Foundations of Matroids

What is a matroid?
A matroid is a finite set E and non-empty collection B of subsets such that

$$
\begin{aligned}
& \forall B, B^{\prime} \in B \text { sit } \forall b \in B \backslash B^{\prime} \\
& \exists b^{\prime} \in B^{\prime} \backslash B \text { sit } B \cup b^{\prime} \backslash b \in B \\
& <\text { and } B^{\prime} \cup b \backslash b^{\prime} \in B
\end{aligned}
$$

\leftarrow symmetric exchange property
apriori stronger
(but actually equivalent)

$$
\text { rkM } \stackrel{\text { def }}{=}|B| \quad \forall B \in B
$$

Eg: Let k be a field.
A $m \times n$ matrix over \mathbb{K}.
E columns of A.
B maximum linearly independent sets of columns of A.
such a matroid is called representable over k
Recall the example of Fano matroid

$$
A=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right] / \mathbb{F}_{2}
$$

$M[A]$ depends only on the row space of A.

$$
M[A]=M[\operatorname{row}(A)]
$$

determined by r-dim'l subspace $W \subseteq \mathbb{K}^{n}$ where $n=|E|$ ie. by a pt of $\operatorname{Gr}(r, n)$

Plücker coordinates $\Delta_{I}=\operatorname{det} A_{I}$ where $I \in\binom{E}{r}$
where A is $r \times n$

A
representation over $k k$ of matroid over n elements of rank
also in

Theorem (Folklore)
A point $\Delta=\left(\Delta_{I}\right)$
\leftarrow Orthogonal matroids
where $N=\binom{n}{r}$

$$
I \in\binom{E}{r}
$$

comes from a subspace W iff $\operatorname{supp}\left(\Delta_{\Sigma}\right)=\left\{\begin{array}{ll}\text { basis of } \\ \text { a matroid }\end{array}\right\}$ and $\Delta \Delta$ satisfies the 3 -term Plücker relations

$$
X_{J_{a b}} X_{J_{c d}}-X_{J_{a c}} X_{J_{b d}}+X_{J_{a d}} X_{J_{b c}}=0
$$

3-term Plücker relations generate all Plücker relations.

A representation of M over \mathbb{k} is a point $\Delta \in \operatorname{Gr}(r, n)(\mathbb{k})$ $\subseteq \mathbb{P}^{N-1}(k)$

$$
\text { st. } \operatorname{supp}(\Delta \Delta)=M \text {. }
$$

Two representations $\quad \Delta, \Delta^{\prime}$ are equivalent if $\ni c: E \rightarrow k^{x}$

$$
\text { st. } c: E \xrightarrow{c} \mathbb{k}^{x} \text { st. }
$$

$$
\forall r \in\left(\begin{array}{l}
E_{r}
\end{array}\right), \quad \Delta_{\Gamma}=\mathbb{\Delta}_{\Gamma}^{\prime} \prod_{i \in I} c(i)
$$

so Δ and Δ^{\prime} are in the same orbit of $\quad T=\left(\left[k^{x}\right)^{N} / k^{x}\right.$ on $\operatorname{Gr}(r, n)(\mathbb{k})$

We are interested in equivalence classes of representations over lo

Functor:

Theorem: \quad Pastures \longrightarrow Sets

$$
\mathbb{K} \longmapsto \text { equivalence }
$$

classes of representations
is representable by
a pasture called the foundation of the matroid M.

For partial Fields: Similar theory: Universal Partial Field Pendavingh - van Zwam
matroids exist s.t. it is not representable over amy partial field.
but foundation always exist. matroids always representable over some pasture
how do we compute it?
Foundation inner Tulte of a mabrid has a multiplicatwie group: group.
does it depend on the field?
We don't require the additive structure in \mathbb{K} comes from a binary operation.
Eg: \mathbb{K} : Krasner hyperfield
$\mathbb{K}=\{0,1\}$ with usual multiplication

$$
\begin{array}{r}
0+0=0 \\
0+1=1 \\
1+1=0 \\
1+1=1
\end{array} \quad \begin{aligned}
0+x=0 \\
\text { rime } \\
\text { in al } \\
\text { in pa }
\end{aligned}
$$

Eg: $\mathbb{F}_{1} \pm$ regular partial field
$\mathbb{F}_{1} \pm=\{0,1,-1\} \quad$ with usual multiplication

$$
\begin{aligned}
& 0+x=x \\
& 1+(-1)=0
\end{aligned}
$$

Pasture: A multiplicatively written monoid F with 0,1 s.t $\quad F^{x}=F \backslash\{0\}$ is an abelian $g p$

$$
0 \cdot x=0 \quad \forall x
$$

together with an involution $x \longmapsto-x$ and a set

$$
\text { null }, N_{F} \subseteq \operatorname{Sym}^{3}(F) \text {. }
$$ Plücker.

$$
\left\{\begin{array}{c}
\text { secret } \\
(x, y, z) \in N_{F} \\
x+y+z=0
\end{array}\right.
$$

$$
\begin{aligned}
& 2 x+y+z=0 \\
& \text { if } x+y=-z
\end{aligned}
$$

(1) $(0,0,0) \in N_{F}$ and $(1,0,0) \notin N_{F}$
(2) $c \in F^{x}$,

$$
(x, y, z) \in N_{F} \quad \text { iff } \quad(c x, c y, c z) \in N_{F}
$$

(3) $(0, x, y) \in N_{F}$ if $x=-y$

Eg: (1) Every field is a pasture.

$$
(x, y, z) \in N_{F} \quad \text { iff } \quad x+y+z=0
$$

(2) Hyperfelds are pastures \mathbb{K} field, $G \leqslant \mathbb{K}^{+}$ the multiplicative

$$
F=K / G \text { is a pasture }
$$ group

$$
\begin{aligned}
& (x, y, z) \in N_{F} \quad \text { iff } \quad \exists \quad a, b, c \in G \\
& \quad a x+b y+c z=0 \text { in } \mathbb{K} .
\end{aligned}
$$

Eg: Krasner hyperfield

$$
\mathbb{K}=\mathbb{R} / \mathbb{R}^{x}=\{0,1\}
$$

Eg: $\quad S=\mathbb{R} \mathbb{R}_{>0} \quad$ but $1+1+(-1)=0$
Partial fields
Let R be a commutative ring. $-1 \in G \leqslant R^{x}$
let $F \stackrel{\text { be }}{=} G \cup\{0\}$ then F is a pasture

$$
x+y+z=0 \text { in } F \text { iff }=0 \text { in } R
$$

Eg: $\mathbb{F}_{1}^{ \pm}$which can be obtained from $\{1,-1\} \leq \mathbb{Z}$.
Category: Pastures \& morphism $\phi: F_{1} \longrightarrow F_{2}$ multi map preserving $0,1,-1$ and ${ }^{2} N_{F_{1}} \rightarrow N_{F_{2}}$
This category has \lim, colim, initial $=\mathbb{F}_{1}^{ \pm}$, final $=\mathbb{K}$ prod, tensor prod

\uparrow	\uparrow
mel	
mel	all relation.

Def: A representation of M over a pasture F is a pt $\Delta \in \mathbb{P}^{N-1}(\mathbb{F})$
st $\operatorname{supp}(\mathbb{\Delta})=M$ and Δ satisfies the 3-term relation
Q: How to deal with associativity. of addition.

The: (B-Lorscheid) The functor Pastures \longrightarrow Sets

B representable.

$$
F \longmapsto F F \text {-rep of } M\} / \sim
$$

$$
\left\{\begin{array}{c}
\text { rep. of } M \\
\text { over } \underset{\text { pasture }}{F}
\end{array}\right\} / \sim=\prod_{\text {Pam es }}^{\operatorname{Hom}}\left(F_{M}, F\right)
$$

original proof

Tate's theorem: M is regular of M is rep oven regular of M is rep over f every field.
mattoid
theorem
representable
over \mathbb{Z}

$$
\begin{aligned}
& G F(2) \& S F(3) \\
& F_{2} \xlongequal{\operatorname{den}} \operatorname{CFF}(2) \\
& \mathbb{F}_{3} \stackrel{\operatorname{den}}{=} G F(3)
\end{aligned}
$$

Observation
Proof: 1. M is regular iff M is representable over $F_{1}^{ \pm}$regular partial field in pastures
2. $\mathbb{F}_{2} \times \mathbb{F}_{3} \cong \mathbb{F}_{1}^{ \pm}$as pastures.
3. $\operatorname{Hom}\left(\mathbb{F}_{M}, \mathbb{F}_{2} \times \mathbb{F}_{3}\right)=\operatorname{Hom}\left(\mathbb{F}_{M}, \mathbb{F}_{2}\right) \times \operatorname{Hom}\left(\mathbb{F}_{M} \times \mathbb{F}_{3}\right)$
4. $\mathbb{F}_{1}^{ \pm}$initial in pastures. by Kalmar
related to a the of Tutte
$\mathbb{T h}_{m}: M$ is binary (representable over \mathbb{F}_{2})

$$
\text { iff } \mathbb{F}_{M} \cong \mathbb{F}_{1}^{ \pm} \text {or } \mathbb{F}_{2}
$$

The: (B-Lorscheid) M is temary (representable over \mathbb{E}_{3})
iff $F_{m} \cong P_{1} \otimes \ldots \otimes P_{k}$ where $P_{i} \in\left\{U, D, H, \mathbb{F}_{3}\right\}$
Notation: if R is commutative ring

$$
P(R)=P F(G) \approx G=R^{x} \leqslant R
$$

and consider R / G.

1. $P(\mathbb{Z})=\mathbb{F}_{1}^{ \pm}$ with $x+y+z=0$
2. $P\left(\mathbb{Z}\left[\frac{1}{2}\right]\right)=\mathbb{D}$
3. $P\left(\mathbb{Z}\left[\zeta_{6}\right]\right)=H$
$4 \quad P\left(\mathbb{T}\left[T, \frac{1}{T}, \frac{1}{1-T}\right]\right)=\mathbb{U}$
cross ratio in projective geometries

Study of cross ratios
in matroid theory
4 pts on a projective $\longleftrightarrow U(2,4)$ line have a cross ratio.

Can give a presentation for F_{M} in terms of cross ratio

One uses Tutte's homotopy Theorem.
Application: Suppose we take \mathbb{F}_{3} \& $S=\mathbb{R} / \mathbb{R}_{>0}$ repp. of M over S iff \exists orientation of M.

Theorem (Lee-Scobie)
M is repible over \mathbb{F}_{3} \& S if M repible over D.
Proof: (Sketch)

$$
\mathbb{D} \xrightarrow{ } \mathbb{F}_{3} \times S
$$

deg 2 homomorphism

$$
\begin{gathered}
\mathbb{D} \xrightarrow{\text { hoo }} \mathbb{F}_{3} \times S \\
F_{M}=\otimes P_{i}
\end{gathered}
$$

$\mathbb{D}, \mathbb{U}, \mathbb{H}, \mathbb{F}_{3}$
coreflections?

Q: is there a converse question.
symmetric exchange \Longleftrightarrow Plücker relation property over IK Krasner field.

Chustiem If 1 hand you a pasture whether it is a foundation Hanse

Fields don't generally have tensor product

Manic Vargas
Are there geometrical properties of the mattoid polytope coming from the representability of the functor choractenzing M.

Chris Eur \rightarrow Hodge theory
Chem class

Tate group.

$$
\begin{aligned}
& F_{M}^{X}=\underset{\text { inner }}{\text { group }} \text { Tithe } \\
& F_{M} \longrightarrow \\
& \mathbb{F}_{2} \times \mathbb{F}
\end{aligned}
$$

