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PhD at Queens, 1984-87 with Paulo Ribenboim

Fermat’s Last Theorem (FLT):

No integer solutions to

xn + yn = zn with n > 2 and xyz 6= 0.

• Proved by (Sir) Andrew Wiles in 1994
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AG 1985: FLT is true for 100% of exponents n.
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Faltings’ 1983 Theorem – proof of Mordell’s conjecture

Any curve, defined in Q, of genus > 1, contains only finitely many
rational points. This includes un + vn = 1 when n > 3
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FLT is true for 100% of exponents n

Corollary to Faltings’ Theorem

For each prime p > 3 there exists a bound Bp such that if
xp + yp = zp with x , y , z > 0 then z ≤ Bp.

Suppose an + bn = cn where n = mp with p prime

Then (am)p + (bm)p = (cm)p, so 2m ≤ cm = z ≤ Bp,

Therefore if prime p > 3 divides n then n = pm ≤ bp := p log2 Bp.

“Easy” sieve result: A proportion 1− εy of the integers have a
prime factor in [5, y ], where εy → 0 as y →∞.

This implies FLT is true for 100% of exponents n.
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The First Case of FLT (FLTI): xp + y p = zp where p - xyz

Wieferich (1909): FLTI false implies 2p−1 ≡ 1 (mod p2).
Holds only for p = 1093 and 3511 of all primes p < 3× 1018

Thesis work (1985-6): Found a way to show
“FLTI false implies qp−1 ≡ 1 (mod p2)” for arbitrary q,

depending on linear algebra / large (symbolic) matrices calculation.
Too large for technology of that time!

Invited to Maple (Waterloo) to help design their ”large linear
algebra” package.

AG-Monagan (1988)

The first case of Fermat’s last theorem is true for all prime
exponents up to 714, 591, 416, 091, 389.

We showed: FLTI false implies qp−1 ≡ 1 (mod p2) for all q ≤ 89.
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FLT and ABC
How to generalize xn + yn = zn ? Part of a family of curves?

Or a special example of

a + b = c with a, b, c ∈ Z≥1, (a, b, c) = 1

where a, b, c are divisible by higher powers of primes.
Perhaps we can bound a, b, c in terms of the distinct prime factors?

a, b, c bound by a function of
∏
p|abc

p ?

Easy to prove the analogy for polynomials a, b, c

The abc-conjecture (Masser-Oesterlé, 1985)

For each fixed ε > 0 there exists a constant κε such that if
a + b = c with a, b, c > 0 and (a, b) = 1

c ≤ κε
( ∏

p|abc

p

)1+ε

.
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For each fixed ε > 0 there exists a constant κε such that if
a + b = c with a, b, c > 0 and (a, b) = 1

c ≤ κε
( ∏

p|abc

p

)1+ε

.



FLT and ABC

The abc-conjecture (Masser-Oesterlé, 1985)

For each fixed ε > 0 there exists a constant κε such that if

a + b = c with a, b, c ≥ 1 and (a, b) = 1,

then c ≤ κε
( ∏

p|abc

p

)1+ε

.

Now if xn + yn = zn then let a = xn, b = yn, c = zn.

We have∏
p|abc

p =
∏
p|xyz

p ≤ xyz = (abc)1/n ≤ c3/n

So for n ≥ 4 the abc-conjecture with ε = 1/7 and κ = κ1/7 implies

c ≤ κ
(
c3/n

)8/7

= κc6/7

so c ≤ κ7 =⇒ Bounded number of FLT solns with n ≥ 4.
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For each fixed ε > 0 there exists a constant κε such that if

a + b = c with a, b, c ≥ 1 and (a, b) = 1,

then c ≤ κε
( ∏

p|abc

p

)1+ε

.

Now if xn + yn = zn then let a = xn, b = yn, c = zn.We have∏
p|abc

p =
∏
p|xyz

p ≤ xyz = (abc)1/n ≤ c3/n

So for n ≥ 4 the abc-conjecture with ε = 1/7 and κ = κ1/7 implies

c ≤ κ
(
c3/n

)8/7

= κc6/7

so c ≤ κ7 =⇒ Bounded number of FLT solns with n ≥ 4.



FLT and ABC

The abc-conjecture (Masser-Oesterlé, 1985)
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Applicability of ABC

The abc-conjecture (Masser-Oesterlé, 1985)

For each fixed ε > 0 there exists a constant κε such that if
a + b = c with a, b, c > 0 and (a, b) = 1

a, b, c ≤ κε
( ∏

p|abc

p

)1+ε

.

I Fermat 1637: xn + yn = zn with (x , y) = 1 and n > 3;

I Catalan 1844: xp − yq = 1 with (x , y) = 1 and p, q > 1;

I xp + yq = zn with (x , y) = 1 and 1
p + 1

q + 1
n < 1;

I F (x , y) = zn with (x , y) = 1 and 2/d + 1/n < 1 where
F (·, ·) is a binary form of degree d .
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Another generalization: Sophie Germain and me

Sophie Germain (≈ 1805)

For any even integer k with 3 - k , if p is a sufficiently large prime
and q = kp + 1 is also prime then FLTI is true for exponent p.

Idea: If q - x then (xp)k = xq−1 ≡ 1 (mod q) and so xp is a kth
root of unity mod q. Thus xp + yp = zp, q - xyz yields
ζ1 + ζ2 + ζ3 ≡ 0 (mod q), each ζj is a kth root of unity mod q.
So q divides NormQ(ζk )/Q(ζ1 + ζ2 + ζ3), which is non-zero if 3 - k .

Generalization: Let F (x1, . . . , xm) ∈ Z[x1, . . . , xm]. Are there
integer solutions `1, . . . , `m to

F (`n1, . . . , `
n
m) = 0? (1)

AG: If there are no solutions to F (ζ1, . . . , ζm) = 0 in roots of unity,
then ∃ integer solns to (1) for very “few” exponents n.
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Gauss’s letter to Sophie Germain, 1807

“A taste for the abstract sciences in general and above all the
mysteries of numbers is excessively rare. One is not astonished by
it for the enchanting charms of this sublime science are revealed
only to those who have the courage to go deeply into it.
However, when a person of the sex which, according to our
customs and prejudices, must encounter infinitely more difficulties
than men to familiarize herself with these thorny researches,
succeeds nevertheless in surmounting these obstacles and
penetrating the most obscure parts of them, then without doubt
she must have the noblest courage, quite extraordinary talents and
superior genius. Indeed nothing could prove to me in so flattering
and unequivocal manner that the attractions of this science, which
have enriched my life with so many joys, are not illusory, than the
attention with which you have honored it.”



Postdoc at Toronto, 1987-89 with John Friedlander

John Friedlander

Kumar Murty Cem Yildirim

If (a, q) = 1 then

π(x ; q, a) = #{ primes p ≤ x : p ≡ a (mod q)} ∼ π(x)

φ(q)

where π(x) = #{primes p ≤ x} and
φ(q) = #{a ∈ [1, q] : (a, q) = 1}.

(Prime Number Theorem for Arithmetic Progressions – PNT4APs)
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Prime numbers

PNT4APs: π(x ; q, a) ∼ π(x)

φ(q)
(2)

holds for x ≥ eq
ε
.

And for x ≥ q2(log q)2+ε assuming GRH.

Bombieri-Vinogradov Theorem (≈ 1965)

(2) holds for “almost all” x ≥ q2(log q)1+ε, for all (a, q) = 1.

Exponent “2” a barrier to progress. Can exponent “1” hold always?

Friedlander-AG, 1989 – disproof of Elliott-Halberstam conj

(2) does not hold for “almost all” q with x = q(log q)A, for some
(a, q) = 1.

Elliott-Halberstam conj, II: (2) holds for “almost all” q, for all
x ≥ q1+ε, for all (a, q) = 1.
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Postdoc at IAS Princeton, 1989-91 with Enrico Bombieri

Enrico Bombieri

Atle Selberg

Riemann Hypotheses (GRH), 1859+

I L(s, χ) =
∑

n≥1
χ(n)
ns for Re(s) > 1, with χ(·) a character.

I Analytically continue it to all of C (except perhaps at s = 1).

I Guess: If L(ρ, χ) = 0 with 0 < Re(ρ) < 1 then Re(ρ) = 1
2 .
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A more moderate ambition than the Riemann Hypothesis

Let χ(·) be a Dirichlet character mod q. Define for Re(s) > 1

L(s, χ) =
∑
n≥1

χ(n)

ns

and analytically continue to all of C.

Suppose L(ρ, χ) = 0 with ρ = β + iγ where 0 < β < 1 then

GRH: β = 1
2 — Too hard!

Bombieri-Vinogradov Theorem: β > 1
2 + ε is rare.

Strong PNT4APs (Siegel): If χ is real and γ = 0 then we need to
show that β ≤ 1− 1

log q

Life goal – Prove there are no “Siegel zeros”!

(L(β, χ) 6= 0 whenever β > 1− 1
log q for real characters χ)
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Proving there are no Siegel zeros

AG-Stark, 2000

If the “uniform” abc-conjecture holds in “Hilbert class fields” then
there are no Siegel zeros for L(s, (D· )) where D < 0.

That is, if L(β, (D· )) = 0 with β ∈ R and D < 0 then

β < 1− 1

log |D|
.

Mochizuki-Fesenko-Hoshi-Minamide-Porowski, Nov 2020

A modification of this version of abc
can be proved unconditionally!

“Proof” gives bounds on solns
to Fermat equation in number fields.
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At a meeting at the Isaac Newton Institute, June 23,1993

Corollary: up + vp + wp = 0 (p > 2) with u, v ,w ∈ Q =⇒ uvw = 0.
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Back to xp + y q = z r

Darmon-AG, 1995

For fixed integers p, q, r with 1
p + 1

q + 1
r < 1 there are only finitely

many integer solutions to

xp + yq = z r with (x , y) = 1.

A much more subtle Corollary to Faltings’ Theorem.

Techniques also apply to

zm = F (x , y) with (x , y) = 1

The Fermat-Catalan conjecture

There are only finitely many integer solutions to

xp + yq = z r with (x , y) = 1 and
1

p
+

1

q
+

1

r
< 1.

Perhaps none with p, q, r ≥ 3?
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Anitha Srinivasan

Ken Ono Ernie Croot

Ernie Croot 2003 – The Erdős-Graham coloring conjecture

There exists a constant b > 0 such that if we r -color the integers
then there exists a monochromatic subset S of [2, br ] such that∑

n∈S

1

n
= 1.
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Negative mean values of multiplicative functions

If n = p1 · · · pk then let f (n) = f (p1) · · · f (pk).
Assume each f (n) = −1 or 1.
They can all be 1, but they cannot all be −1 since if
f (2) = f (3) = −1 then f (6) = f (2)f (3) = 1.
What is the most −1’s one can get up to x?

K Soundararajan

AG-Soundararajan, 2001

The number of −1’s is always ≤ {c + o(1)}x where

c = log(1 +
√
e)− 2

∫ √e
1

log t

t + 1
dt = .828499 . . .

Attained if f (p) = 1 for p < x1/(1+
√
e) and f (p) = −1 otherwise.
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Prime patterns and pretentiousness

p, p + 2

p, p + 4 or p + 6 or . . .

p, 2p + 1

2p + 1, 4p + 1 and 6p + 5

p, p + d , p + 2d , . . . , p + kd

Any pattern except if obvious reason why not, like n, n + 1.
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The GPY story, I

Let p1 = 2, p2 = 3, . . . be the sequence of primes.
Wts, Inf many n such that pn+1 − pn = 2.

Averagepn≤xpn+1 − pn ≈ log x ,
Up to 2000, best result known < 1

4 log x .

Goldston-Yildirim 2003 – novel approach (new sieve wts) claiming

lim inf
pn≤x

pn+1 − pn
log pn

= 0.

Proof based on certain believable lemmas with sketched proofs

AG-Soundararajan: Assuming these lemmas, inf many n with
pn+1 − pn ≤ 16.

Found the mistake in one of those lemmas!:
High dimensional geometry is not like low-dimensional geometry.
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The GPY story, II

In 2004, Ben Green (postdoc at UBC) came to U de M for a visit.
Working on his first project with Terry Tao on prime patterns

p, p + d , p + 2d , p + 3d .

Stuck on one issue, which he explained to me ... Sieve weights
After some experimenting, I found that Selberg weights might
work, and then ... the sieve weights of Goldston and Yildirim
provided all the technical details Green and Tao needed.
Three days later ...

Ben Green and Terry Tao, 2005

There are infinitely many k-term arithmetic progressions of primes.



The GPY story, II

In 2004, Ben Green (postdoc at UBC) came to U de M for a visit.
Working on his first project with Terry Tao on prime patterns

p, p + d , p + 2d , p + 3d .

Stuck on one issue, which he explained to me ... Sieve weights
After some experimenting, I found that Selberg weights might
work, and then ...

the sieve weights of Goldston and Yildirim
provided all the technical details Green and Tao needed.
Three days later ...

Ben Green and Terry Tao, 2005

There are infinitely many k-term arithmetic progressions of primes.



The GPY story, II

In 2004, Ben Green (postdoc at UBC) came to U de M for a visit.
Working on his first project with Terry Tao on prime patterns

p, p + d , p + 2d , p + 3d .

Stuck on one issue, which he explained to me ... Sieve weights
After some experimenting, I found that Selberg weights might
work, and then ... the sieve weights of Goldston and Yildirim
provided all the technical details Green and Tao needed.

Three days later ...

Ben Green and Terry Tao, 2005

There are infinitely many k-term arithmetic progressions of primes.



The GPY story, II

In 2004, Ben Green (postdoc at UBC) came to U de M for a visit.
Working on his first project with Terry Tao on prime patterns

p, p + d , p + 2d , p + 3d .

Stuck on one issue, which he explained to me ... Sieve weights
After some experimenting, I found that Selberg weights might
work, and then ... the sieve weights of Goldston and Yildirim
provided all the technical details Green and Tao needed.
Three days later ...

Ben Green and Terry Tao, 2005

There are infinitely many k-term arithmetic progressions of primes.



The GPY story, III

Dan Goldston, Janos Pintz and Cem Yildirim, 2009

There are infinitely many primes pn with

pn+1 − pn ≤
√

log pn.

Proof uses Bombieri-Vinogradov Thm (with x ≥ q2+ε)

Yitang Zhang, 2014

There are infinitely many primes pn with

pn+1 − pn ≤ 7× 107.

Proof uses GPY sieve weights but a version of the
Bombieri-Vinogradov Thm (with x ≥ q5/3) Very very tough stuff
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The GPY story, IV

James Maynard
(CRM-ISM postdoc 2013-14)

Perhaps we can modify the GPY sieve
to obtain Zhang’s result, and only use

Bombieri-Vinogradov? It would be
simpler.

James Maynard, 2015

There are infinitely many primes pn with

pn+1 − pn ≤ 600.

Also infinitely many primes pn with

pn+m − pn ≤ m3e3m.

Very similar results proved at the same time by Terry Tao.
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The GPY story, V

And then towards the end of James’s year in Montreal:

We believe if x is suff large then

max
pn≤x

pn+1 − pn ≥ (log x)2.

Erdős-Rankin (1930s-60s) proved

max
pn≤x

pn+1 − pn ≥ c log x
log log x log log log log x

(log log log x)2

Erdős: $ 10,000 to prove that one can let c →∞ as x →∞.

James Maynard, 2016 + Ford, Green, Konyagn & Tao

max
pn≤x
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log log x log log log log x

log log log x
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Erdős-Rankin (1930s-60s) proved

max
pn≤x

pn+1 − pn ≥ c log x
log log x log log log log x

(log log log x)2
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Erdős: $ 10,000 to prove that one can let c →∞ as x →∞.

James Maynard, 2016 + Ford, Green, Konyagn & Tao

max
pn≤x

pn+1 − pn ≥ c log x
log log x log log log log x

log log log x



The GPY story, V

And then towards the end of James’s year in Montreal:
We believe if x is suff large then

max
pn≤x

pn+1 − pn ≥ (log x)2.
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Pretentious I

How many primes there are up to x is an elementary question –
why does it involve zeros of the analytic continuation of ζ(s)?

∃ “ad hoc” proofs of the PNT which do not use zeros, but no
coherent theory.

Let Ω(n) = #{ prime powers pe divides n}.
PNT true ⇐⇒ Ω(n) is even as often as it is odd.

Define
λ(n) = (−1)Ω(n) a multiplicative function.

PNT ⇐⇒ 1
x

∑
n≤x λ(n)→ 0 as x →∞.

RH ⇐⇒
∣∣∑

n≤x λ(n)
∣∣ < x1/2+ε if x suff large.

Can we prove PNT like this without zeros?

Use properties of multiplicative functions!
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Pretentious II: Averages of a multiplicative function

A multiplicative function: f (mn) = f (m)f (n).
If each |f (n)| = 1, when does average → 0 ?

The average does not → 0, for f (n) = 1, or f (n) = nit :

1

N

N∑
n=1

nit ≈ 1

N

∫ N

u=0
uitdu =

1

N
· N

1+it

1 + it
=

N it

1 + it

Size → 1
|1+it| ; rotates round the circle of this radius as N increases!

Other examples: Functions f (n) that are “close” to nit .

Gábor Halász (1968)

The only multiplicative function with “large” mean values are
those that are “close” to nit for some real t.
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Pretentious III – Applying Halász’s Theorem

Gábor Halász (1968)

The only multiplicative function with “large” mean values are
those that are “close” to nit for some real t.

Remember: PNT ⇐⇒ 1
x

∑
n≤x λ(n)→ 0 as x →∞.

If PNT does not hold then the mean value of λ(n) is “large” and
so λ(n) is “close” to nit for some real t.

But then 1 = λ(n)2 is “close” to n2it , and so t = 0.
This implies λ(n) is “close” to nit = 1; “obviously” impossible:

If λ(n) = (−1)Ω(n) = 1 for most n, then λ(2n) = −1, a
contradiction!
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Linnik’s Theorem (1944)

Yuri Linnik: There exists a constant
L such that any arithmetic progression

a, a + d , a + 2d , . . .

with gcd(a, d) = 1 contains
a prime p = a + nd with p ≤ dL.

Bombieri’s 1974 Fields’ medal:
Partly for improvement and development of Linnik’s proof by
developing the “Large sieve”.

AG-Soundararajan (2009)

20 pg pf of Linnik’s Theorem using the “pretentious large sieve”.

“Repulsion principles”: Zeros of polynomials, and of L-functions
cannot be close together.
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Pretentious IV: AG-Soundararajan: A pretentious dream

From 1859 to 2010 the only coherent approach to analytic number
theory came through Riemann’s zeros.

Could we possibly avoid them?

Can we prove all the basic theorems of analytic number theory,
with no zeros?!

Would a new coherent approach be useful?

Soundararajan (2010) – pretentious subconvexity for
L-function values

Quantum unique ergodicity for SL2(Z) \H.
(Completed Lindenstrauss’s program – 2010 Fields’ medal)

AG-Sound (2011): First draft of a “book” with the new theory
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with no zeros?!

Would a new coherent approach be useful?
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Pretentious shortfalls, # 1

AG-Sound (2011): Theory for all mult functions f with |f (n)| ≤ 1.
Quantitative problem: Unable to prove strong results for specific f ,

like error term in PNT.

Dimitris Koukoulopoulos
(CRM-ISM postdoc 2010-12)

Determined for which f one can prove
sharper results.
Recovered all classical quantitativity.
Koukoulopoulos converse Theorem

Koukoulopoulos, 2013 – Strongest known unconditional PNT

∣∣∣∣π(x)−
∫ x

2

dt

log t

∣∣∣∣ ≤ c x exp

(
− c ′

(log x)3/5

(log log x)1/5

)
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Pretentious shortfalls, # 2

AG-Sound (2011): Hard to motivate pf of Halász’s key Thm.

Adam Harper
(CRM-ISM postdoc 2012-13)

Different, more motivated proof. Ties in
better with other modern theoretical
developments.
Compelled us to rewrite our book from
scratch!

AG-Harper-Sound, 2019

Explains new theory in 35 pages, including the pretentious large
sieve, and proofs of Linnik’s Theorem and Hoheisel’s Theorem.
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Pretentious V: The Erdos discrepancy problem, 2015

Paul Erdős and Terry Tao

Let a1, a2, . . . be a sequence of 1’s
and −1’s. The sums

ad + a2d + . . .+ aNd

get arbitrarily big (any d , any N).

Tao reduces this, via Fourier
analysis, to

For any multiplicative f with each |f (n)| = 1 prove that

f (N + 1) + f (N + 2) + . . .+ f (N + m)

get arbitrarily large “on average”.
Using Matomäki-Radziwi l l: If such sums stay small then

f must be nit-pretentious!
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Using Matomäki-Radziwi l l: If such sums stay small then
f must be nit-pretentious!



Pretentious V: The Erdos discrepancy problem, 2015
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Pretentious VI: Tao’s question

If f is nit-pretentious, can we get good estimates for

f (N + 1) + f (N + 2) + . . .+ f (N + m) ?

Oleksiy Klurman
(U de M PhD student 2014-17)

Uses old-fashioned techniques of
Delange from the book to resolve
Tao’s question

The subject of multiplicative functions is “out of control”. New
fantastic preprints every month or two.
The main work has been on their correlations, due to Klurman,
Mangerel, Matomäki, Radziwi l l, Shao, Tao, Teräväinen, Ziegler, ...
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Noblest courage, extraordinary talents and superior genius




