Type polytopes and products of simplices

Bennet Goeckner University of San Diego

October 6, 2022

Type cones and products of simplices

My collaborators

Federico Castillo – Pontificia Universidad Católica de Chile Joseph Doolittle – Technische Universität Graz Michael Ross – Iowa State University

Li Ying – Vanderbilt University

A Minkowski Summands of Cubes \$

Combinatorial isomorphism

Type cones and products of simplices

d=3

Standard cube: $C_d = \left\{ x \in \mathbb{R}^d \mid 0 \le x_i \le 1 \text{ for all } i \in [d] \right\}$

Klee–Minty cube: Perturb vertices—simplex algorithm might have to visit all 2^d vertices

Example: Cubes

For $d \ge 3$, there exist *d*-cubes for which each pair of opposing facets is **perpendicular**.

A more precise question

Realization space of *P*: Set of all polytopes that are combinatorially isomorphic to P- Wild topology in general! (d=4 any homotopy) type could appr -Adiprasilo, Kalmonouch, Nevo 19 Lo Realizate space of d-cube is contractible **Type cone of** *P*: Set of all polytopes that are combinatorially isomorphic to P with the same facet normal vectors - Take closure ~ degeneration on boundary -Padrol, Palu, Fland, Planadon '19 Lo considents simplicial type ang

Minkowski sums and summands

Q₁R polytypes:, R⁴
Q+R =
$$\xi$$
 g+r (geQ, rcR} \leftarrow Minkowski
Sum
 $\downarrow \downarrow + \downarrow = \downarrow$
Q + R = \bigcirc
Q+R = $(\neg$
Q+R = $(\neg$

Minkowski summands... in other words

Theorem (Shephard)

Let $P = \{x \in \mathbb{R}^d : Ux \leq z\}$ be an irredundant inequality description for a polytope. The following are equivalent.

- (i) Q is a weak Minkowski summand of P.
- (ii) (Edge lengths) There exists a map φ : V(P) → V(Q) such that for v_i, v_j ∈ V(P) with {v_i, v_j} ∈ E(P) we have φ(v_i) - φ(v_j) = λ_{i,j}(v_i - v_j), for some λ_{i,j} ∈ ℝ_{≥0}.
 (iii) (Facet heights) There exists an η ∈ ℝ^m such that
- $Q = \{x \in \mathbb{R}^{d} : Ux \leq \eta\} \text{ and for any subset of rows } S \text{ such that the linear system } \{\langle u_{i}, x \rangle = z_{i}, \forall i \in S\} \text{ defines a vertex of } P, \text{ the linear system } \{\langle u_{i}, x \rangle = \eta_{i}, \forall i \in S\} \text{ defines a vertex in } Q.$

Those other words... in other words

Q is a Minkowski summand of ${\cal P}$

Type cones and type polytopes

Type polytope of P: $\mathbb{TP}(P)$

Type cones and products of simplices

An example: Facet heights

Type cones and products of simplices

Type cones of polygons

N(P) = set of unit fact normals of P Q +Q' $\mathcal{N}(P)$ P = polyoph Prop (COGRY) Faces of TTE(P) correspond to SEN(P) s.t. O E relint (onus) Cor: Any d-polytype w/ d+3 vertices is the TTP(P) for some polym P. Type cones of polygons

Theorem (McMullen 1973)

Let P be a polytope, $\mathcal{A} = \{a_1, \dots, a_m\}$ be the vertex set of its polar P° , and $\operatorname{Gale}(A) = \{b_1, \dots, b_m\}$ be a Gale transform for \mathcal{A} . Then

$$\mathbb{TP}(P) \cong \bigcap_{S} \operatorname{conv}\{b_i : b_i \in S\},\$$

where the intersection is over all cofacets S of A.

Our main result

Theorem (CD6RY)

If P is combinatorially isomorphic to a product of k + 1 nontrivial simplices, $\mathbb{TP}(P)$ is a simplex of dimension k. (Simplicity type care!

In particular, the type polytope of any combinatorial d-cube is a (d-1)-simplex.

- Only (?) type cone result that is up to combinatorial isomorphim!

- Mirrors AKN result on realization spaces of cubes

"Proof" Q: Product of simplicial polytyces? Sivel simples ~) polycym?

Key step of proof: Show that the intersection of all **rainbow simplices** from a particular **rainbow configuration** is itself a simplex.

This rainbow configuration is the Gale transform of the polar of the product of nontrivial simplices. We then apply McMullen's result.

Thanks for listening!

Type cones and products of simplices