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Introduction 

 Dynamic networks: ubiquitous in representation of 

infrastructure systems
● Susceptible to cascading failure: small problems can rapidly 

spiral out of control

● The power grid: fragile and interdependent system

The relentless penetration of 

intermittent and volatile wind 

and solar energy has posed 

further quandary for grid 

operation.
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Cascading Failure  

 A high-profile outage in Arizona on Sept. 8, 2011 
● Stemming from a large transmission line tripped out of 

service in Arizona by operation mistake

● Traffic snarled, flight canceled, and altogether > 2.7 million 

people lost power in California, Arizona and Mexico. 
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Cascading Failure  

 Motivation
● Operation blunder on individual component could incur 

widespread instability or cascading blackout in the grid. 

● There is a dire need to adopt novel modeling tools to pre-

empt potential failures and improve maintenance and 

system operation in an efficient manner. 

 Transient stability
● Narrate the capability of the network to maintain 

synchronization when subject to transient perturbations 

(e.g., faults in transmission lines or generators) 

● If the perturbations only spawn narrow angular departure 

from equilibrium of generator dynamics, which eventually 

subdues, the system retains synchronization and is 

considered stable or reliable.
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System Stability

 Lyapunov function 
● Extensively used for stability assessment in such dynamical 

systems: cumbersome to formulate, particularly for high-

dimensional systems

● Only provides a lower bound on basin of attraction (BOA), 

not capable to delineate change of BOA 

● BOA: the ensemble of states that eventually converge to the 

equilibrium conditions after a sufficiently long transient 

period

● Relies on linearization of system governing equations at 

equilibrium: local approach not amenable to non-local 

effects resulting from large perturbations.
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Basin Stability

 Basin stability (BS)
● Portray the stability of dynamical systems subject to 

potentially large perturbations (Menck et al, 2013)

● Volume of the BOA: likelihood of returning to equilibrium

How basin stability complements the linear-stability paradigm (Menck et al., 2013)
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Basin Stability

 Stability of the Amazonian rainforest
● Bi-stability: barren savanna and fertile forest; a self-

reinforcing feedback loop

● Dynamics of forest cover

● 𝑥𝑐: the critical forest cover threshold, indicative of the 

degree of dryness.

● Two equilibria by solving 𝑓 𝑥 = 0: the forest state 𝑥1 =

1 −
𝑑

𝑠
and the savanna state 𝑥2 = 0.

𝑑𝑥

𝑑𝑡
= 𝑓 𝑥 = ቊ

𝑠 1 − 𝑥 𝑥 − 𝑑𝑥 𝑥 > 𝑥𝑐
−𝑑𝑥 𝑥 < 𝑥𝑐 .
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Basin Stability

 Stability of the Amazonian rainforest
● Fixed point 𝑥1 for 𝑥 > 𝑥𝑐: Lyapunov exponent 𝜆1 = 𝑓′ 𝑥1 =
𝑑 − 𝑠 < 0; 𝑥 asymptotically converges to the steady state 𝑥1
if the initial cover x > 𝑥𝑐. 

● Fixed point 𝑥2 = 0 for 𝑥 < 𝑥𝑐: Lyapunov exponent 𝜆2 =
𝑓′ 𝑥1 = −𝑑 < 0

● 𝜆1 and 𝜆2 independent of 𝑥𝑐: linear stability does not account 

the loss of stability for 𝑥1 even if intensifying aridity ramps up 

𝑥𝑐. 

● No critical slowing down of recovery from perturbations 

could be gleaned from linear stability. 
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Basin Stability

 Stability of the Amazonian rainforest
● The BOA for the forest state shrinks, suggesting diminishing 

stability against perturbations

BOA 
BOA 
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Basin Stability

 Definition 
● A general dynamic system ሶ𝑥 𝑡 = 𝑓 𝑡 , with initial 

condition 𝑥 0 = 𝑥0 and the BOA 𝒜, an indicator function 

𝐼𝐵 𝑥 = ቊ
1, 𝑖𝑓 𝑥 ∈ 𝒜
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

● BS ℬ =  𝐼𝐵 𝑥 𝜌 𝑥 𝑑𝑥 : 𝜌(𝑥) is the PDF of state 𝑥

● ℬ ∈ [0,1] quantifies global stability of the dynamic system.

● Monte Carlo simulation: ℬ =
𝑛

𝑁

● 𝑛: the number of states that converge to 𝒜

● 𝑁: the total number of states.

● Huge computational cost: systems with high 

dimensionality or sophisticated governing equations
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Basin Stability
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Basin Stability for Networks

 Power grid network dynamics
● 𝑁 nodes: 𝑛𝑔 alternating current (AC) generators and 𝑁 − 𝑛𝑔

motors. 

● At equilibrium, the power supply and demand on the grid 

strike a balance

● Synchronous state: all generator and motor nodes run at the 

same reference frequency of 50 or 60 Hz

 𝑵− 𝟏 Reliability
● Perturbation on a single node  

● Measures the probability that the system returns to 

synchronized state given the perturbation
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Basin Stability for Networks

 Network dynamics
● Dynamics of AC generator: Kuramoto model

2𝐻𝑖

𝜔𝑠

ሷ𝜃𝑖 = 𝑃𝑖 − 𝐷𝑖 , ሶ𝜃𝑖 = 𝜔𝑖

● 𝜃𝑖 / 𝜔𝑖: rotational phase angle / angular frequency

● 𝐻𝑖: the inertia constant

● 𝜔𝑠: the nominal synchronization frequency 

● 𝑃𝑖: the mechanical power provided by the generator turbine

● 𝐷𝑖: the power demand from the grid

𝐷𝑖 = −𝛼𝑖𝜔𝑖 +σ𝑗=1
𝑁 𝐾𝑖𝑗 sin 𝜃𝑗 − 𝜃𝑖

● Dynamics of the load

ሶ𝜃𝑗 = 𝐶𝑗 +

𝑖=1

𝑁

𝐾𝑖𝑗 sin 𝜃𝑖 − 𝜃𝑗
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Basin Stability for Networks

 Network dynamics
● In equilibrium: 𝑃𝑖 = 𝐷𝑖
● Synchronous state of the grid 

𝜔1 = 𝜔2 = ⋯ = 𝜔𝑁

● Rescale (𝜃𝑖 , 𝜔𝑖) with respect to the synchronization state 

(𝜃𝑖
∗, 𝜔𝑠)

● Rescaled synchronization state: 0, 0 𝑇 for all nodes. 

 𝑵− 𝟏 reliability
● Only the generator 𝑖 is perturbated while the rest nodes stay 

at the synchronous state, yielding the initial condition 

𝒙𝟎 =
0,… , 𝜃𝑖

0, … , 0,… , 𝜔𝑖
0, … , 0

2𝑁
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Machine Learning – BS

 Can we use machine learning to accelerate the 

simulation?
● BS estimation: a binary classification problem

● Highly depend on training data

● Active learning: sequentially select the most informative 

design points (possible perturbations)

 Classifier: relevance vector machine (Tipping 1999)

● Probabilistic classification

● Predictive uncertainty: facilitate sequential design; play  

critical role in acquisition function 

● Sparsity: computationally efficient compared to SVM. 

𝑝(𝑦 = 1|𝒙) ∈ 𝜎 𝜇 − 3 𝑉 , 𝜎 𝜇 + 3 𝑉

𝜎 𝑧 =
1

1+𝑒−𝑧
: logistic sigmoid link function
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Active learning

 Learning algorithm
● Training dataset (𝑿𝒕, 𝒚𝒕) and unlabeled pool 𝑿𝒖

● Most informative data points: 𝒙𝒖 ∈ 𝑿𝒖

● Informative batch 𝒙𝒖: evaluated by simulation

● (𝒙𝒖, 𝑦𝑢): annexed into the training set to update the classifier 

and the predictive boundary. 

 Near duplicate issue 
● Closeness to the decision boundary 

𝑝 𝑦 = 1|𝒙 ≈ 0.5, 0.5 ∈ 𝜎 𝜇 − 3 𝑉 , 𝜎 𝜇 + 3 𝑉

● Design points may be too close and only provides redundant 

information while incurring extra computational cost: local 

exploitation vs. global exploration 
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Near Duplicates
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Diversity Criterion 

 Batch Selection without near duplicates 
● 𝑿𝒄:  unlabeled points around boundary

● Minimax facility location problem: K-center clustering 

problem

min
𝑿𝒌 ≤𝑘

max
𝒙∈𝑿𝒄

min
𝒙′∈𝑿𝒕∪𝑿𝒌

𝑑 𝒙, 𝒙′

● 𝑘 points to minimize the maximum distance from a point in 

the potential pool 𝑿𝒄 to the closest point in the current 

training set 𝑿𝒕
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2-node Network

 1 generator and 1 load
● The impact of coupling strength K on the system BS

ሶ𝜔𝑔 = −𝛼𝑔𝜔𝑔 + 𝑃 + 𝐾𝑠𝑖𝑛 𝜃𝑐 − 𝜃𝑔
ሶ𝜃𝑔 = 𝜔𝑔

ሶ𝜃𝑐 = 𝐶 + 𝐾𝑠𝑖𝑛(𝜃𝑔 − 𝜃𝑐)

● Coupling strength 𝐾 = 1.15, damping 𝛼 = 0.1, the input 

power 𝑃 = 1 and power consumption 𝐶 = −𝑃 = −1. 

● Uniform distribution of the perturbation: 𝜔𝑔0 ∈ [−10,10] and 

𝜃𝑔0 ∈ [−𝜋, 𝜋]. 

● Initial unlabeled pool 𝑿𝒖 from full factorial design of 200 ×
200 mesh in −𝜋, 𝜋 × [−10,10], 
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Result

 Sequential approximation
● 37 × 30 + 150 = 1260 query points 
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IEEE 118-Bus Network 

 118 nodes 
● 𝑁 − 1 reliability

● Only one generator is perturbated each time while the rest 

nodes stay at the synchronous state

● Rank generators for reliability enhancement 
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System Dynamics

 Non-synchronous vs. synchronous dynamics
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Result

 BS contour 

2.5 hours for active learning

vs.

~8 days for MC 
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Summary

 Active learning for Basin stability computation 
● Classification: RVM

● Sequential batch sampling: avoid near duplicates 

● Network BS


