
Some time, some space, and some equations:
Machine-learning of model error in dynamical systems

Matthew E. Levine1 Andrew M. Stuart1

1Department of Computing and Mathematical Sciences
California Institute of Technology

Third Symposium on Machine Learning and Dynamical Systems
Fields Institute, University of Toronto

September 29, 2022

1 / 30

Introduction

• Machine learning works (with enough data)!

• Mechanistic models based on physics work (with enough knowledge and
compute)!

• In most open prediction problems, we have SOME data and SOME prior
knowledge.

• The next generation of high-performing prediction models will hybridize
physics-based and data-driven modeling techniques

• How can we help lay the groundwork for this future?

2 / 30

Introduction

• Machine learning works (with enough data)!

• Mechanistic models based on physics work (with enough knowledge and
compute)!

• In most open prediction problems, we have SOME data and SOME prior
knowledge.

• The next generation of high-performing prediction models will hybridize
physics-based and data-driven modeling techniques

• How can we help lay the groundwork for this future?

2 / 30

Introduction

• Machine learning works (with enough data)!

• Mechanistic models based on physics work (with enough knowledge and
compute)!

• In most open prediction problems, we have SOME data and SOME prior
knowledge.

• The next generation of high-performing prediction models will hybridize
physics-based and data-driven modeling techniques

• How can we help lay the groundwork for this future?

2 / 30

Introduction

• Machine learning works (with enough data)!

• Mechanistic models based on physics work (with enough knowledge and
compute)!

• In most open prediction problems, we have SOME data and SOME prior
knowledge.

• The next generation of high-performing prediction models will hybridize
physics-based and data-driven modeling techniques

• How can we help lay the groundwork for this future?

2 / 30

Our problem

True system (ODE):
ẋ = f

†(x , y)

ẏ =
1

"
g
†(x , y)

(1)

• Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

• Goal: Given noisy observations of x , learn predictive model for future x dynamics.

• Methodological constraints:
• Partial, noisy observations (e.g. observe x , but not y)
• No knowledge of y , g†, ", nor dim(y)
• Observations may be irregularly spaced and noisy
• Ability to leverage partial knowledge of f †

3 / 30

Our problem

True system (ODE):
ẋ = f

†(x , y)

ẏ =
1

"
g
†(x , y)

(1)

• Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

• Goal: Given noisy observations of x , learn predictive model for future x dynamics.

• Methodological constraints:
• Partial, noisy observations (e.g. observe x , but not y)
• No knowledge of y , g†, ", nor dim(y)
• Observations may be irregularly spaced and noisy
• Ability to leverage partial knowledge of f †

3 / 30

Our problem

True system (ODE):
ẋ = f

†(x , y)

ẏ =
1

"
g
†(x , y)

(1)

• Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

• Goal: Given noisy observations of x , learn predictive model for future x dynamics.

• Methodological constraints:
• Partial, noisy observations (e.g. observe x , but not y)

• No knowledge of y , g†, ", nor dim(y)
• Observations may be irregularly spaced and noisy
• Ability to leverage partial knowledge of f †

3 / 30

Our problem

True system (ODE):
ẋ = f

†(x , y)

ẏ =
1

"
g
†(x , y)

(1)

• Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

• Goal: Given noisy observations of x , learn predictive model for future x dynamics.

• Methodological constraints:
• Partial, noisy observations (e.g. observe x , but not y)
• No knowledge of y , g†, ", nor dim(y)

• Observations may be irregularly spaced and noisy
• Ability to leverage partial knowledge of f †

3 / 30

Our problem

True system (ODE):
ẋ = f

†(x , y)

ẏ =
1

"
g
†(x , y)

(1)

• Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

• Goal: Given noisy observations of x , learn predictive model for future x dynamics.

• Methodological constraints:
• Partial, noisy observations (e.g. observe x , but not y)
• No knowledge of y , g†, ", nor dim(y)
• Observations may be irregularly spaced and noisy

• Ability to leverage partial knowledge of f †

3 / 30

Our problem

True system (ODE):
ẋ = f

†(x , y)

ẏ =
1

"
g
†(x , y)

(1)

• Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

• Goal: Given noisy observations of x , learn predictive model for future x dynamics.

• Methodological constraints:
• Partial, noisy observations (e.g. observe x , but not y)
• No knowledge of y , g†, ", nor dim(y)
• Observations may be irregularly spaced and noisy
• Ability to leverage partial knowledge of f †

3 / 30

Big picture: Learning dynamics using w/ partial observations {xk}K
k=0

Introduce delays Introduce augmented states

Continuous-time

Discrete-time

·x = f({x(t − s)}t
s=τ)

xk+1 = Ψ(xk, xk−1, …, xk−κ), κ ∈ ℤ+

·x = f1(x, r)
·r = f2(x, r), r ∈ ℝd

xk+1 = Ψ1(xk, rk)
rk+1 = Ψ2(xk, rk), rk ∈ ℝd

Takens

• {NNs, GPs, Polynomials, RFs,…}Ψ ∈

Takens / Mori-Zwanzig

• {NNs, GPs, Polynomials, RFs,…}f ∈

Tries to represent the missing states!

• RNNs / Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}Ψ1, Ψ2 ∈

Tries to represent the missing states!

• “Continuous-time” RNNs

• “Continuous-time” Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}f1, f2 ∈

Big picture: Learning dynamics using w/ partial observations {xk}K
k=0

Introduce delays Introduce augmented states

Continuous-time

Discrete-time

·x = f({x(t − s)}t
s=τ)

xk+1 = Ψ(xk, xk−1, …, xk−κ), κ ∈ ℤ+

·x = f1(x, r)
·r = f2(x, r), r ∈ ℝd

xk+1 = Ψ1(xk, rk)
rk+1 = Ψ2(xk, rk), rk ∈ ℝd

Takens

• {NNs, GPs, Polynomials, RFs,…}Ψ ∈

Takens / Mori-Zwanzig

• {NNs, GPs, Polynomials, RFs,…}f ∈

Tries to represent the missing states!

• RNNs / Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}Ψ1, Ψ2 ∈

Tries to represent the missing states!

• “Continuous-time” RNNs

• “Continuous-time” Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}f1, f2 ∈

Big picture: Learning dynamics using w/ partial observations {xk}K
k=0

Introduce delays Introduce augmented states

Continuous-time

Discrete-time

·x = f({x(t − s)}t
s=τ)

xk+1 = Ψ(xk, xk−1, …, xk−κ), κ ∈ ℤ+

·x = f1(x, r)
·r = f2(x, r), r ∈ ℝd

xk+1 = Ψ1(xk, rk)
rk+1 = Ψ2(xk, rk), rk ∈ ℝd

Takens

• {NNs, GPs, Polynomials, RFs,…}Ψ ∈

Takens / Mori-Zwanzig

• {NNs, GPs, Polynomials, RFs,…}f ∈

Tries to represent the missing states!

• RNNs / Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}Ψ1, Ψ2 ∈

Tries to represent the missing states!

• “Continuous-time” RNNs

• “Continuous-time” Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}f1, f2 ∈

Big picture: Learning dynamics using w/ partial observations {xk}K
k=0

Introduce delays Introduce augmented states

Continuous-time

Discrete-time

·x = f({x(t − s)}t
s=τ)

xk+1 = Ψ(xk, xk−1, …, xk−κ), κ ∈ ℤ+

·x = f1(x, r)
·r = f2(x, r), r ∈ ℝd

xk+1 = Ψ1(xk, rk)
rk+1 = Ψ2(xk, rk), rk ∈ ℝd

Takens

• {NNs, GPs, Polynomials, RFs,…}Ψ ∈

Takens / Mori-Zwanzig

• {NNs, GPs, Polynomials, RFs,…}f ∈

Tries to represent the missing states!

• RNNs / Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}Ψ1, Ψ2 ∈

Tries to represent the missing states!

• “Continuous-time” RNNs

• “Continuous-time” Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}f1, f2 ∈

Big picture: Learning dynamics using w/ partial observations {xk}K
k=0

Introduce delays Introduce augmented states

Continuous-time

Discrete-time

·x = f({x(t − s)}t
s=τ)

xk+1 = Ψ(xk, xk−1, …, xk−κ), κ ∈ ℤ+

·x = f1(x, r)
·r = f2(x, r), r ∈ ℝd

xk+1 = Ψ1(xk, rk)
rk+1 = Ψ2(xk, rk), rk ∈ ℝd

Takens

• {NNs, GPs, Polynomials, RFs,…}Ψ ∈

Takens / Mori-Zwanzig

• {NNs, GPs, Polynomials, RFs,…}f ∈

Tries to represent the missing states!

• RNNs / Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}Ψ1, Ψ2 ∈

Tries to represent the missing states!

• “Continuous-time” RNNs

• “Continuous-time” Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}f1, f2 ∈

Big picture: Learning dynamics using w/ partial observations {xk}K
k=0

Introduce delays Introduce augmented states

Continuous-time

Discrete-time

·x = f({x(t − s)}t
s=τ)

xk+1 = Ψ(xk, xk−1, …, xk−κ), κ ∈ ℤ+

·x = f1(x, r)
·r = f2(x, r), r ∈ ℝd

xk+1 = Ψ1(xk, rk)
rk+1 = Ψ2(xk, rk), rk ∈ ℝd

Takens

• {NNs, GPs, Polynomials, RFs,…}Ψ ∈

Takens / Mori-Zwanzig

• {NNs, GPs, Polynomials, RFs,…}f ∈

Tries to represent the missing states!

• RNNs / Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}Ψ1, Ψ2 ∈

Tries to represent the missing states!

• “Continuous-time” RNNs

• “Continuous-time” Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}f1, f2 ∈

Leveraging partial knowledge of the dynamics

For any f0 (regardless of its fidelity), there exists an m
†(x , y) such that (1) can be

re-written as

ẋ = f0(x) +m
†(x , y) (2a)

ẏ =
1

"
g
†(x , y). (2b)

There exists a closure M†
t that captures the full e↵ect of the y -system on x :

ẋ(t) = f0
�
x(t)

�
+M†

t

✓�
x(s)

 t
s=0

; y(0)

◆
. (3)

We say the closure term M†
t has memory.

4 / 30

Qianxiao Li, MLDS 2022 slides!!

Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

argmin
✓,u0

Z T

0
kz(t)� Hu(t; u0, ✓)k2dt.

• 7 Poorly-posed with larger T for chaotic systems with sensitivity to u0.

11 / 30

Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r]T

Hu = x

Assume noisy observations z = Hu + ⌘.

Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

argmin
✓,u0

Z T

0
kz(t)� Hu(t; u0, ✓)k2dt.

• 7 Poorly-posed with larger T for chaotic systems with sensitivity to u0.

11 / 30

Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

argmin
✓,u0

Z T

0
kz(t)� Hu(t; u0, ✓)k2dt.

• 7 Poorly-posed with larger T for chaotic systems with sensitivity to u0.

11 / 30

Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

argmin
✓,u0

Z T

0
kz(t)� Hu(t; u0, ✓)k2dt.

• 7 Poorly-posed with larger T for chaotic systems with sensitivity to u0.

11 / 30

Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Hard Constraint Idea 2: Break data into chunks to cope with sensitivities

argmin
✓,{u(k)0 }Kk=1

KX

k=1

Z T

0
kz(k)(t)� Hu(t; u(k)0 , ✓)k2dt.

• 7 Dimensionality of inference grows with T .

• 7 When chunks are small, can overfit by ”cherry-picking” u
(k)
0 .

12 / 30

Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Data Assimilation for inferring missing dynamics:

argmin
✓,{u(k)0 }Kk=1

KX

k=1

Z T

0
kz(k)(t)� Hu(t; u(k)0 , ✓)k2dt.

• Initial conditions u(k)0 can be inferred using a sequence of warmup data (and
assumption on ✓) using standard Data Assimilation techniques.

14 / 30

Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Let m̂(t, ⌧, ✓DYN, ✓DA) be an estimate of u(t) | {z(t � s)}⌧s=0, ✓DYN, u(t � ⌧) = 0.

DA-based inference: Initial conditions can be estimated jointly with parameters

argmin
✓DYN, ✓DA

KX

k=1

Z T

0
kz(k)(t)� Hu

�
t; m̂(tk , ⌧, ✓DYN, ✓DA), ✓DYN

�
k2dt.

• Here, we perform joint estimation with auto-di↵erentiable 3DVAR
• Chen et al. 2021 perform joint estimation with auto-di↵erentiable Ensemble
Kalman Filter

• Carassi et al. 2021 apply alternating descent (EnKF for m̂, supervised SGD for ✓)

16 / 30

Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Let m̂(t, ⌧, ✓DYN, ✓DA) be an estimate of u(t) | {z(t � s)}⌧s=0, ✓DYN, u(t � ⌧) = 0.

DA-based inference: Initial conditions can be estimated jointly with parameters

argmin
✓DYN, ✓DA

KX

k=1

Z T

0
kz(k)(t)� Hu

�
t; m̂(tk , ⌧, ✓DYN, ✓DA), ✓DYN

�
k2dt.

• Here, we perform joint estimation with auto-di↵erentiable 3DVAR
• Chen et al. 2021 perform joint estimation with auto-di↵erentiable Ensemble
Kalman Filter

• Carassi et al. 2021 apply alternating descent (EnKF for m̂, supervised SGD for ✓)

16 / 30

Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Let m̂(t, ⌧, ✓DYN, ✓DA) be an estimate of u(t) | {z(t � s)}⌧s=0, ✓DYN, u(t � ⌧) = 0.

DA-based inference: Initial conditions can be estimated jointly with parameters

argmin
✓DYN, ✓DA

KX

k=1

Z T

0
kz(k)(t)� Hu

�
t; m̂(tk , ⌧, ✓DYN, ✓DA), ✓DYN

�
k2dt.

• Here, we perform joint estimation with auto-di↵erentiable 3DVAR
• Chen et al. 2021 perform joint estimation with auto-di↵erentiable Ensemble
Kalman Filter

• Carassi et al. 2021 apply alternating descent (EnKF for m̂, supervised SGD for ✓)
16 / 30

Auto-differentiable WARMUP via Data Assimilation

̂uk+1 = Ψ(̂uk; Δt) + K(zk+1 − HΨ(̂uk; Δt))
Sequential updates w/ constant gain

̂u0̂u−τ
z−τ, … , z0

Ψ(̂u0; θ)

Auto-differentiable FORECAST

x1(t), z(t)

x2(t), x3(t)

Observed states

Unobserved states

Let denote a integrator of our RHS that maps us to the next data elementΨ(v; θ) := u(Δt; v, θ)

Accurate short-term forecasts and long-term statistics for first component of L63

Lorenz ’63 with partial, noisy observations—noisily observe only the first component,
and model its dynamics using our augmented-state model.

17 / 30

Learning L96MS memory-based closure

• The true L96MS system has a clustered subgrouping of fast variables—our model
has re-discovered this structure, and the DA gain K has learnt to exploit these
correlations for improved filtering.

21 / 30

Reservoir computing with connections to random features

xk+1 = Crk+1 (5a)

rk+1 = �(W1rk +W2xk + b) (5b)

• Randomize and fix (W1,W2, b, r0).
• Given {xk}Kk=0, r0,W1,W2, b, we can determine {rk}Kk=1

• This is great, because now we just need to do a linear regression! C : rk 7! xk .

Debate: For a fully observed system, what choice of W1 gives the best RC?

My answer: Easy, just W1 = 0. Then rk+1 = �(W2xk + b), and

xk+1 =
X

j

C
(j)�(W (j)

2 xk + b
(j)), a random feature model!

For example, choosing � := cos(·), W (j)
2 ⇠ N (0,⌃), and b

(j) ⇠ U [�2⇡, 2⇡],
approximates Gaussian Process with RBF kernel in large feature limit.

22 / 30

Reservoir computing with connections to random features

xk+1 = Crk+1 (5a)

rk+1 = �(W1rk +W2xk + b) (5b)

• Randomize and fix (W1,W2, b, r0).
• Given {xk}Kk=0, r0,W1,W2, b, we can determine {rk}Kk=1

• This is great, because now we just need to do a linear regression! C : rk 7! xk .

Debate: For a fully observed system, what choice of W1 gives the best RC?
My answer: Easy, just W1 = 0. Then rk+1 = �(W2xk + b), and

xk+1 =
X

j

C
(j)�(W (j)

2 xk + b
(j)), a random feature model!

For example, choosing � := cos(·), W (j)
2 ⇠ N (0,⌃), and b

(j) ⇠ U [�2⇡, 2⇡],
approximates Gaussian Process with RBF kernel in large feature limit.

22 / 30

Empirical evaluations of learnt memory

xk+1 = Crk+1 (6a)

rk+1 = �(W1rk +W2xk + b) (6b)

• Often we apply RCs to partially-observed systems, which have substantial
Markovian properties on the observables.

• Do you ever worry that your RC performance is not really learning memory?

• Easy sanity check: Set W1 = 0 and re-tune hyperparameters.

• The di↵erence in performance between this and our RC represents the amount of
memory that the RC has accounted for.

24 / 30

Expressivity of RCs/RNNs: latent dims vs function complexity

xk+1 = Crk+1

rk+1 = �(W1rk +W2xk + b)

Versus xk+1 = C�(Ark+1 + a)

rk+1 = B�(W1rk +W2xk + b)

• # latent variables ⌘ dim(r)

• Expressivity / dim(r)

• Approximator limit leads to
dim(r) = 1, even for a finite
dimensional system!

• # latent variables ⌘ dim(r)

• Expressivity / dim(A,W1,W2)

• Decouples dimension from expressivity;
Can use infinitely many parameters in
a finite dimensional space.

24 / 30

Expressivity of RCs/RNNs: latent dims vs function complexity

xk+1 = Crk+1

rk+1 = �(W1rk +W2xk + b)

Versus xk+1 = C�(Ark+1 + a)

rk+1 = B�(W1rk +W2xk + b)

• # latent variables ⌘ dim(r)

• Expressivity / dim(r)

• Approximator limit leads to
dim(r) = 1, even for a finite
dimensional system!

• # latent variables ⌘ dim(r)

• Expressivity / dim(A,W1,W2)

• Decouples dimension from expressivity;
Can use infinitely many parameters in
a finite dimensional space.

24 / 30

Continuous-time RCs and Random Features on Banach Spaces

ẋ = Cr(t) (7a)

ṙ = �(W1r +W2x + b) (7b)

Question: How to get RCs to work well in continuous time? What distributions
should we choose for W1,W2?
My answer: Shrug? I haven’t gotten it to work well. I would love to hear from you all
on this!

Question: Does the random feature perspective hold when W1 6= 0?
Andrew’s idea: Let Xs := C ([0, s];Rdx). Then r(t) is a random feature on banach
space Xt :

r(t) = Gk
�
{x(s)}ts=0; r(0),W1,W2, a).

25 / 30

Conclusions

• We can learn ODEs from partially observed, noisy data by embedding
state-estimation techniques within the optimization

• Can be used for tuning DA parameters
• Can move this to a derivative-free optimization (if your models are too huge to

di↵erentiate through)
• Currently using for modeling endocrine dynamics in patients with diabetes (joint

work with Emily Fox)

• Reservoir Computers and random feature methods are quite connected
• With Wr = 0, RC approximates a markovian GP.
• With Wr 6= 0, something deeper is going on! If you have ideas on this, come see me!

We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium
around this topic.

• I’ll graduate in 2023 and need a job!
• I want to deploy this work in biomedical applications and improve the methods until

they work with real data and solve real problems!

26 / 30

Conclusions

• We can learn ODEs from partially observed, noisy data by embedding
state-estimation techniques within the optimization

• Can be used for tuning DA parameters
• Can move this to a derivative-free optimization (if your models are too huge to

di↵erentiate through)
• Currently using for modeling endocrine dynamics in patients with diabetes (joint

work with Emily Fox)

• Reservoir Computers and random feature methods are quite connected
• With Wr = 0, RC approximates a markovian GP.
• With Wr 6= 0, something deeper is going on! If you have ideas on this, come see me!

We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium
around this topic.

• I’ll graduate in 2023 and need a job!
• I want to deploy this work in biomedical applications and improve the methods until

they work with real data and solve real problems!

26 / 30

Conclusions

• We can learn ODEs from partially observed, noisy data by embedding
state-estimation techniques within the optimization

• Can be used for tuning DA parameters
• Can move this to a derivative-free optimization (if your models are too huge to

di↵erentiate through)
• Currently using for modeling endocrine dynamics in patients with diabetes (joint

work with Emily Fox)

• Reservoir Computers and random feature methods are quite connected
• With Wr = 0, RC approximates a markovian GP.
• With Wr 6= 0, something deeper is going on! If you have ideas on this, come see me!

We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium
around this topic.

• I’ll graduate in 2023 and need a job!
• I want to deploy this work in biomedical applications and improve the methods until

they work with real data and solve real problems!

26 / 30

Related Work

• Kaheman, Kadierdan, Eurika Kaiser, Benjamin Strom, J. Nathan Kutz, and Steven L.
Brunton. “Learning Discrepancy Models From Experimental Data.” ArXiv:1909.08574
[Cs, Eess, Stat], September 18, 2019. http://arxiv.org/abs/1909.08574.

• Tipireddy, Ramakrishna, Paris Perdikaris, Panos Stinis, and Alexandre Tartakovsky. “A
Comparative Study of Physics-Informed Neural Network Models for Learning Unknown
Dynamics and Constitutive Relations.” ArXiv:1904.04058 [Physics], April 2, 2019.
http://arxiv.org/abs/1904.04058.

• Lovelett, Robert J., Jose L. Avalos, and Ioannis G. Kevrekidis. “Partial Observations and
Conservation Laws: Grey-Box Modeling in Biotechnology and Optogenetics.”
ArXiv:1909.04234 [Math], September 9, 2019. http://arxiv.org/abs/1909.04234.

• Pathak, Jaideep, Alexander Wikner, Rebeckah Fussell, Sarthak Chandra, Brian R. Hunt,
Michelle Girvan, and Edward Ott. “Hybrid Forecasting of Chaotic Processes: Using
Machine Learning in Conjunction with a Knowledge-Based Model.” Chaos: An
Interdisciplinary Journal of Nonlinear Science 28, no. 4 (April 1, 2018): 041101.
https://doi.org/10.1063/1.5028373.

27 / 30

Related Work

• Rico-Martines, R., I. G. Kevrekidis, M. C. Kube, and J. L. Hudson. “Discrete- vs.
Continuous-Time Nonlinear Signal Processing: Attractors, Transitions and Parallel
Implementation Issues.” In 1993 American Control Conference, 1475–79. San Francisco,
CA, USA: IEEE, 1993. https://doi.org/10.23919/ACC.1993.4793116.

• Chang, Bo, Minmin Chen, Eldad Haber, and Ed H. Chi. “AntisymmetricRNN: A
Dynamical System View on Recurrent Neural Networks.” ArXiv:1902.09689 [Cs, Stat],
February 25, 2019. http://arxiv.org/abs/1902.09689.

• Funahashi, Ken-ichi, and Yuichi Nakamura. “Approximation of Dynamical Systems by
Continuous Time Recurrent Neural Networks.” Neural Networks 6, no. 6 (January 1,
1993): 801–6. https://doi.org/10.1016/S0893-6080(05)80125-X.

• Schäfer, Anton Maximilian. “RECURRENT NEURAL NETWORKS ARE UNIVERSAL
APPROXIMATORS,” 2007, 11.

• Wan, Zhong Yi, Pantelis Vlachas, Petros Koumoutsakos, and Themistoklis Sapsis.
”Data-Assisted Reduced-Order Modeling of Extreme Events in Complex Dynamical
Systems.” PLOS ONE 13, no. 5 (May 24, 2018): e0197704.

28 / 30

Related Work

• Lei, Youming, Jian Hu, and Jianpeng Ding. “A Hybrid Model Based on Deep LSTM for
Predicting High-Dimensional Chaotic Systems.” ArXiv:2002.00799 [Cs, Eess], January 21,
2020. http://arxiv.org/abs/2002.00799.

• Sherstinsky, Alex. “Fundamentals of Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) Network.” Physica D: Nonlinear Phenomena 404 (March 1,
2020): 132306. https://doi.org/10.1016/j.physd.2019.132306.

29 / 30

Thank you!

• Many thanks to my adviser Andrew Stuart and the graduate students and
postdocs of the Caltech CMS department.

• Many more thanks to Boumediene for the kind invitation and to all of the
MLDS organizers and members of the Fields Institute for welcoming us!

• Thanks to the participants and speakers who have made this an enriching week!
• For more info, see:

• My website: mlevine@netlify.com
• Our paper: Levine and Stuart, A Framework for Machine Learning of Dynamical

Systems, To appear in Communications of the AMS: Volume 2. 2022.
https://arxiv.org/abs/2107.06658

30 / 30

