45 / 59



Cographic matroids

Proof idea

Critical configurations with second entry equal to 2 are: (1,2,1), (0,2,1),
(1,2,0) and (0,2,0) Critical configurations with second entry less than 2
are: (1,1,1), (0,1,1), (1,0,1) and (1,1,0)
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Cographic matroids

Proof idea

The set {σm − σ} is a pure multicomplex.

If σ is a critical configuration and σ′ is stable with σ ≤ σ′, then, σ′ is
also critical.

If σ is a critical configuration, by marking the essential chips for game
to recur, you can find a critical configuration σ0 with |E | − deg(q)
chips. This σ0 has minimal level and σ0 ≤ σ
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Cographic matroids

A group from graphs

The set of critical configurations have a natural binary operation. If σ1

and σ2 are critical configurations, then we define σ1 � σ2 to be the unique
critical configuration associated with the configuration σ1 + σ2. Critical
configurations with this operation form an Abelian group called critical
group or sandpile group. This group is isomorphic to the group
K (G ) ∼= Zn/ZnLq(G ), where ZnLq(G ) is the integer row-span of the
reduced Laplacian of G . 1

1Berman 1986; Lorenzini 1989; Dhar 1990; Biggs 1996; Bacher, de la Harpe and
Nagnibeda 1997.
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Cographic matroids

A group from graphs

For example, the critical group of the complete graph Kn is isomorphic to
the direct sum of n − 2 copies of Z/nZ. This generalizes the famous
theorem by Cayley2, τ(Kn) = nn−2.

2Cayley 1889; Sylvester 1857; Borchardt 1860
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Cographic matroids

A group for ribbon graphs

Given a 2-cellular embedding of a graph G in a closed compact surface Σ,
the ribbon graph G is obtained by taking a small neighborhood of the
embedding of G and deleting its complement.
Notice that we can always consider a ribbon graph G as an abstract graph
G , by disregarding the information about the embedding.

PSL27, CC BY-SA 4.0, https://creativecommons.org/licenses/by-sa/4.0, via
Wikimedia Commons
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Cographic matroids

A group for ribbon graphs

A ribbon graph is a quasi-tree if it has only one face.
A ribbon graph is orientable if it is embedded in an orientable surface.
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Cographic matroids

A group for ribbon graphs

A ∆-matroid D = (E ,F) consists of a finite set E and a non-empty set F
of subsets of E , called the feasible sets, that satisfies the following:

1 F 6= ∅
2 For all X ,Y ∈ F , if there is an element u ∈ X4Y , then there is an

element v ∈ X4Y such that X4{u, v} ∈ F . Symmetric Exchange
Axiom

Note that it may be the case that u = v .
Example: B3 is the ∆-matroid with groundset E = {a, b, c} and the
feasible sets are {a}, {b}, {c} and {a, b, c}

∆-matroids were introduced by A. Bouchet in 1987.
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Cographic matroids

A group for ribbon graphs

The bases of a matroid are the feasible sets of a ∆-matroid.
If you have a ∆-matroid D = (E ,F) and A ⊆ E , the family of subsets

F4A = {I4A : I ∈ F}

is the set of feasible sets of the ∆-matroid D4A, the twist of D by A.
∆-matroids are consider the same up twists.
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Cographic matroids

A group for ribbon graphs

Theorem

The set of spanning quasi-trees of a connected ribbon graph is the set of
feasible sets of a delta-matroid.

Example: The ∆-matroid is B3 with groundset E = {a, b, c} and the
feasible sets are {a}, {b}, {c} and {a, b, c}

Criel Merino (UNAM) Matroid complexes Combinatorics, Algebra & Geometry 54 / 59



Cographic matroids

A group for ribbon graphs

Let G = (V ,E ) be a ribbon graph and A ⊆ E a subset of edges. The
partial dual GA of G is obtained in the following way. Consider the
spanning ribbon subgraph H = (V ,A). Now, take G and glue a disk onto
each boundary component of H; these disks are the vertices of GA.
Removing the interior of all old vertices of G we get GA.

The dual of G∗ is the ribbon graph GE .
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Cographic matroids

A group for ribbon graphs

Theorem (Merino, Moffatt, Noble, 2022)

For an orientable ribbon graph G, there exists an abelian group K (G) such
that

1 The order of the group equals the number of spanning quasi-trees of
G;

2 If G is plana, K (G) ∼= K (G );

3 K (G∗) ∼= K (G). (in fact K (GA) ∼= K (G) )
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Cographic matroids

A group for ribbon graphs

Example: The group of B3 is Z/2Z⊕ Z/2Z.
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Thanks



Lemma

Let M be a rank-r coloopless paving matroid. If for every element e of M,
M \ e has a coloop, then one of the following three cases happens.

1 M is isomorphic to Ur ,r+1, r ≥ 1.

2 M is the 2-stretching of a uniform matroid Us,s+2, for some s ≥ 1.

3 M is isomorphic to U1,2 ⊕ U1,2.
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