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BACKGROUND

EXAMPLE  QUESTIONS OF INTEREST

•How fast does the community change? 

•Did a new food change the 
community? If so, in what way?



Microbial ecology
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Statistical learning theory



What does learning mean ?

Our dataset consists of two sets of random variables X ✓ Rd

and Y ✓ Rk , k = 1.
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⇠ ⇢(x , y).

Learning means given data find a "good" function: bf : X ! Y .

A "good" function has the property: y ⇡ bf (x), for most
(x , y) ⇠ ⇢.

We really care about performance on unobserved data.
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Depends on the algorithm to infer the function from data:

A : D ! bf .

What constraints on this algorithm need to be imposed ?
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A simple learning algorithm

A hypothesis space is a class of functions f 2 H, for example
the space of square integrable functions.

Consider the following learning algorithm A:

bf = arg min
f2H
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2 d⇢(x , y)
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Statistical complexity and learnability

For what hypothesis spaces H can we use our simple algorithm
to learn a good bf .

Covering number: Given a hypothesis space H and the
supnorm, the covering number N (H, ✏) is the minimal number
` 2 N such that for every f 2 H there exists functions {gi}

`
i=1

such that
sup
x2X

|f (x)� gi(x)|  ✏ for some i .

The metric entropy is logN (H, ✏) and a formal definition of
learnability is

8✏ > 0, lim
n!1

logN (H, ✏)

n
= 0.
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A learning theory result

Proposition
Under mild conditions, with probability at least 1 � e�t (t > 0)

kfs � f
⇤
k⇢x



r
(logN (H, "/8) + t)

n
.



Learning dynamical
systems



Hidden Markov Models

Markov model:

xt+1 = f (xt ; ✓), state process

Hidden Markov model:

xt+1 = f (xt ; ✓1) hidden state process
yt+1 = g(xt+1; ✓2) observation process.



Hidden Markov Models



Stochastic versus deterministic systems

Should the process (Xt)t be stochastic or deterministic?

I If the conditional distribution of Xt+1 given Xt has positive
variance, then we’ll say the process (Xt)t is stochastic.

I Otherwise, we’ll say the process (Xt)t is deterministic.

In ecology both types of systems are commonly used.
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Setting for deterministic dynamics

Suppose that for each ✓ in ⇥ (parameter space), we have
(X,X ,T✓, µ✓), where
I X is a complete separable metric space with Borel

�-algebra X

I T✓ : X ! X is a measurable map,
I µ✓ is a probability measure on (X,X ) is T✓-invariant if

µ✓(T�1
✓ A) = µ✓(A), 8A 2 X

I the measure preserving system (X,X ,T✓, µ✓) is ergodic if
T�1
✓ A = A implies µ(A) = {0, 1}.

Family of systems (X,X ,T✓, µ✓)✓2⇥ ⌘ (T✓, µ✓)✓2⇥.
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Observational noise

Conditional likelihood: g✓(y | x) = f (Yt = y | xt = x , ✓), with
Z

g✓(y | x)d⌫(y) = 1.

Also g : ⇥⇥ X ⇥ Y ! R+.

Likelihood for yn
0 in Yn+1 conditioned on ✓ and X0 = x is

p✓(yn
0 | x) =

nY

k=0

g✓(yk | T k
✓ (x)),

and the (marginal) likelihood of observing yn
0 given ✓ is

p✓(yn
0 ) =

Z
p✓(yn

0 | x) dµ✓(x).
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Logistic map

X0 ⇠ U[0, 1]
Xt+1 = ✓Xt(1 � Xt)

Yt+1 ⇠ N(Xt+1,�
2)



Dynamic linear models

xt+1 = At+1xt

yt = Btxt + vt ,

Here:
yt is an observation in Rp;
xt is a hidden state in Rq;
At is a p ⇥ p state transition matrix;
Bt is a q ⇥ p observation matrix;
vt is a zero-mean vector in Rq.
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Approaches to estimation

There are many approaches to estimation:
I maximum likelihood estimation,
I Bayesian estimation,
I optimization (minimization of a cost function),
I etc.

We’ll focus on two approaches:
(1) Bayesian inference;
(2) Empirical risk minimization.



Preliminaries

Observation system (Y,T , ⌫) with T : Y ! Y

Tracking systems:
Compact metrizable space X := X ⇥⇥ with map S : X ! X .

S : ⇥⇥ X ! X, S✓ : X ! X.

Loss or regret: ` : X ⇥ Y ! R+. Cost of

`n(x , y ; ✓) := `n(xn�1
0 , yn�1

0 ) =
n�1X

k=0

`(xk , yk ),

xn�1
0 = (x ,S✓x , . . . ,Sn�1

✓ x) and yn�1
0 = (y ,Ty , . . . ,T n�1y).
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Posterior Consistency



Bayesian inference

Data generating process yn
1 = (y1, ..., yn)

iid⇠ f✓⇤

Likelihood: f (yn
1 | ✓)

Prior: ⇡(✓)
Marginal likelihood: f (yn

1 ) =
R
✓ f (yn

1 | ✓)⇡(✓)d✓

Posterior
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1 ) =
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Bayesian inference

Likelihood: y1, ..., yn
iid⇠ Ber(p)

Prior: p ⇠ Beta(↵,�)

Posterior

⇧n(p | yn
1 ) = Beta

 
↵+

X

i

yi ,� + n �
X

i

yi

!



Posterior consistency

Does limn!1 ⇧n(✓ | yn
1 ) concentrate around an open

neighborhood of ✓⇤ ?

Neighborhood: S✏(✓⇤) = {✓ 2 ⇥ : k✓ � ✓⇤k1 < ✏}

Strong posterior consistency

⇧n(S✏(✓
⇤) | yn

1 ) ! 1 a.s. 8✏ > 0.
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Classical setting

Consider

Y : a complete metric space endowed with its Borel
�-algebra;

{Yn}n�0: observations as a Y-valued process;

(⇥, {p✓ : ✓ 2 ⇥}): a parameter space and a collection of
Borel probability densities on Y (with respect to a common
measure);

⇡(✓): the prior, a Borel probability distribution on ⇥.
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Posterior distribution

Let y j
i = (yi , . . . , yj), and p✓

�
y j

i
�
=

Qj
k=i p✓(yk ).

Bayes’ rule defines a posterior distribution ⇧n
�
· | Y n�1

0
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�
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R
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�
Y n�1
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�
⇡(d✓)

R
⇥ p✓

�
Y n�1

0
�
⇡(d✓)

, E ⇢ ⇥.

Question: if {Yn}n�0 is i.i.d. with density p✓0 , what happens to
⇧n

�
· | Y n�1

0
�

as n tends to infinity?
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Posterior consistency

We say that (✓0,⇡) is consistent if for all open neighborhoods U
of ✓0,

⇧n
�
⇥ \ U | Y n�1

0
�
! 0, P1

✓0
� a.s.

Theorem (Doob, 1949)
For ⇡-almost every ✓ in ⇥, the pair (✓,⇡) is consistent.

What about for every ✓ in ⇥?
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Schwartz conditions

Theorem (Schwartz, 1965)
Let ✓0 2 ⇥. Suppose that

1. for each neighborhood U of ✓0, there exist constants � > 0
and C > 0 and measurable functions 'n : Yn ! [0, 1] such
that

a) E✓0 ['n(Y n�1
0 )]  Ce��n, and

b) sup✓/2U E✓[1 � 'n(Y n�1
0 )]  Ce��n.

2. for each ✏ > 0,

⇡

✓
✓ : E✓0 [� log(p✓/p✓0)] < ✏

◆
> 0.

Then (✓0,⇡) is consistent.



More recent work

1990’s: Inconsistency results for nonparametric models (⇥
is infinite dimensional) by Diaconis and Freedman.

2000-2010: Extensive results for nonparametric models,
Ghosal and van der Vaart [2017]

2000-2019: Rates of convergence

2000-2019: Convergence with respect to different metrics
on ⇥ (e.g. Hellinger).



Dependence

We would like to consider posterior consistency for stationary
processes.

Suppose that {Yn}n�0 is stationary (not necessarily i.i.d.).

⇥ parametrizes a collection of stationary stochastic
processes, serving as models of {Yn}n.

Given a prior distribution ⇡, we’ll define a posterior
distribution ⇧n

�
· | Y n�1

0
�
.

Question: What happens to ⇧n
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0
�

as n tends to infinity?
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Gibbs posterior

Given observations y and a prior ⇡ on X .

The Gibbs posterior is

⇧n(A | y) =

R
A exp

�
�`n(x , y ; ✓)

�
d⇡(x)

Zn(y)
, A ⇢ ⇥⇥ X

Zn(y) =

Z

X
exp

�
�`n(x , y ; ✓)

�
d⇡(x).

Two questions
(1) Is limn!1 ⇧n(· | y) unique.
(2) Does limn!1 ⇧n(· | y) concentrate around T .
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Gibbs posterior

(1) Decision theoretic perspective of Bayesian inference,
coherent inference with respect to a utility.

(2) If `n is the negative log likelihood then recover standard
posterior.

(3) Robust to misspecification, robust statistics.

(4) Calibration/violation of likelihood principle

⇧n(A | y) =
R

A exp
�
� `n(x ,y ;✓)

�
d⇡(x)

Zn(y) .
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Gibbs measures

Given X , the map S, a potential function f , and a measure µ0

Gn(x ;µ0, f ) =
exp

�Pn
k=1 f (Skx)

�
R
X exp

�Pn
k=1 f (Skx)

�
dµ0

.

The Gibbs measure is the limit point of the sequence
Gn(x ;µ0, f ) and the Gibbs measure is denoted as µ0(f ).

Recall the Gibbs posterior

⇧n(x | y) =
exp

�
�
Pn

k=1 `(S
kx ,T ky)

�
R
X exp

�
�
Pn
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�

d⇡(x)
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Sequence space model

Alphabet A is a finite set (|A| = N) and ⌃ = AZ.

Left shift operator � : AZ ! AZ with (�x)i = xi+1.

The set obtained by forbidding a finite number of wods F

⌃F = {x 2 AZ | x[i,j] 6= u8i , j 2 Z, u 2 F}

is a shift of finite type (SFT)
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Sequence space model

The restriction of the shift maps encoded by matrix A

⌃A = {(ai)
1
i=�1 2 ⌃F , Aai ,ai+1 = 1 8i 2 Z}

are called a topological Markov chain or a 1-step SFT.
One can similarly define m-step SFT.

⌃A is mixing if and only if there exists n � 1 such that An

contains all positive entries.

For x 2 ⌃A, let x [i , j] =
�

y 2 ⌃A : xj
i = y j

i
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Gibbs measure

Definition
Let f : ⌃F ! R be continuous. A measure µ on ⌃F has the
Gibbs property for f if there exists K > 1 and P 2 R such that
for all x 2 AZ and m � 1,

K�1  µ(x [0,m � 1])
exp(�Pm +

Pm�1
k=0 f (�k (x)))

 K .

Theorem (Bowen)
If ⌃F is a mixing SFT, and f : ⌃F ! R is Hölder continuous,
then there exists a unique Gibbs measure for f on ⌃F .

f : ⌃F ! R is called a potential, and P = P(f ) is its pressure.
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The model class

We consider families of dependent processes as follows.

Let ⇥ be a compact metric space.

Let {f✓ : ✓ 2 ⇥} be a continuously parametrized family of
Hölder continuous potential functions.

Let {µ✓ : ✓ 2 ⇥} be the corresponding family of Gibbs
measures.

Markov chains of all orders are included in these model
classes.
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Observation densities

We consider a general observational model as follows.

Let � be a Borel measure on Y

Let g : ⇥⇥ X ⇥ Y ! [0,1) be a measurable function such
that for all ✓ 2 ⇥ and x 2 X ,

Z
g(✓, x , y)�(dy) = 1.

I We write g✓(· | x) instead of g(✓, x , ·), and we interpret it as
a conditional density on Y given ✓ and x .

I We require several integrability and regularity conditions on
g.
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Hidden Gibbs processes

Given ✓ 2 ⇥, the marginal likelihood of yn�1
0 is

p✓

�
yn�1

0
�
=

Z n�1Y

k=0

g✓(yk | �k (x))µ✓(dx).

Equivalently, we have

X0 ⇠ µ✓

Xn+1 = �(Xn)

Yn ⇠ g✓(y | Xn)�(dy).

Let PY
✓ denote the distribution of the process {Yn}n�0

under ✓.



Posterior consistency

For ✓ 2 ⇥, let [✓] =
�
✓0 2 ⇥ : PY

✓ = PY
✓0
 

.

Theorem (McGoff-M-Nobel)
Suppose ⇡ is fully supported on ⇥, and let ✓0 2 ⇥. Then for any
neighborhood U of [✓0],
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More general setting

We consider

⇥ as before;

X and {µ✓ : ✓ 2 ⇥} as before;

` : ⇥⇥ X ⇥ X ! [0,1) a continuous loss function;

{Yn}n�0 an arbitrary stationary ergodic process.

yn�1
0 := (y0, . . . , yn�1) 2 Yn.

The loss incurred by parameter ✓ and initial condition x

`
�
✓, x ; yn�1

0
�
=

n�1X

k=0

`
�
✓,�k (x), yk

�
.



Gibbs posterior distribution

Prior ⇡ and same {µ✓ : ✓ 2 ⇥} as before.

P0 on ⇥⇥ X is

P0(A ⇥ B) =

Z

A
µ✓(B)⇡(d✓).

The Gibbs posterior is

⇧n
�
A | yn�1

0
�
=

R
A exp

⇣
�`

�
✓, x ; yn�1

0
�⌘

P0(d✓, dx)

Zn
�
yn�1

0
� ,A ⇢ ⇥⇥ X

where Zn
�
yn�1

0
�

is a normalization constant.
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Questions

1. Does the following limit exist with PY -probability 1,

lim
n

1
n
logZn(Y n�1

0 ),

and if so, what is it?

2. What can be said about the convergence of the posterior
distributions {⇧n}n?
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Joinings

Definition (Joining)
Let (X ,A, µ,T ) and (Y ,B, ⌫,S) be two dynamical systems. A
joining of T and S is a probability measure � on X ⇥ Y , with
marginals µ and ⌫ respectively, and invariant to the product
map T ⇥ S.

Definition (Coupling)
A coupling of two random variable X and X 0 taking values in
(E , E) is any pair of random variables (Y ,Y 0) taking values in
(E ⇥ E , E ⇥ E) whose marginals have the same distribution as
X and X 0, X D

= Y and X 0 D
= Y 0.
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Joinings

A stationary X -valued process {Xn}n�0 is in P(X ,�) if

Xn+1 = �(Xn), 8n, wp 1.

A joining of (X ,�) with {Yn}n�0 is a stationary bi-variate
process (U,V) = {(Un,Vn)}n�0 on X ⇥ Y such that

U = {Un}n�0 is in P(X ,�), and

V = {Vn}n�0 is equal to {Yn}n�0 in distribution.

The set of joinings of (X ,�) with {Yn}n�0 is denoted by J .
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Convergence theorem

Theorem (McGoff-M-Nobel)
Suppose ⇡ is fully supported and ` satisfies appropriate
regularity and integrability conditions. Then there exists a lower
semicontinuous function � : ⇥ ! R such that with probability 1,

lim
n

�1
n
logZn(y) = inf

✓2⇥
�(✓).

The above is the rate function in the large deviation sense.
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Variational formulation of Zn(y) – average cost

Limiting average cost

lim
n!1

1
n

Z

X
`n(x , y) d�y (x) =

Z
` d�.



Variational formulation of Zn(y) – entropy term

Given two Borel probability measures ⇡ and µ on X and a finite
measurable partition ⇠ of X .
Denote µ �⇠ ⇡ as ⇡(C) = 0 ) µ(C) = 0 for C 2 ⇠.

Define

L(µ k⇡, ⇠) =
⇢ P

C2⇠ µ(C) log ⇡(C), if µ �⇠ ⇡
�1, otherwise,

with 0 · log 0 = 0.

In spirit consider all finite measurable partitions ⇠

F (µ,⇡) = sup
⇠

L(µ k⇡, ⇠).
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Convergence

Theorem (McGoff-M.-Nobel)
Suppose a GIbbs prior, then for ⌫ almost every y ,

lim
n!1

�1
n
logZn(y) = inf

�2J

⇢Z
` d�+ F (�, µ✓)

�
,

and the infimum in the above expression is attained.



Bayes as a variational problem

Suppose a GIbbs prior, then for ⌫ almost every y ,

lim
n!1

�1
n
logZn(y) = inf

�2J

⇢Z
` d�+ F (�, µ✓)

�
,

A way to write Bayes rule

⇧(✓ | x) = argmin
µ

⇢Z

✓
`(✓, x)dµ(✓) + dKL(µ,⇡)

�



Convergence

Proposition (McGoff-M.-Nobel)
Suppose a GIbbs prior and consider the pressure

P = inf
�2J

⇢Z
` d�+ F (�, µ✓)

�

✓⇤ = argmin
✓2⇥

P.

For all " > 0

P(d(S✓⇤ ,T ) < ") ! 1 a.s as n ! 1.
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Toy example: Markov model

I {µ✓ : ✓ 2 ⇥} is a collection of Gibbs measures on a
common finite state space;

I there exists ✓⇤ 2 ⇥ such that �̂ = µ✓⇤ ;

I `(✓; yn�1
0 ) = � logµ✓(yn�1

0 ).

The standard Variational Principle for Gibbs measures yields
that the posterior distribution converges almost surely to ✓⇤.

More generally: convergence analysis for Gibbs posteriors
under dependence.
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Ideas used in proofs

The main technical tools include:

(1) The thermodynamic formalism from dynamical systems (as
developed by Sinai, Ruelle, Bowen, and others);

(2) The theory of joinings, introduced by Furstenberg;

(3) Aspects of the “random" thermodynamic formalism of Kifer.



Key ideas

1. Posterior consistency as a two-stage process:
1.1 Find the limiting variational problem.
1.2 Analyze the variational problem for consistency.

2. A general framework to adapt ideas from the
thermodynamic formalism for Bayesian analysis.



A large deviations perspective

Gibb’s measures have a large deviation property. Was this
exponential scaling driving our convergence results ? If so can
we extend the results to other stochastic and deterministic
dynamics.

Yes.
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Two conditions

To prove posterior consistency we need to check:
1. Prove a conditional conditional deviation behavior for one

empirical process on X ⇥ Y; that is a conditional large
deviation result for a single model process;

2. Prove an exponential continuity condition over the model
family; this allows us to prove a large deviation result over
the entire model family.



Why

Use large deviations to prove posterior consistency to have a
flexible framework that can be applied to a variety of processes
without having to study the process in detail.

1. Continuous time hypermixing stochastic processes;
2. Gibbs processes on shifts of finite type.



Large deviations

Given a Polish space Z and a lower semicontinuous function
I : Z ! [0,1]. A family (⌘t)t2T of probability measures satisfies
the large deviation principle with rate function I if for every
closed set E ⇢ Z,

lim sup
t!1

1
t
log ⌘t(E)  � inf

z2E
I(z),

and for every open set U ⇢ Z,

lim inf
t!1

1
t
log ⌘t(U) � � inf

z2U
I(z).
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Large deviations perspective

A sequence of measures {µt} satisfies the large deviation
principle with rate function I if for all � 2 B

� inf
x2�o

I(x)  lim inf
t!1

1
t
logµt(�)  lim sup

t!1

1
t
logµt(�)  � inf

x2�
I(x)

or
lim

t!1

1
t
ln pt(s) = I(s), pt(s) = e�tI(s)+o(t).

where pt is the pdf corresponding to µt .

Laplace principle: Xn is a sequence of r.v.’s on X that satisfies
for all f 2 Cb(X )

lim
t!1

�1
t
E[exp(�tf (Xn)] = inf

x2X
f (x) + I(x),

I is the rate function.
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Step 1

For a fixed ✓ show

lim
t!1

1
t
logZ ✓

t (y) = inf
�2J (S:⌫)

⇢Z
c d�+ F (�,⇡)

�
= �V (✓).



Exponential continuity

The set {µ✓}✓2⇥ is an exponentially continuous family with
respect to L if the following holds: for all ✓ 2 ⇥, it holds for
⌫-a.e. y 2 Y that the following limit exists

lim
t!1

1
t
log

Z

X

exp
�
�Lt

✓(x , y)
�

dµ✓(x) =: �V (✓),

and if (✓t)t2T is a family of parameters such that ✓t �! ✓ in ⇥,
then

lim
t!1

1
t
log

Z

X

exp
�
�Lt

✓t
(x , y)

�
dµ✓t (x) = �V (✓).



Step 2

Proposition (M-Su)
Suppose {µ✓}✓2⇥ is an exponentially continuous family with
respect to the loss function L and ⇡ is a Borel probability
measure on ⇥. Then for ⌫-almost every y 2 Y,

lim
t!1

�
1
t
logZ⇡

t (y) = inf
✓2supp(⇡)

V (✓).



Examples

1. Mixing shifts of finite type.
2. Hypermixing processes.



Hypermixing Processes

Given a closed interval I ⇢ T, denote FI = �(Xt : t 2 I).

Definition
Given ` > 0, n � 2, and real-valued functions f1, ..., fn on X , we
say that f1, ..., fn are `-measurably separated if there exist
intervals I1, .., In such that dist(IM , Im0) � ` for 1  m < m0

 n
and fm is FIm -measurable for each 1  m  n.



Hypermixing Processes

Definition
A process µ is hypermixing if there exists a number `0 � 0 and
non-increasing ↵,� : (`0,1) ! [1,1) and � : (`0,1) ! [0, 1]
for which

lim
`!1

↵(`) = 1, lim sup
`!1

`(�(`))� 1) < 1, lim
`!0

�(`) = 0

kf1 · · · fnkL1(µ) 

nY

k=1

kfkkL↵(`)(µ),

whenever n � 2, ` > `0 and f1, ..., fn are `-measurably
separated functions and

Z

X

f g dµ�

✓Z

X

f dµ
◆✓Z

X

gdµ
◆

 �(`)kfkL�(`)(µ)kgkL�(`)(µ)

when ` > `0 and f , g 2 L1(µ) are `-measurably separated.



Key ideas

1. A general framework for posterior consistency:
1.1 Prove a conditional large deviations result for one member

in the family.
1.2 Prove exponential continuity across parameterized family.

2. An approach that can be used for SPDEs to symbolic
dynamics,



Large deviations approach by Young

T satisfies ✏ > 0 there exists p = p(✏) 2 Z+ such that given any
x1, ..xk 2 X , n1, ..., nk 2 Z+, and p1, ..., pk�1 > p(✏) there exists
x 2 X s.t

d(T ix ,T ix1) < ✏, 0  i < n1

d(T n1+p1+i x ,T ix2) < ✏, 0  i < n2
...

d(T n1+···+nk�1+p1+···+pk�1+i x ,T ixk ) < ✏, 0  i < nk



Large deviations approach by Young

Given the above condition.
Let hµ(T ) be the Kolmogorov-Sinai entropy and set f : X ! R,
St f =

Pt�1
j=0 f � T j .

Assume hµ(T ) < 1, for every � 2 C(X ,R) and c 2 R

lim sup
t!1

1

t
log µ

⇢ 1

t
St� � c

�
 sup

⇢
h⌫ (T ) �

Z
⇠d⌫ : ⌫ 2 M(X , t)

Z
�d⌫ � c

�

lim sup
t!1

1

t
log µ

⇢ 1

t
St� � c

�
� sup

⇢
h⌫ (T ) �

Z
⇠d⌫ : ⌫ 2 M(X , t)

Z
�d⌫ > c

�
.



Empirical Risk Minimization



The empirical minimization framework

We consider the following conditions on our model space
(T✓, g✓) with the following conditions:

(D1) the index set ⇥ is a compact metric space;
(D2) the map (✓, x) 7! S✓(x) from ⇥⇥ X to X is continuous;
(D3) the map (✓, x) 7! g✓(x) from ⇥⇥ X to R is continuous.

Let the loss function ` be lower semi-continuous and satisfy
(C1)

E
"

sup
|u|KS

`(u,Y0)

#
.

The error incurred by a ✓ 2 ⇥ and initial x 2 X given Y is

Rn(✓ : x) =
1
n

n�1X

k=0

`
⇣

g✓ � Sk
✓ (x),Yk

⌘
.



The empirical minimizer

A sequence of measurable functions ✓n : Rn
! ⇥, n � 1, will be

called empirical minimum risk estimates if

lim
n

inf
x

Rn(✓̂n : x) = lim
n

inf
✓
inf
x

Rn(✓ : x) w .p.1,

where ✓̂n := ✓n(Y0, ...,Yn�1).

Does ✓̂n converge ?
Does it converge to something meaningful ?



The population minimizer

The `-distortion between two stationary processes U and V is

�`(U,V) = inf
J (U,V)

E[`(U0,V0)].

A family S corresponds to a family QS =
S

✓2⇥Q✓.

Given a stationary observation process Y the population
minimizers are the set

⇥`(Y) = argmin
✓2⇥

min
U2Q✓

�`(U,Y).

Does ✓̂n converge to ⇥` ?
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Convergence

Theorem (McGoff-Nobel)
Let S satisfy (D1)-(D3), let ` be a lower semicontinuous loss
function. If Y is a stationary ergodic process satisfying
satisfying (C1) then ⇥`(Y) is non-empty and compact and

1. any sequence {✓̂n} of minimum risk estimators converges
almost surely to ⇥`(Y)

2. for each ✓ 2 ⇥`(Y) there exists a sequence of minimum
risk estimators that converges almost surely to ✓.

What drives this result ?
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Entropy of a sequence

For two sequences u and v we denote the pseudo metric

dn,p(u, v) =

 
n�1

n�1X

k=0

|uk � vk |
p

!1/p

, 1  p < 1,

if p = 1 then max0kn�1 |uk � vk |.

Let U ✓ RN be a family of infinite sequences. For each r > 0 let
N(U , r , dn,p) be the covering number. We now state two entropy
metrics

hp(U , r) = lim sup
n

1
n
logN(U , r , dn,p), hp(U) = lim

r&0
hp(U , r).
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Entropy of dynamical systems

Definition
The entropy h(S) of a family of dynamical models is the
common value of hp(S), where

US =
n
(g✓ � Sk

✓ (x))k�0 : x 2 X , ✓ 2 ⇥
o
✓ RN .

Theorem (McGoff-Nobel)
For any family S of dynamical models satisfying (D1)- (D3), and
some regularity conditions on the observation process Y if
h(S) = 0 the any sequence of minimum `-risk estimates
converges almost surely to ⇥`(Y).



Entropy of dynamical systems

Definition
The entropy h(S) of a family of dynamical models is the
common value of hp(S), where

US =
n
(g✓ � Sk

✓ (x))k�0 : x 2 X , ✓ 2 ⇥
o
✓ RN .

Theorem (McGoff-Nobel)
For any family S of dynamical models satisfying (D1)- (D3), and
some regularity conditions on the observation process Y if
h(S) = 0 the any sequence of minimum `-risk estimates
converges almost surely to ⇥`(Y).



Key ideas

1. Entropy condition for learning in dynamical systems:
1.1 Equivalence between topological entropy and statistical

notions of entropy.
1.2 Relation between topological entropy and n-widths.

2. Empirical learning for dynamical systems,



Conclusion



Open problems and extensions

1. Nonstationary processes

2. Rates of convergence for a family of dynamical systems
3. Computational challenges and motivations
4. Mean field limits for RNNs based on SFTs
5. Necessary and sufficient conditions for ERM
6. Thermodynamic formalism for Bayesian analysis
7. When is there a limiting variational form
8. When is there an equilibrium joining
9. Large deviations for Bayesian analysis

10. Medium deviations type results
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Examples of consistent dynamical systems

Classes of systems with good deterministic mixing are good
candidates:

I Axiom A systems;
I symbolic dynamics with Gibbs measures;



Axiom A systems

Given a Riemannian manifold M with a diffeomorphism
f : M ! M. Then f is an an axiom A system if the following
hold:

(1) The nonwandering set ⌦(f ) is a hyperbolic set and
compact.

(2) The set of periodic points of f is dense in ⌦(f ).
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Axiom A families

f : ⇥⇥ X ! X is a parameterized family of diffeomorphisms
with

i) ✓ 7! f✓ is Hölder continuous;

ii) ↵ > 0 such that 8✓ f✓ is C1+↵;
iii) for each ✓, ⌦(f✓) is an Axiom A attractor and f✓|⌦(f✓) is

topologically mixing;
iv) for each ✓, the measure µ✓ is the unique SRB measure.

If the above conditions are met (f✓, µ✓)✓2⇥ is a parameterized
family of Axiom A systems.



Axiom A families

f : ⇥⇥ X ! X is a parameterized family of diffeomorphisms
with

i) ✓ 7! f✓ is Hölder continuous;
ii) ↵ > 0 such that 8✓ f✓ is C1+↵;

iii) for each ✓, ⌦(f✓) is an Axiom A attractor and f✓|⌦(f✓) is
topologically mixing;

iv) for each ✓, the measure µ✓ is the unique SRB measure.

If the above conditions are met (f✓, µ✓)✓2⇥ is a parameterized
family of Axiom A systems.



Axiom A families

f : ⇥⇥ X ! X is a parameterized family of diffeomorphisms
with

i) ✓ 7! f✓ is Hölder continuous;
ii) ↵ > 0 such that 8✓ f✓ is C1+↵;
iii) for each ✓, ⌦(f✓) is an Axiom A attractor and f✓|⌦(f✓) is

topologically mixing;

iv) for each ✓, the measure µ✓ is the unique SRB measure.

If the above conditions are met (f✓, µ✓)✓2⇥ is a parameterized
family of Axiom A systems.



Axiom A families

f : ⇥⇥ X ! X is a parameterized family of diffeomorphisms
with

i) ✓ 7! f✓ is Hölder continuous;
ii) ↵ > 0 such that 8✓ f✓ is C1+↵;
iii) for each ✓, ⌦(f✓) is an Axiom A attractor and f✓|⌦(f✓) is

topologically mixing;
iv) for each ✓, the measure µ✓ is the unique SRB measure.

If the above conditions are met (f✓, µ✓)✓2⇥ is a parameterized
family of Axiom A systems.



Axiom A families

f : ⇥⇥ X ! X is a parameterized family of diffeomorphisms
with

i) ✓ 7! f✓ is Hölder continuous;
ii) ↵ > 0 such that 8✓ f✓ is C1+↵;
iii) for each ✓, ⌦(f✓) is an Axiom A attractor and f✓|⌦(f✓) is

topologically mixing;
iv) for each ✓, the measure µ✓ is the unique SRB measure.

If the above conditions are met (f✓, µ✓)✓2⇥ is a parameterized
family of Axiom A systems.



Consistency of axiom A

Theorem (McGoff-M.-Nobel-Pillai)
Assume (T✓, µ✓)✓2⇥ is parameterized family of Axiom A

systems with observation densities (g✓)✓2⇥. If observation

integrability (C2) and (C3) hold and observation regularity (M3)

and (L2) hold then MLE is consistent.



What about recurrent neural networks
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What about recurrent neural networks



Our results

Agazzi-M-Lu (2022) – We state conditions under which we can
prove

1. The convergence of the dynamics of the finite-width RNN to
its infinite-width limit (the mean-field limit) using a coupling
argument.

2. Gradient descent trains these networks to optimal fixed points
given infinite training time. This optimality result holds in the
feature-learning regime, as opposed to previous results that
hold in the NTK regime.

3. There is a limiting stochastic ordinary differential equation
that characterizes the dynamics of the network, in particular
the weights. There is existence, uniqueness, and stability for
the solution of the underlying ordinary differential equation


