Some time, some space, and some equations: Machine-learning of model error in dynamical systems

Matthew E. Levine ${ }^{1} \quad$ Andrew M. Stuart ${ }^{1}$
${ }^{1}$ Department of Computing and Mathematical Sciences California Institute of Technology

Third Symposium on Machine Learning and Dynamical Systems
Fields Institute, University of Toronto
September 29, 2022

Caltech

Introduction

- Machine learning works (with enough data)!

Caltech

Introduction

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!

Caltech

Introduction

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!
- In most open prediction problems, we have SOME data and SOME prior knowledge.

Introduction

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!
- In most open prediction problems, we have SOME data and SOME prior knowledge.
- The next generation of high-performing prediction models will hybridize physics-based and data-driven modeling techniques
- How can we help lay the groundwork for this future?

Our problem

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y}=\frac{1}{\varepsilon} g^{\dagger}(x, y)
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

Our problem

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y} & =\frac{1}{\varepsilon} g^{\dagger}(x, y)
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y}=\frac{1}{\varepsilon} g^{\dagger}(x, y) \tag{1}
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
- Partial, noisy observations (e.g. observe x, but not y)

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y}=\frac{1}{\varepsilon} g^{\dagger}(x, y) \tag{1}
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of $y, g^{\dagger}, \varepsilon, \operatorname{nor} \operatorname{dim}(y)$

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y}=\frac{1}{\varepsilon} g^{\dagger}(x, y) \tag{1}
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of $y, g^{\dagger}, \varepsilon$, nor $\operatorname{dim}(y)$
- Observations may be irregularly spaced and noisy

$$
\begin{array}{ll}
\text { True system (ODE): } & \dot{x}=f^{\dagger}(x, y) \\
\dot{y}=\frac{1}{\varepsilon} g^{\dagger}(x, y) \tag{1}
\end{array}
$$

- Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).
- Goal: Given noisy observations of x, learn predictive model for future x dynamics.
- Methodological constraints:
- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of $y, g^{\dagger}, \varepsilon$, nor $\operatorname{dim}(y)$
- Observations may be irregularly spaced and noisy
- Ability to leverage partial knowledge of f^{\dagger}

Big picture: Learning dynamics using w/ partial observations $\left\{x_{k}\right\}_{k=0}^{K}$

	Introduce delays	
Discrete-time		
Continuous-time		

Big picture: Learning dynamics using w/ partial observations $\left\{x_{k}\right\}_{k=0}^{K}$

	Introduce delays	
Discrete-time	$x_{k+1}=\Psi\left(x_{k}, x_{k-1}, \ldots, x_{k-k}\right), \quad \kappa \in \mathbb{Z}^{+}$ Takens - $\Psi \in\{N N s$, GPs, Polynomials, RFs,... $\}$	
Continuous-time		

Big picture: Learning dynamics using w/ partial observations $\left\{x_{k}\right\}_{k=0}^{K}$

	Introduce delays	Introduce augmented states
Discrete-time	$x_{k+1}=\Psi\left(x_{k}, x_{k-1}, \ldots, x_{k-k}\right), \quad \kappa \in \mathbb{Z}^{+}$ Takens - $\Psi \in\{N N s$, GPs, Polynomials, RFs,...\}	$\begin{aligned} & x_{k+1}=\Psi_{1}\left(x_{k}, r_{k}\right) \\ & r_{k+1}=\Psi_{2}\left(x_{k}, r_{k}\right), \quad r_{k} \in \mathbb{R}^{d} \end{aligned}$ Tries to represent the missing states! - RNNs / Reservoir Computers - $\Psi_{1}, \Psi_{2} \in\{N N s, G P s$, Polynomials, RFs, ...\}
Continuous-time		

Big picture: Learning dynamics using w/ partial observations $\left\{x_{k}\right\}_{k=0}^{K}$

	Introduce delays	Introduce augmented states
Discrete-time	$x_{k+1}=\Psi\left(x_{k}, x_{k-1}, \ldots, x_{k-k}\right), \quad \kappa \in \mathbb{Z}^{+}$ Takens - $\Psi \in\{N N s$, GPs, Polynomials, RFs,...\}	$\begin{aligned} & x_{k+1}=\Psi_{1}\left(x_{k}, r_{k}\right) \\ & r_{k+1}=\Psi_{2}\left(x_{k}, r_{k}\right), \quad r_{k} \in \mathbb{R}^{d} \end{aligned}$ Tries to represent the missing states! - RNNs / Reservoir Computers - $\Psi_{1}, \Psi_{2} \in\{N N s, G P s$, Polynomials, RFs, ...\}
Continuous-time	$\dot{x}=f\left(\{x(t-s)\}_{s=\tau}^{t}\right)$ Takens / Mori-Zwanzig - $f \in\{$ NNs, GPs, Polynomials, RFs,... $\}$	

Big picture: Learning dynamics using w/ partial observations $\left\{x_{k}\right\}_{k=0}^{K}$

	Introduce delays	Introduce augmented states
Discrete-time	$x_{k+1}=\Psi\left(x_{k}, x_{k-1}, \ldots, x_{k-k}\right), \quad \kappa \in \mathbb{Z}^{+}$ Takens - $\Psi \in\{N N s$, GPs, Polynomials, RFs,...\}	$\begin{aligned} & x_{k+1}=\Psi_{1}\left(x_{k}, r_{k}\right) \\ & r_{k+1}=\Psi_{2}\left(x_{k}, r_{k}\right), \quad r_{k} \in \mathbb{R}^{d} \end{aligned}$ Tries to represent the missing states! - RNNs / Reservoir Computers - $\Psi_{1}, \Psi_{2} \in\{N N s$, GPs, Polynomials, RFs, $\ldots\}$
Continuous-time	$\dot{x}=f\left(\{x(t-s)\}_{s=\tau}^{t}\right)$ Takens / Mori-Zwanzig - $f \in\{$ NNs, GPs, Polynomials, RFs,...\}	$\begin{aligned} \dot{x} & =f_{1}(x, r) \\ \dot{r} & =f_{2}(x, r), \quad r \in \mathbb{R}^{d} \end{aligned}$ Tries to represent the missing states! - "Continuous-time" RNNs - "Continuous-time" Reservoir Computers - $f_{1}, f_{2} \in\{N N s$, GPs, Polynomials, RFs,...\}

Big picture: Learning dynamics using w/ partial observations $\left\{x_{k}\right\}_{k=0}^{K}$

	Introduce delays	Introduce augmented states
Discrete-time	$x_{k+1}=\Psi\left(x_{k}, x_{k-1}, \ldots, x_{k-k}\right), \quad \kappa \in \mathbb{Z}^{+}$ Takens - $\Psi \in\{N N s$, GPs, Polynomials, RFs,...\}	$\begin{aligned} & x_{k+1}=\Psi_{1}\left(x_{k}, r_{k}\right) \\ & r_{k+1}=\Psi_{2}\left(x_{k}, r_{k}\right), \quad r_{k} \in \mathbb{R}^{d} \end{aligned}$ Tries to represent the missing states! - RNNs / Reservoir Computers - $\Psi_{1}, \Psi_{2} \in\{\mathrm{NNs}$, GPs, Polynomials, RFs,...\}
Continuous-time	$\dot{x}=f\left(\{x(t-s)\}_{s=\tau}^{t}\right)$ Takens / Mori-Zwanzig - $f \in\{$ NNs, GPs, Polynomials, RFs,...\}	$\begin{aligned} \dot{x} & =f_{1}(x, r) \\ \dot{r} & =f_{2}(x, r), \quad r \in \mathbb{R}^{d} \end{aligned}$ Tries to represent the missing states! - "Continuous-time" RNNs - "Continuous-time" Reservoir Computers - $f_{1}, f_{2} \in\{$ NNs, GPs, Polynomials, RFs,...\}

Leveraging partial knowledge of the dynamics

For any f_{0} (regardless of its fidelity), there exists an $m^{\dagger}(x, y)$ such that (1) can be re-written as

$$
\begin{align*}
& \dot{x}=f_{0}(x)+m^{\dagger}(x, y) \tag{2a}\\
& \dot{y}=\frac{1}{\varepsilon} g^{\dagger}(x, y) . \tag{2b}
\end{align*}
$$

- Approximation Rates. Let $\mathcal{H}=\cup_{m} \mathcal{H}_{m}$, where $\mathcal{H}_{m} \subset \mathcal{H}_{m+1}, m$ measures size of hypothesis space (approximation budget)

$$
\inf _{\hat{F} \in \mathcal{H}_{m}}\left\|F^{*}-\hat{F}\right\| \leq \text { Complexity }\left(F^{*}\right) \text { rate }(m), \quad \operatorname{rate}(m) \rightarrow 0
$$

Caltech

Learning latent dynamics in continuous-time

$$
\begin{aligned}
& \dot{x}=f_{0}(x)+m(x, r ; \theta) \\
& \Longleftrightarrow \\
& \dot{u}=f(u ; \theta), \quad u=[x, r]^{T} \\
& \dot{r}=g(x, r ; \theta) \\
& H u=x
\end{aligned}
$$

Caltech

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & \Longleftrightarrow u & =x
\end{array}
$$

Assume noisy observations $z=H u+\eta$.

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & \Longleftrightarrow u & =x
\end{array}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.

Learning latent dynamics in continuous-time

$$
\begin{aligned}
& \dot{x}=f_{0}(x)+m(x, r ; \theta) \\
& \Longleftrightarrow \\
& \dot{u}=f(u ; \theta), \quad u=[x, r]^{T} \\
& \dot{r}=g(x, r ; \theta) \\
& H u=x
\end{aligned}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

$$
\underset{\theta, u_{0}}{\operatorname{argmin}} \int_{0}^{T}\left\|z(t)-H u\left(t ; u_{0}, \theta\right)\right\|^{2} d t .
$$

- X Poorly-posed with larger T for chaotic systems with sensitivity to u_{0}.

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & & H u
\end{array}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.

Hard Constraint Idea 2: Break data into chunks to cope with sensitivities

$$
\underset{\theta,\left\{u_{0}^{(k)}\right\}_{k=1}^{K}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T}\left\|z^{(k)}(t)-H u\left(t ; u_{0}^{(k)}, \theta\right)\right\|^{2} d t
$$

- X Dimensionality of inference grows with T.
- X When chunks are small, can overfit by "cherry-picking" $u_{0}^{(k)}$.

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & \Longleftrightarrow u & =x
\end{array}
$$

Assume noisy observations $z=H u+\eta$. Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.

Data Assimilation for inferring missing dynamics:

$$
\underset{\theta,\left\{u_{0}^{(k)}\right\}_{k=1}^{K}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T}\left\|z^{(k)}(t)-H u\left(t ; u_{0}^{(k)}, \theta\right)\right\|^{2} d t
$$

- Initial conditions $u_{0}^{(k)}$ can be inferred using a sequence of warmup data (and assumption on θ) using standard Data Assimilation techniques.

Learning latent dynamics in continuous-time

$$
\begin{aligned}
& \dot{x}=f_{0}(x)+m(x, r ; \theta) \\
& \Longleftrightarrow \\
& \dot{u}=f(u ; \theta), \quad u=[x, r]^{T} \\
& \dot{r}=g(x, r ; \theta) \\
& H u=x
\end{aligned}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.
Let $\hat{m}\left(t, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right)$ be an estimate of $u(t) \mid\{z(t-s)\}_{s=0}^{\tau}, \theta_{\mathrm{DYN}}, u(t-\tau)=0$.

Learning latent dynamics in continuous-time

$$
\begin{aligned}
& \dot{x}=f_{0}(x)+m(x, r ; \theta) \\
& \Longleftrightarrow \\
& \dot{u}=f(u ; \theta), \quad u=[x, r]^{T} \\
& \dot{r}=g(x, r ; \theta) \\
& H u=x
\end{aligned}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.
Let $\hat{m}\left(t, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right)$ be an estimate of $u(t) \mid\{z(t-s)\}_{s=0}^{\tau}, \theta_{\mathrm{DYN}}, u(t-\tau)=0$.
DA-based inference: Initial conditions can be estimated jointly with parameters

$$
\underset{\theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T}\left\|z^{(k)}(t)-H u\left(t ; \hat{m}\left(t_{k}, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right), \theta_{\mathrm{DYN}}\right)\right\|^{2} d t
$$

Learning latent dynamics in continuous-time

$$
\begin{array}{rlrl}
\dot{x} & =f_{0}(x)+m(x, r ; \theta) \quad \Longleftrightarrow \quad \dot{u}=f(u ; \theta), \quad u & =[x, r]^{T} \\
\dot{r} & =g(x, r ; \theta) & & H u
\end{array}
$$

Assume noisy observations $z=H u+\eta$.
Let $u(t ; v, \theta)$ solve $\dot{u}=f(u ; \theta), u(0)=v$.
Let $\hat{m}\left(t, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right)$ be an estimate of $u(t) \mid\{z(t-s)\}_{s=0}^{\tau}, \theta_{\mathrm{DYN}}, u(t-\tau)=0$.
DA-based inference: Initial conditions can be estimated jointly with parameters

$$
\underset{\theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T}\left\|z^{(k)}(t)-H u\left(t ; \hat{m}\left(t_{k}, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}\right), \theta_{\mathrm{DYN}}\right)\right\|^{2} d t
$$

- Here, we perform joint estimation with auto-differentiable 3DVAR
- Chen et al. 2021 perform joint estimation with auto-differentiable Ensemble Kalman Filter
- Carassi et al. 2021 apply alternating descent (EnKF for \hat{m}, supervised SGD for θ)

Let $\Psi(v ; \theta):=u(\Delta t ; v, \theta)$ denote a integrator of our RHS that maps us to the next data element

Auto-differentiable WARMUP via Data Assimilation Auto-differentiable FORECAST

Sequential updates w/ constant gain

Accurate short-term forecasts and long-term statistics for first component of L63

Lorenz '63 with partial, noisy observations-noisily observe only the first component, and model its dynamics using our augmented-state model.

Caltech

Learning L96MS memory-based closure

- The true L96MS system has a clustered subgrouping of fast variables-our model has re-discovered this structure, and the DA gain K has learnt to exploit these correlations for improved filtering.

Caltech

$$
\begin{align*}
x_{k+1} & =C r_{k+1} \tag{5a}\\
r_{k+1} & =\sigma\left(W_{1} r_{k}+W_{2} x_{k}+b\right) \tag{5b}
\end{align*}
$$

- Randomize and fix $\left(W_{1}, W_{2}, b, r_{0}\right)$.
- Given $\left\{x_{k}\right\}_{k=0}^{K}, r_{0}, W_{1}, W_{2}, b$, we can determine $\left\{r_{k}\right\}_{k=1}^{K}$
- This is great, because now we just need to do a linear regression! $C: r_{k} \mapsto x_{k}$.

Debate: For a fully observed system, what choice of W_{1} gives the best RC?

$$
\begin{align*}
x_{k+1} & =C r_{k+1} \tag{5a}\\
r_{k+1} & =\sigma\left(W_{1} r_{k}+W_{2} x_{k}+b\right) \tag{5b}
\end{align*}
$$

- Randomize and fix $\left(W_{1}, W_{2}, b, r_{0}\right)$.
- Given $\left\{x_{k}\right\}_{k=0}^{K}, r_{0}, W_{1}, W_{2}, b$, we can determine $\left\{r_{k}\right\}_{k=1}^{K}$
- This is great, because now we just need to do a linear regression! $C: r_{k} \mapsto x_{k}$.

Debate: For a fully observed system, what choice of W_{1} gives the best RC?
My answer: Easy, just $W_{1}=0$. Then $r_{k+1}=\sigma\left(W_{2} x_{k}+b\right)$, and

$$
x_{k+1}=\sum_{j} C^{(j)} \sigma\left(W_{2}^{(j)} x_{k}+b^{(j)}\right), \quad \text { a random feature model! }
$$

For example, choosing $\sigma:=\cos (\cdot), W_{2}^{(j)} \sim \mathcal{N}(0, \Sigma)$, and $b^{(j)} \sim \mathcal{U}[-2 \pi, 2 \pi]$, Callech approximates Gaussian Process with RBF kernel in large feature limit.

Empirical evaluations of learnt memory

$$
\begin{align*}
x_{k+1} & =C r_{k+1} \tag{6a}\\
r_{k+1} & =\sigma\left(W_{1} r_{k}+W_{2} x_{k}+b\right) \tag{6b}
\end{align*}
$$

- Often we apply RCs to partially-observed systems, which have substantial Markovian properties on the observables.
- Do you ever worry that your RC performance is not really learning memory?
- Easy sanity check: Set $W_{1}=0$ and re-tune hyperparameters.
- The difference in performance between this and our RC represents the amount of memory that the RC has accounted for.

Expressivity of RCs/RNNs: latent dims vs function complexity

$$
\begin{aligned}
x_{k+1} & =C r_{k+1} \\
r_{k+1} & =\sigma\left(W_{1} r_{k}+W_{2} x_{k}+b\right)
\end{aligned}
$$

- \# latent variables $\equiv \operatorname{dim}(r)$
- Expressivity $\propto \operatorname{dim}(r)$
- Approximator limit leads to $\operatorname{dim}(r)=\infty$, even for a finite dimensional system!
- \# latent variables $\equiv \operatorname{dim}(r)$
- Expressivity $\propto \operatorname{dim}(\Lambda, 1 / 1,1 / 2)$
- Decouples dimension from expressivity; Can use infinitely many parameters in a finite dimensional space.

Expressivity of RCs/RNNs: latent dims vs function complexity

$$
\begin{aligned}
x_{k+1} & =C r_{k+1} \\
r_{k+1} & =\sigma\left(W_{1} r_{k}+W_{2} x_{k}+b\right)
\end{aligned}
$$

$$
\begin{aligned}
x_{k+1} & =C \sigma\left(A r_{k+1}+a\right) \\
r_{k+1} & =B \sigma\left(W_{1} r_{k}+W_{2} x_{k}+b\right)
\end{aligned}
$$

- \# latent variables $\equiv \operatorname{dim}(r)$
- Expressivity $\propto \operatorname{dim}(r)$
- Approximator limit leads to $\operatorname{dim}(r)=\infty$, even for a finite dimensional system!
- \# latent variables $\equiv \operatorname{dim}(r)$
- Expressivity $\propto \operatorname{dim}\left(A, W_{1}, W_{2}\right)$
- Decouples dimension from expressivity; Can use infinitely many parameters in a finite dimensional space.

Continuous-time RCs and Random Features on Banach Spaces

$$
\begin{align*}
\dot{x} & =\operatorname{Cr}(t) \tag{7a}\\
\dot{r} & =\sigma\left(W_{1} r+W_{2} x+b\right) \tag{7b}
\end{align*}
$$

Question: How to get RCs to work well in continuous time? What distributions should we choose for W_{1}, W_{2} ?
My answer: Shrug? I haven't gotten it to work well. I would love to hear from you all on this!

Conclusions

- We can learn ODEs from partially observed, noisy data by embedding state-estimation techniques within the optimization
- Can be used for tuning DA parameters
- Can move this to a derivative-free optimization (if your models are too huge to differentiate through)
- Currently using for modeling endocrine dynamics in patients with diabetes (joint work with Emily Fox)
- Reservoir Computers and random feature methods are quite connected
- With $W_{r}=0, R C$ approximates a markovian GP
- With $W_{r} \neq 0$, something deeper is going on! If you have ideas on this, come see me! We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium around this topic
- I'I graduate in 2023 and need a job!
- I want to deploy this work in biomedical applications and improve the methods until they work with real data and solve real problems!

Conclusions

- We can learn ODEs from partially observed, noisy data by embedding state-estimation techniques within the optimization
- Can be used for tuning DA parameters
- Can move this to a derivative-free optimization (if your models are too huge to differentiate through)
- Currently using for modeling endocrine dynamics in patients with diabetes (joint work with Emily Fox)
- Reservoir Computers and random feature methods are quite connected
- With $W_{r}=0, \mathrm{RC}$ approximates a markovian GP.
- With $W_{r} \neq 0$, something deeper is going on! If you have ideas on this, come see me! We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium around this topic.
- I'Il graduate in 2023 and need a job!
- I want to deploy this work in biomedical applications and improve the methods until they work with real data and solve real problems!

Conclusions

- We can learn ODEs from partially observed, noisy data by embedding state-estimation techniques within the optimization
- Can be used for tuning DA parameters
- Can move this to a derivative-free optimization (if your models are too huge to differentiate through)
- Currently using for modeling endocrine dynamics in patients with diabetes (joint work with Emily Fox)
- Reservoir Computers and random feature methods are quite connected
- With $W_{r}=0, \mathrm{RC}$ approximates a markovian GP.
- With $W_{r} \neq 0$, something deeper is going on! If you have ideas on this, come see me! We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium around this topic.
- I'll graduate in 2023 and need a job!
- I want to deploy this work in biomedical applications and improve the methods until they work with real data and solve real problems!

Related Work

- Kaheman, Kadierdan, Eurika Kaiser, Benjamin Strom, J. Nathan Kutz, and Steven L. Brunton. "Learning Discrepancy Models From Experimental Data." ArXiv:1909.08574 [Cs, Eess, Stat], September 18, 2019. http://arxiv.org/abs/1909.08574.
- Tipireddy, Ramakrishna, Paris Perdikaris, Panos Stinis, and Alexandre Tartakovsky. "A Comparative Study of Physics-Informed Neural Network Models for Learning Unknown Dynamics and Constitutive Relations." ArXiv:1904.04058 [Physics], April 2, 2019. http://arxiv.org/abs/1904.04058.
- Lovelett, Robert J., Jose L. Avalos, and loannis G. Kevrekidis. "Partial Observations and Conservation Laws: Grey-Box Modeling in Biotechnology and Optogenetics." ArXiv:1909.04234 [Math], September 9, 2019. http://arxiv.org/abs/1909.04234.
- Pathak, Jaideep, Alexander Wikner, Rebeckah Fussell, Sarthak Chandra, Brian R. Hunt, Michelle Girvan, and Edward Ott. "Hybrid Forecasting of Chaotic Processes: Using Machine Learning in Conjunction with a Knowledge-Based Model." Chaos: An Interdisciplinary Journal of Nonlinear Science 28, no. 4 (April 1, 2018): 041101. https://doi.org/10.1063/1.5028373.

Related Work

- Rico-Martines, R., I. G. Kevrekidis, M. C. Kube, and J. L. Hudson. "Discrete- vs. Continuous-Time Nonlinear Signal Processing: Attractors, Transitions and Parallel Implementation Issues." In 1993 American Control Conference, 1475-79. San Francisco, CA, USA: IEEE, 1993. https://doi.org/10.23919/ACC.1993.4793116.
- Chang, Bo, Minmin Chen, Eldad Haber, and Ed H. Chi. "AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks." ArXiv:1902.09689 [Cs, Stat], February 25, 2019. http://arxiv.org/abs/1902.09689.
- Funahashi, Ken-ichi, and Yuichi Nakamura. "Approximation of Dynamical Systems by Continuous Time Recurrent Neural Networks." Neural Networks 6, no. 6 (January 1, 1993): 801-6. https://doi.org/10.1016/S0893-6080(05)80125-X.
- Schäfer, Anton Maximilian. "RECURRENT NEURAL NETWORKS ARE UNIVERSAL APPROXIMATORS," 2007, 11.
- Wan, Zhong Yi, Pantelis Vlachas, Petros Koumoutsakos, and Themistoklis Sapsis. "Data-Assisted Reduced-Order Modeling of Extreme Events in Complex Dynamical Systems." PLOS ONE 13, no. 5 (May 24, 2018): e0197704.

Related Work

- Lei, Youming, Jian Hu, and Jianpeng Ding. "A Hybrid Model Based on Deep LSTM for Predicting High-Dimensional Chaotic Systems." ArXiv:2002.00799 [Cs, Eess], January 21, 2020. http://arxiv.org/abs/2002.00799.
- Sherstinsky, Alex. "Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network." Physica D: Nonlinear Phenomena 404 (March 1, 2020): 132306. https://doi.org/10.1016/j.physd.2019.132306.

Thank you!

- Many thanks to my adviser Andrew Stuart and the graduate students and postdocs of the Caltech CMS department.
- Many more thanks to Boumediene for the kind invitation and to all of the MLDS organizers and members of the Fields Institute for welcoming us!
- Thanks to the participants and speakers who have made this an enriching week!
- For more info, see:
- My website: mlevine@netlify.com
- Our paper: Levine and Stuart, A Framework for Machine Learning of Dynamical Systems, To appear in Communications of the AMS: Volume 2. 2022. https://arxiv.org/abs/2107.06658

