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Introduction

• Machine learning works (with enough data)!

• Mechanistic models based on physics work (with enough knowledge and
compute)!

• In most open prediction problems, we have SOME data and SOME prior
knowledge.

• The next generation of high-performing prediction models will hybridize
physics-based and data-driven modeling techniques

• How can we help lay the groundwork for this future?
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Our problem

True system (ODE):
ẋ = f

†(x , y)

ẏ =
1

"
g
†(x , y)

(1)

• Relevance: across disciplines (climatology, physiology, celestial mechanics, etc.).

• Goal: Given noisy observations of x , learn predictive model for future x dynamics.

• Methodological constraints:
• Partial, noisy observations (e.g. observe x , but not y)
• No knowledge of y , g†, ", nor dim(y)
• Observations may be irregularly spaced and noisy
• Ability to leverage partial knowledge of f †
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Big picture: Learning dynamics using w/ partial observations {xk}K
k=0

Introduce delays Introduce augmented states

Continuous-time 

Discrete-time 

·x = f({x(t − s)}t
s=τ)

xk+1 = Ψ(xk, xk−1, …, xk−κ), κ ∈ ℤ+

·x = f1(x, r)
·r = f2(x, r), r ∈ ℝd

xk+1 = Ψ1(xk, rk)
rk+1 = Ψ2(xk, rk), rk ∈ ℝd

Takens

• {NNs, GPs, Polynomials, RFs,…}Ψ ∈

Takens / Mori-Zwanzig

• {NNs, GPs, Polynomials, RFs,…}f ∈

Tries to represent the missing states!

• RNNs  / Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}Ψ1, Ψ2 ∈

Tries to represent the missing states!

• “Continuous-time” RNNs

• “Continuous-time” Reservoir Computers

• {NNs, GPs, Polynomials, RFs,…}f1, f2 ∈
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Leveraging partial knowledge of the dynamics

For any f0 (regardless of its fidelity), there exists an m
†(x , y) such that (1) can be

re-written as

ẋ = f0(x) +m
†(x , y) (2a)

ẏ =
1

"
g
†(x , y). (2b)

There exists a closure M†
t that captures the full e↵ect of the y -system on x :

ẋ(t) = f0
�
x(t)

�
+M†

t

✓�
x(s)

 t
s=0

; y(0)

◆
. (3)

We say the closure term M†
t has memory.

4 / 30
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Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r ]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

argmin
✓,u0

Z T

0
kz(t)� Hu(t; u0, ✓)k2dt.

• 7 Poorly-posed with larger T for chaotic systems with sensitivity to u0.
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Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r ]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Hard Constraint Idea 2: Break data into chunks to cope with sensitivities

argmin
✓,{u(k)0 }Kk=1

KX

k=1

Z T

0
kz(k)(t)� Hu(t; u(k)0 , ✓)k2dt.

• 7 Dimensionality of inference grows with T .

• 7 When chunks are small, can overfit by ”cherry-picking” u
(k)
0 .
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Learning latent dynamics in continuous-time

ẋ = f0(x) +m(x , r ; ✓)

ṙ = g(x , r ; ✓)

() u̇ = f (u; ✓), u = [x , r ]T

Hu = x

Assume noisy observations z = Hu + ⌘.
Let u(t; v , ✓) solve u̇ = f (u; ✓), u(0) = v .

Data Assimilation for inferring missing dynamics:

argmin
✓,{u(k)0 }Kk=1

KX

k=1

Z T

0
kz(k)(t)� Hu(t; u(k)0 , ✓)k2dt.

• Initial conditions u(k)0 can be inferred using a sequence of warmup data (and
assumption on ✓) using standard Data Assimilation techniques.
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DA-based inference: Initial conditions can be estimated jointly with parameters
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k=1

Z T

0
kz(k)(t)� Hu

�
t; m̂(tk , ⌧, ✓DYN, ✓DA), ✓DYN

�
k2dt.

• Here, we perform joint estimation with auto-di↵erentiable 3DVAR
• Chen et al. 2021 perform joint estimation with auto-di↵erentiable Ensemble
Kalman Filter

• Carassi et al. 2021 apply alternating descent (EnKF for m̂, supervised SGD for ✓)
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Auto-differentiable WARMUP via Data Assimilation 

̂uk+1 = Ψ( ̂uk; Δt) + K(zk+1 − HΨ( ̂uk; Δt))
Sequential updates w/ constant gain

̂u0̂u−τ
z−τ, … , z0

Ψ( ̂u0; θ)

Auto-differentiable FORECAST

x1(t), z(t)

x2(t), x3(t)

Observed states

Unobserved states

Let  denote a integrator of our RHS that maps us to the next data elementΨ(v; θ) := u(Δt; v, θ)



Accurate short-term forecasts and long-term statistics for first component of L63

Lorenz ’63 with partial, noisy observations—noisily observe only the first component,
and model its dynamics using our augmented-state model.

17 / 30



Learning L96MS memory-based closure

• The true L96MS system has a clustered subgrouping of fast variables—our model
has re-discovered this structure, and the DA gain K has learnt to exploit these
correlations for improved filtering.

21 / 30



Reservoir computing with connections to random features

xk+1 = Crk+1 (5a)

rk+1 = �(W1rk +W2xk + b) (5b)

• Randomize and fix (W1,W2, b, r0).
• Given {xk}Kk=0, r0,W1,W2, b, we can determine {rk}Kk=1

• This is great, because now we just need to do a linear regression! C : rk 7! xk .

Debate: For a fully observed system, what choice of W1 gives the best RC?

My answer: Easy, just W1 = 0. Then rk+1 = �(W2xk + b), and

xk+1 =
X

j

C
(j)�(W (j)

2 xk + b
(j)), a random feature model!

For example, choosing � := cos(·), W (j)
2 ⇠ N (0,⌃), and b

(j) ⇠ U [�2⇡, 2⇡],
approximates Gaussian Process with RBF kernel in large feature limit.

22 / 30
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Empirical evaluations of learnt memory

xk+1 = Crk+1 (6a)

rk+1 = �(W1rk +W2xk + b) (6b)

• Often we apply RCs to partially-observed systems, which have substantial
Markovian properties on the observables.

• Do you ever worry that your RC performance is not really learning memory?

• Easy sanity check: Set W1 = 0 and re-tune hyperparameters.

• The di↵erence in performance between this and our RC represents the amount of
memory that the RC has accounted for.

24 / 30



Expressivity of RCs/RNNs: latent dims vs function complexity

xk+1 = Crk+1

rk+1 = �(W1rk +W2xk + b)

Versus xk+1 = C�(Ark+1 + a)

rk+1 = B�(W1rk +W2xk + b)

• # latent variables ⌘ dim(r)

• Expressivity / dim(r)

• Approximator limit leads to
dim(r) = 1, even for a finite
dimensional system!

• # latent variables ⌘ dim(r)

• Expressivity / dim(A,W1,W2)

• Decouples dimension from expressivity;
Can use infinitely many parameters in
a finite dimensional space.
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Continuous-time RCs and Random Features on Banach Spaces

ẋ = Cr(t) (7a)

ṙ = �(W1r +W2x + b) (7b)

Question: How to get RCs to work well in continuous time? What distributions
should we choose for W1,W2?
My answer: Shrug? I haven’t gotten it to work well. I would love to hear from you all
on this!

Question: Does the random feature perspective hold when W1 6= 0?
Andrew’s idea: Let Xs := C ([0, s];Rdx ). Then r(t) is a random feature on banach
space Xt :

r(t) = Gk
�
{x(s)}ts=0; r(0),W1,W2, a).

25 / 30



Conclusions

• We can learn ODEs from partially observed, noisy data by embedding
state-estimation techniques within the optimization

• Can be used for tuning DA parameters
• Can move this to a derivative-free optimization (if your models are too huge to

di↵erentiate through)
• Currently using for modeling endocrine dynamics in patients with diabetes (joint

work with Emily Fox)

• Reservoir Computers and random feature methods are quite connected
• With Wr = 0, RC approximates a markovian GP.
• With Wr 6= 0, something deeper is going on! If you have ideas on this, come see me!

We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium
around this topic.

• I’ll graduate in 2023 and need a job!
• I want to deploy this work in biomedical applications and improve the methods until

they work with real data and solve real problems!
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• With Wr 6= 0, something deeper is going on! If you have ideas on this, come see me!

We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium
around this topic.

• I’ll graduate in 2023 and need a job!
• I want to deploy this work in biomedical applications and improve the methods until

they work with real data and solve real problems!
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Thank you!

• Many thanks to my adviser Andrew Stuart and the graduate students and
postdocs of the Caltech CMS department.

• Many more thanks to Boumediene for the kind invitation and to all of the
MLDS organizers and members of the Fields Institute for welcoming us!

• Thanks to the participants and speakers who have made this an enriching week!
• For more info, see:

• My website: mlevine@netlify.com
• Our paper: Levine and Stuart, A Framework for Machine Learning of Dynamical

Systems, To appear in Communications of the AMS: Volume 2. 2022.
https://arxiv.org/abs/2107.06658
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