Some time, some space, and some equations: Machine-learning of model error in dynamical systems

¹Department of Computing and Mathematical Sciences California Institute of Technology

Third Symposium on Machine Learning and Dynamical Systems Fields Institute, University of Toronto September 29, 2022

Matthew E. Levine¹ Andrew M. Stuart¹

Machine learning works (with enough data)!

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!
- In most open prediction problems, we have SOME data and SOME prior knowledge.

- Machine learning works (with enough data)!
- Mechanistic models based on physics work (with enough knowledge and compute)!
- In most open prediction problems, we have SOME data and SOME prior knowledge.
- The next generation of high-performing prediction models will **hybridize** physics-based and data-driven modeling techniques
- How can we help lay the groundwork for this future?

True system (ODE

• **Relevance:** across disciplines (climatology, physiology, celestial mechanics, etc.).

E):

$$\dot{x} = f^{\dagger}(x, y)$$

 $\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$
(1)

True system (ODE

$$\dot{x} = f^{\dagger}(x, y)$$

$$\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$$
(1)

• **Relevance:** across disciplines (climatology, physiology, celestial mechanics, etc.).

True system (ODE

- Methodological constraints: Partial, noisy observations (e.g. observe x, but not y)

$$\dot{x} = f^{\dagger}(x, y)$$

$$\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$$
(1)

• **Relevance:** across disciplines (climatology, physiology, celestial mechanics, etc.).

True system (ODE

• Methodological constraints:

- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of y, g^{\dagger}, ε , nor dim(y)

$$\dot{x} = f^{\dagger}(x, y)$$

$$\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$$
(1)

• **Relevance:** across disciplines (climatology, physiology, celestial mechanics, etc.).

True system (ODE

- Methodological constraints:
 - Partial, noisy observations (e.g. observe x, but not y)
 - No knowledge of y, g^{\dagger}, ε , nor dim(y)
 - Observations may be irregularly spaced and noisy

$$\dot{x} = f^{\dagger}(x, y)$$

$$\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$$
(1)

• **Relevance:** across disciplines (climatology, physiology, celestial mechanics, etc.).

True system (ODE

Methodological constraints:

- Partial, noisy observations (e.g. observe x, but not y)
- No knowledge of y, g^{\dagger}, ε , nor dim(y)
- Observations may be irregularly spaced and noisy
- Ability to leverage partial knowledge of f[†]

$$\dot{x} = f^{\dagger}(x, y)$$

$$\dot{y} = \frac{1}{\varepsilon}g^{\dagger}(x, y)$$
(1)

• **Relevance:** across disciplines (climatology, physiology, celestial mechanics, etc.).

	Introduce delays	Introduce augmented states
Discrete-time	$x_{k+1} = \Psi(x_k, x_{k-1}, \dots, x_{k-\kappa}), \kappa \in \mathbb{Z}^+$ Takens • $\Psi \in \{NNs, GPs, Polynomials, RFs, \dots\}$	$\begin{aligned} x_{k+1} &= \Psi_1(x_k, r_k) \\ r_{k+1} &= \Psi_2(x_k, r_k), r_k \in \mathbb{R}^d \end{aligned}$ Tries to represent the missing states! • RNNs / Reservoir Computers • $\Psi_1, \Psi_2 \in \{\text{NNs}, \text{GPs}, \text{Polynomials}, \text{RF}\}$
Continuous-time	$\dot{x} = f(\{x(t-s)\}_{s=\tau}^{t})$ Takens / Mori-Zwanzig $f \in \{NNs, GPs, Polynomials, RFs,\}$	$\dot{x} = f_1(x, r)$ $\dot{r} = f_2(x, r), r \in \mathbb{R}^d$ Tries to represent the missing states! • "Continuous-time" RNNs • "Continuous-time" Reservoir Compute • $f_1, f_2 \in \{NNs, GPs, Polynomials, RFs, Polynomials, Polynomia$

ays	Introduce augmented states
), $\kappa \in \mathbb{Z}^+$	$\begin{aligned} x_{k+1} &= \Psi_1(x_k, r_k) \\ r_{k+1} &= \Psi_2(x_k, r_k), r_k \in \mathbb{R}^d \end{aligned}$
nials, RFs,}	Tries to represent the missing states! • RNNs / Reservoir Computers • $\Psi_1, \Psi_2 \in \{NNs, GPs, Polynomials, R$
$\binom{t}{s=\tau}$	$\dot{x} = f_1(x, r)$ $\dot{r} = f_2(x, r), r \in \mathbb{R}^d$
	Tries to represent the missing states! • "Continuous-time" RNNs • "Continuous-time" Reservoir Comput • $f_1, f_2 \in \{NNs, GPs, Polynomials, RFs, Polynomials, Polynom$

ays	Introduce augmented states
), $\kappa \in \mathbb{Z}^+$	$\begin{aligned} x_{k+1} &= \Psi_1(x_k, r_k) \\ r_{k+1} &= \Psi_2(x_k, r_k), r_k \in \mathbb{R}^d \end{aligned}$
nials, RFs,}	Tries to represent the missing states! • RNNs / Reservoir Computers • $\Psi_1, \Psi_2 \in \{NNs, GPs, Polynomials, R$
	$\dot{x} = f_1(x, r)$ $\dot{r} = f_2(x, r), r \in \mathbb{R}^d$
	Tries to represent the missing states! • "Continuous-time" RNNs • "Continuous-time" Reservoir Comput • $f_1, f_2 \in \{NNs, GPs, Polynomials, RFs, Polynomials, Polynom$

ays	Introduce augmented states
), $\kappa \in \mathbb{Z}^+$	$x_{k+1} = \Psi_1(x_k, r_k)$
	$r_{k+1} = \Psi_2(x_k, r_k), r_k \in \mathbb{R}^d$
nials, RFs,}	Tries to represent the missing states! • RNNs / Reservoir Computers • $\Psi_1, \Psi_2 \in \{NNs, GPs, Polynomials, R$
$\left\{ \begin{array}{c} t \\ s = \tau \end{array} \right\}$	$\dot{x} = f_1(x, r)$
) 5-11 /	$\dot{r} = f_2(x, r), r \in \mathbb{R}^d$
als, RFs,}	Tries to represent the missing states!
	 "Continuous-time" RNNs "Continuous-time" Reservoir Comput
	• $f_1, f_2 \in \{NNs, GPs, Polynomials, RFs\}$

ays	Introduce augmented states
), $\kappa \in \mathbb{Z}^+$	$\begin{aligned} x_{k+1} &= \Psi_1(x_k, r_k) \\ r_{k+1} &= \Psi_2(x_k, r_k), r_k \in \mathbb{R}^d \end{aligned}$
ials, RFs,}	Tries to represent the missing states! • RNNs / Reservoir Computers • $\Psi_1, \Psi_2 \in \{NNs, GPs, Polynomials, R$
$\left\{ \begin{array}{c} t\\ s=\tau \end{array} \right\}$	$\dot{x} = f_1(x, r)$ $\dot{r} = f_2(x, r), r \in \mathbb{R}^d$
als, RFs,}	Tries to represent the missing states! • "Continuous-time" RNNs • "Continuous-time" Reservoir Comput • $f_1, f_2 \in \{NNs, GPs, Polynomials, RFs, Polynomials, Polynomia$

ays	Introduce augmented states
$, \kappa \in \mathbb{Z}^+$	$x_{k+1} = \Psi_1(x_k, r_k)$
	$r_{k+1} = \Psi_2(x_k, r_k), r_k \in \mathbb{R}^d$
ials, RFs,}	Tries to represent the missing states! • RNNs / Reservoir Computers • $\Psi_1, \Psi_2 \in \{NNs, GPs, Polynomials, R$
	$1, 1, 2 \in \{1, 1, 3, 1, 0\}$
	A TENTER STATES AND
$\left\{ \begin{array}{c} t \\ s \\ \end{array} \right\}$	$\dot{x} = f_1(x, r)$
$\left\{ \begin{array}{c} t\\ s=\tau \end{array} \right)$	$\dot{x} = f_1(x, r)$ $\dot{r} = f_2(x, r), r \in \mathbb{R}^d$
$\begin{cases} t \\ s = \tau \end{cases}$	$\dot{r} = f_2(x, r), r \in \mathbb{R}^d$

Leveraging partial knowledge of the dynamics

re-written as

 $\dot{x} = f_0(z)$ $\dot{y} = \frac{1}{\varsigma}g$

Qianxiao Li, MLDS 2022 slides!!

hypothesis space (approximation budget)

$$\inf_{\hat{F}\in\mathcal{H}_m} \|F^* - \hat{F}\| \leq \mathsf{Complexity}$$

For any f_0 (regardless of its fidelity), there exists an $m^{\dagger}(x, y)$ such that (1) can be

$$(x, y)$$
 + $m^{\dagger}(x, y)$

(2a)

(2b)

• Approximation Rates. Let $\mathcal{H} = \bigcup_m \mathcal{H}_m$, where $\mathcal{H}_m \subset \mathcal{H}_{m+1}$, *m* measures size of

 (F^*) rate(m), rate $(m) \rightarrow 0$

$$\dot{x} = f_0(x) + m(x, r; \theta)$$

$$\dot{r} = g(x, r; \theta)$$

 $\dot{u} = f(u; \theta), \quad u = [x, r]^T$ Hu = x

$$\dot{x} = f_0(x) + m(x, r; \theta)$$

$$\dot{r} = g(x, r; \theta)$$

Assume noisy observations $z = Hu + \eta$.

 \iff

$$\dot{u} = f(u; \theta), \quad u = [x, r]^T$$
$$Hu = x$$

$$\dot{x} = f_0(x) + m(x, r; \theta)$$

$$\dot{r} = g(x, r; \theta)$$

Assume noisy obs Let $u(t; v, \theta)$ solve

$$\dot{u} = f(u; \theta), \quad u = [x, r]'$$
$$Hu = x$$

servations
$$z = Hu + \eta$$
.
 $\dot{u} = f(u; \theta), \ u(0) = v.$

 \iff

$$\dot{x} = f_0(x) + m(x, r; \theta)$$

$$\dot{r} = g(x, r; \theta)$$

Assume noisy obs Let $u(t; v, \theta)$ solve

Hard Constraint Idea 1: Infer init. cond. and parameters (Rubanova et al. 2019)

 \Leftrightarrow

$$\underset{\theta,u_0}{\operatorname{argmin}} \int_0^T \|z(t) - Hu(t; u_0, \theta)\|^2 dt.$$

• X Poorly-posed with larger T for chaotic systems with sensitivity to u_0 .

$$\dot{u} = f(u; \theta), \quad u = [x, r]^T$$
$$Hu = x$$

servations
$$z = Hu + \eta$$
.
 $\dot{u} = f(u; \theta), \ u(0) = v$.

$$\dot{x} = f_0(x) + m(x, r; \theta)$$

$$\dot{r} = g(x, r; \theta)$$

Assume noisy obs Let $u(t; v, \theta)$ solve

Hard Constraint Idea 2: Break data into chunks to cope with sensitivities

$$\underset{\theta,\{u_0^{(k)}\}_{k=1}^{K}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_0^T \|z^{(k)}(t) - Hu(t; u_0^{(k)}, \theta)\|^2 dt.$$

- X Dimensionality of inference grows with T.
- X When chunks are small, can overfit by "cherry-picking" $u_0^{(k)}$.

$$\iff \qquad \dot{u} = f(u; \theta), \quad u = [x, r]^T$$
$$Hu = x$$

servations
$$z = Hu + \eta$$
.
 $\dot{u} = f(u; \theta), \ u(0) = v$.

$$\dot{x} = f_0(x) + m(x, r; \theta)$$

$$\dot{r} = g(x, r; \theta)$$

Assume noisy obs Let $u(t; v, \theta)$ solve

Data Assimilation for inferring missing dynamics:

$$\underset{\theta,\{u_{0}^{(k)}\}_{k=1}^{K}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T} \|z^{(k)}(t) - Hu(t;u_{0}^{(k)},\theta)\|^{2} dt.$$

• Initial conditions $u_0^{(k)}$ can be inferred using a sequence of warmup data (and assumption on θ) using standard *Data Assimilation* techniques.

$$\iff \qquad \dot{u} = f(u; \theta), \quad u = [x, r]^T$$
$$Hu = x$$

servations
$$z = Hu + \eta$$
.
e $\dot{u} = f(u; \theta), \ u(0) = v$.

$$\dot{x} = f_0(x) + m(x, r; \theta)$$

$$\dot{r} = g(x, r; \theta)$$

Let $\hat{m}(t, \tau, \theta_{\text{DYN}}, \theta_{\text{DA}})$ be an estimate of $u(t) \mid \{z(t-s)\}_{s=0}^{\tau}, \theta_{\text{DYN}}, u(t-\tau) = 0$.

$$\iff \qquad \dot{u} = f(u; \theta), \quad u = [x, r]^T$$
$$Hu = x$$

Assume noisy observations $z = Hu + \eta$. Let $u(t; v, \theta)$ solve $\dot{u} = f(u; \theta), u(0) = v$.

$$\dot{x} = f_0(x) + m(x, r; \theta)$$

$$\dot{r} = g(x, r; \theta)$$

Assume noisy observations $z = Hu + \eta$. Let $u(t; v, \theta)$ solve $\dot{u} = f(u; \theta), u(0) = v$.

$$\underset{\theta_{\text{DYN}}, \theta_{\text{DA}}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T} ||z^{(k)}(t) - H|$$

$$\iff \qquad \dot{u} = f(u; \theta), \quad u = [x, r]^T$$
$$Hu = x$$

Let $\hat{m}(t, \tau, \theta_{\text{DYN}}, \theta_{\text{DA}})$ be an estimate of $u(t) \mid \{z(t-s)\}_{s=0}^{\tau}, \theta_{\text{DYN}}, u(t-\tau) = 0$. **DA-based inference:** Initial conditions can be estimated jointly with parameters

 $\mathcal{H}u(t; \hat{m}(t_k, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}), \theta_{\mathrm{DYN}}) \|^2 dt.$

$$\dot{x} = f_0(x) + m(x, r; \theta)$$

$$\dot{r} = g(x, r; \theta)$$

Assume noisy observations $z = Hu + \eta$. Let $u(t; v, \theta)$ solve $\dot{u} = f(u; \theta), u(0) = v$.

$$\underset{\theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}}{\operatorname{argmin}} \sum_{k=1}^{K} \int_{0}^{T} \|z^{(k)}(t) - Hu(t; \hat{m}(t_{k}, \tau, \theta_{\mathrm{DYN}}, \theta_{\mathrm{DA}}), \theta_{\mathrm{DYN}})\|^{2} dt.$$

- Here, we perform joint estimation with auto-differentiable 3DVAR
- Kalman Filter

$$\iff \qquad \dot{u} = f(u; \theta), \quad u = [x, r]^T$$
$$Hu = x$$

Let $\hat{m}(t, \tau, \theta_{\text{DYN}}, \theta_{\text{DA}})$ be an estimate of $u(t) \mid \{z(t-s)\}_{s=0}^{\tau}, \theta_{\text{DYN}}, u(t-\tau) = 0$. **DA-based inference:** Initial conditions can be estimated jointly with parameters

• Chen et al. 2021 perform joint estimation with auto-differentiable Ensemble

• Carassi et al. 2021 apply alternating descent (EnKF for \hat{m} , supervised SGD for θ)

Auto-differentiable WARMUP via Data Assimilation Auto-differentiable FORECAST

and model its dynamics using our augmented-state model.

Lorenz '63 with partial, noisy observations—noisily observe only the first component,

Learning L96MS memory-based closure

correlations for improved filtering.

• The true L96MS system has a clustered subgrouping of fast variables—our model has re-discovered this structure, and the DA gain K has learnt to exploit these

Reservoir computing with connections to random features

 $x_{k+1} = Cr_{k+1}$

• Randomize and fix (W_1, W_2, b, r_0) . • Given $\{x_k\}_{k=0}^K, r_0, W_1, W_2, b$, we can determine $\{r_k\}_{k=1}^K$ • This is great, because now we just need to do a linear regression! $C: r_k \mapsto x_k$. **Debate:** For a fully observed system, what choice of W_1 gives the best RC?

$r_{k+1} = \sigma(W_1r_k + W_2x_k + b)$

(5a) (5b)

Reservoir computing with connections to random features

 $x_{k+1} = Cr_{k+1}$

• Randomize and fix (W_1, W_2, b, r_0) . • Given $\{x_k\}_{k=0}^K, r_0, W_1, W_2, b$, we can determine $\{r_k\}_{k=1}^K$ • This is great, because now we just need to do a linear regression! $C: r_k \mapsto x_k$. **Debate:** For a fully observed system, what choice of W_1 gives the best RC? My answer: Easy, just $W_1 = 0$. Then $r_{k+1} = \sigma(W_2x_k + b)$, and

$$x_{k+1} = \sum_{j} C^{(j)} \sigma(W_2^{(j)} x_k + k)$$

For example, choosing $\sigma := \cos(\cdot)$, $W_2^{(j)} \sim \mathcal{N}(0, \Sigma)$, and $b^{(j)} \sim \mathcal{U}[-2\pi, 2\pi]$, approximates Gaussian Process with RBF kernel in large feature limit.

$r_{k+1} = \sigma(W_1r_k + W_2x_k + b)$

(5a) (5b)

 $b^{(j)}$), a random feature model!

Empirical evaluations of learnt memory

- $x_{k+1} = Cr_{k+1}$
- Often we apply RCs to partially-observed systems, which have substantial Markovian properties on the observables.
- Do you ever worry that your RC performance is not really learning memory?
- Easy sanity check: Set $W_1 = 0$ and re-tune hyperparameters.
- The difference in performance between this and our RC represents the amount of memory that the RC has accounted for.

$r_{k+1} = \sigma(W_1r_k + W_2x_k + b)$

(6a) (6b)

Expressivity of RCs/RNNs: latent dims vs function complexity

$$x_{k+1} = Cr_{k+1}$$

 $r_{k+1} = \sigma(W_1r_k + W_2x_k + b)$

- # latent variables $\equiv \dim(r)$
- Expressivity $\propto \dim(r)$
- Approximator limit leads to $dim(r) = \infty$, even for a finite dimensional system!

Versus

$x_{k+1} = C\sigma(Ar_{k+1} + a)$ $r_{k+1} = B\sigma(W_1r_k + W_2x_k + b)$

- # latent variables $\equiv \dim(r)$
- Expressivity $\propto \dim(A, W_1, W_2)$
- Decouples dimension from expressivity;
 Can use infinitely many parameters in a finite dimensional space.

Calte

24 / 30

Expressivity of RCs/RNNs: latent dims vs function complexity

$$x_{k+1} = Cr_{k+1}$$

 $r_{k+1} = \sigma(W_1r_k + W_2x_k + b)$

- # latent variables $\equiv \dim(r)$
- Expressivity $\propto \dim(r)$
- Approximator limit leads to $\dim(r) = \infty$, even for a finite dimensional system!

Versus

 $x_{k+1} = C\sigma(Ar_{k+1} + a)$ $r_{k+1} = B\sigma(W_1r_k + W_2x_k + b)$

- # latent variables $\equiv \dim(r)$
- Expressivity $\propto \dim(A, W_1, W_2)$
- Decouples dimension from expressivity; Can use infinitely many parameters in a finite dimensional space.

Continuous-time RCs and Random Features on Banach Spaces

 $\dot{x} = Cr(t)$ $\dot{r} = \sigma(W)$

Question: How to get RCs to work well in continuous time? What distributions should we choose for W_1, W_2 ? **My answer:** Shrug? I haven't gotten it to work well. I would love to hear from you all on this!

$$(r) / (r + W_2 x + b)$$

(7a) (7b)

Conclusions

- We can learn ODEs from partially observed, noisy data by embedding state-estimation techniques within the optimization
 - Can be used for tuning DA parameters
 - Can move this to a derivative-free optimization (if your models are too huge to differentiate through)
 - Currently using for modeling endocrine dynamics in patients with diabetes (joint) work with Emily Fox)
- Reservoir Computers and random feature methods are quite connected
 - With $W_r = 0$, RC approximates a markovian GP.
 - With $W_r \neq 0$, something deeper is going on! If you have ideas on this, come see me! We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium around this topic.
- I'll graduate in 2023 and need a job!
 - I want to deploy this work in biomedical applications and improve the methods until they work with real data and solve real problems!

26 / 30

Conclusions

- We can learn ODEs from partially observed, noisy data by embedding state-estimation techniques within the optimization
 - Can be used for tuning DA parameters
 - Can move this to a derivative-free optimization (if your models are too huge to differentiate through)
 - Currently using for modeling endocrine dynamics in patients with diabetes (joint) work with Emily Fox)
- Reservoir Computers and random feature methods are quite connected
 - With $W_r = 0$, RC approximates a markovian GP.
 - With $W_r \neq 0$, something deeper is going on! If you have ideas on this, come see me! We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium around this topic.
- I'll graduate in 2023 and need a job! I want to deploy this work in biomedical applications and improve the methods until they work with real data and solve real problems!

26 / 30

Conclusions

- We can learn ODEs from partially observed, noisy data by embedding state-estimation techniques within the optimization
 - Can be used for tuning DA parameters
 - Can move this to a derivative-free optimization (if your models are too huge to differentiate through)
 - Currently using for modeling endocrine dynamics in patients with diabetes (joint) work with Emily Fox)
- Reservoir Computers and random feature methods are quite connected
 - With $W_r = 0$, RC approximates a markovian GP.
 - With $W_r \neq 0$, something deeper is going on! If you have ideas on this, come see me! We (Ollie Dunbar, Nick Nelsen, and I) are organizing a small ICIAM minisymposium around this topic.
- I'll graduate in 2023 and need a job!
 - I want to deploy this work in biomedical applications and improve the methods until Caltech they work with real data and solve real problems!

Related Work

- [Cs, Eess, Stat], September 18, 2019. http://arxiv.org/abs/1909.08574.
- http://arxiv.org/abs/1904.04058.
- Conservation Laws: Grey-Box Modeling in Biotechnology and Optogenetics."
- https://doi.org/10.1063/1.5028373.

 Kaheman, Kadierdan, Eurika Kaiser, Benjamin Strom, J. Nathan Kutz, and Steven L. Brunton. "Learning Discrepancy Models From Experimental Data." ArXiv:1909.08574

 Tipireddy, Ramakrishna, Paris Perdikaris, Panos Stinis, and Alexandre Tartakovsky. "A Comparative Study of Physics-Informed Neural Network Models for Learning Unknown Dynamics and Constitutive Relations." ArXiv:1904.04058 [Physics], April 2, 2019.

 Lovelett, Robert J., Jose L. Avalos, and Ioannis G. Kevrekidis. "Partial Observations and ArXiv:1909.04234 [Math], September 9, 2019. http://arxiv.org/abs/1909.04234.

 Pathak, Jaideep, Alexander Wikner, Rebeckah Fussell, Sarthak Chandra, Brian R. Hunt, Michelle Girvan, and Edward Ott. "Hybrid Forecasting of Chaotic Processes: Using Machine Learning in Conjunction with a Knowledge-Based Model." Chaos: An Interdisciplinary Journal of Nonlinear Science 28, no. 4 (April 1, 2018): 041101.

Related Work

- CA, USA: IEEE, 1993. https://doi.org/10.23919/ACC.1993.4793116.
- February 25, 2019. http://arxiv.org/abs/1902.09689.
- 1993): 801–6. https://doi.org/10.1016/S0893-6080(05)80125-X.
- APPROXIMATORS," 2007, 11.
- Systems." PLOS ONE 13, no. 5 (May 24, 2018): e0197704.

Rico-Martines, R., I. G. Kevrekidis, M. C. Kube, and J. L. Hudson. "Discrete- vs. Continuous-Time Nonlinear Signal Processing: Attractors, Transitions and Parallel Implementation Issues." In 1993 American Control Conference, 1475–79. San Francisco,

Chang, Bo, Minmin Chen, Eldad Haber, and Ed H. Chi. "AntisymmetricRNN: A Dynamical System View on Recurrent Neural Networks." ArXiv:1902.09689 [Cs, Stat],

• Funahashi, Ken-ichi, and Yuichi Nakamura. "Approximation of Dynamical Systems by Continuous Time Recurrent Neural Networks." Neural Networks 6, no. 6 (January 1,

Schäfer, Anton Maximilian. "RECURRENT NEURAL NETWORKS ARE UNIVERSAL

 Wan, Zhong Yi, Pantelis Vlachas, Petros Koumoutsakos, and Themistoklis Sapsis. "Data-Assisted Reduced-Order Modeling of Extreme Events in Complex Dynamical Caltech

Related Work

- 2020. http://arxiv.org/abs/2002.00799.
- 2020): 132306. https://doi.org/10.1016/j.physd.2019.132306.

Lei, Youming, Jian Hu, and Jianpeng Ding. "A Hybrid Model Based on Deep LSTM for Predicting High-Dimensional Chaotic Systems." ArXiv:2002.00799 [Cs, Eess], January 21,

Sherstinsky, Alex. "Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network." Physica D: Nonlinear Phenomena 404 (March 1,

Thank you!

- postdocs of the Caltech CMS department.

- For more info, see:
 - My website: mlevine@netlify.com
 - https://arxiv.org/abs/2107.06658

Many thanks to my adviser Andrew Stuart and the graduate students and

 Many more thanks to Boumediene for the kind invitation and to all of the **MLDS organizers** and **members of the Fields Institute** for welcoming us! • Thanks to the participants and speakers who have made this an enriching week!

• **Our paper:** Levine and Stuart, A Framework for Machine Learning of Dynamical Systems, To appear in Communications of the AMS: Volume 2. 2022.

