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Introduction: Bifurcations in Nonlinear Systems
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Nonlinear Stability Analysis of Dynamical Systems

• Determination of the criticality of a bifurcation: catastrophic or non-catastrophic?  

• Characterizing nonlinear behavior near stability boundary

• Prediction and design of the dynamics

• Nonlinear analysis of the equations is very expensive 

• Model errors in real-world applications can be very large

• Require knowledge of the governing equations

Can modern data-driven approaches address these challenges?

Motivation

Traditional analytical methods 
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Motivations

• Determination of the criticality of a bifurcation: catastrophic or non-catastrophic?  

• Characterizing nonlinear behavior near stability boundary

• Prediction and design of the dynamics

• Nonlinear analysis of the equations is very expensive 

• Model errors in real-world applications are very large

Traditional analytical methods 

• Require knowledge of the governing equations

• Do not result in explicit parameterizations of bifurcations

Data-driven approaches

• Typically focus on a single parameter regime

• Require extensive amount of data

Nonlinear Stability Analysis of Dynamical Systems
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Embedding invariants of bifurcation analysis 

into data-driven methods

Model-based Data-driven

Data demanding

Mechanistic 

Data-driven 

Method

Inaccurate & costly

There exist generic features associated with bifurcations that can be 

incorporated into data-driven methods

Nonlinear Stability Analysis of Dynamical Systems
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Nonlinear Stability Analysis: Center manifold theorem

Center manifold: a low-dimensional invariant manifold on which the essential 

dynamics in the neighborhood of the critical point is determined

Center manifold reduction theorem: 

The bifurcating system ሶx = 𝐹 x, 𝜇 is locally topologically equivalent to 

(u, v, w) ∈ 𝑊𝑐 × 𝑊𝑠 × 𝑊𝑢

ሶu = f (u, 𝜇)

ሶv = −v

ሶw = w

ሶ𝜇 = 0

Extended theorem

Challenge: Systematic nonlinear transformations are needed to express 

nondominant states as functions of the dominant states

Reduced dominant vector field
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𝑊𝑐 = x1, x2, 𝜇 x2 = g x1, 𝜇 , g 0,0 = Dg 0,0 = 0

• Center manifold analysis starts by decomposing system dynamics

ሶx1 = Ax1 + f1(x1, g(x1, 𝜇), 𝜇),
ሶy2 = Λy2,

ሶ𝜇 = 0

ሶx1 = Ax1 + f1 x1, x2, 𝜇 ,
ሶx2 = Bx2 + f2(x1, x2, 𝜇), 
ሶ𝜇 = 0

x1, x2 ∈ R𝑛𝑐 × R𝑚

𝜇 ∈ R𝑚

A𝑛×𝑛 and B𝑚×𝑚 have eigenvalues with zero and non-zero real parts, respectively

• Center manifold approximation

• Center manifold dynamics

Reduced dominant vector field

Off-manifold dynamics y2= y2(x1, x2)

Center manifold theorem: Analytical approach

Extended (with parameter) center manifold theorem
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• Normal form transformation

A coordinate change such that the system becomes "as simple as possible"

x1 = ෤x1 + p(෤x1, 𝜇)

ℎ = 𝛽 𝜇 𝑦1 𝑦1
3 ℎ = 𝛽 𝜇 𝑦1 − 𝑦1

2
ℎ = 𝛽 𝜇 + 𝑦1

2
Pitchfork Transcritical Fold

𝛽 𝜇 𝛽 𝜇

𝛽 𝜇

+
−

How to perform this analysis for large-dimensional systems and/or inaccurate models?

ሶx1 = Ax1 + f1(x1, g(x1, 𝜇), 𝜇),
ሶy2 = Λy2,

ሶ𝜇 = 0. 
൝

ሶ෤x1 = h(෤x1, 𝜇),
ሶy2 = Λy2,

ሶ𝜇 = 0.
൝

Center manifold theorem: Analytical approach

𝑦1 = k(෤x1, 𝜇)

ሶy1 = h(y1, 𝛽(𝜇)),
ሶy2 = Λy2,

ሶ𝜇 = 0.
൝

Normal form
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𝑁1

𝑁11

𝑁12

𝑁21

𝑁22

y𝑡

𝛽(𝜇)

𝑁2

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 ) y𝑡+𝑙

ሶ𝛽 𝜇 = 0

𝛽(𝜇)

x𝑡

𝜇

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙

തx𝑡+𝑙

ҧ𝜇

𝑁𝐶𝑀

recursive block

Nonlinear Stability Analysis: A deep-learning approach

Nonlinear transformations to 

center manifold

CM theory-informed 

constraint 

Nonlinear transformations to 

observation space

Parameter-dependent encoder Parameter-dependent decoder

9A. Ghadami & B.I.Epureanu. "Deep learning for centre manifold reduction and stability analysis in nonlinear systems.” Philos. Trans. Royal Soc. A (2022)



𝑁1

𝑁11

𝑁12

𝑁21

𝑁22

y𝑡

𝛽(𝜇)

𝑁2

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 ) y𝑡+𝑙

ሶ𝛽 𝜇 = 0

𝛽(𝜇)

x𝑡

𝜇

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙

തx𝑡+𝑙

𝜇

Parameter-dependent encoder

• 𝑁11 simultaneously performs nonlinear center manifold approximation and 

normal form transformation

• 𝑁11 is a function of both system states and parameters due to the extended 

center manifold theorem

• 𝑁12 maps the physical parameter to the effective bifurcation parameter 𝛽(𝜇)

Nonlinear Stability Analysis: A deep-learning approach

𝑁𝐶𝑀

recursive block
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𝑁1

𝑁11

𝑁12

𝑁21

𝑁22

y𝑡

𝛽(𝜇)

𝑁2

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 ) y𝑡+𝑙

ሶ𝛽 𝜇 = 0

𝛽(𝜇)

x𝑡

𝜇

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙

തx𝑡+𝑙

𝜇

Center manifold block

• Applies constraint on the latent space dynamics

ℎ = 𝛽 𝜇 𝑦1 + 𝑤𝑦1
3 𝑤 = 1, subcritical pitchfork

𝑤 = -1, supercritical pitchfork
e.g.,

• Forwards the reduced dynamics in time according to the normal forms of bifurcations

• Searches and finds the best normal form that fits the data while optimizing its parameters

Nonlinear Stability Analysis: A deep-learning approach

𝑁𝐶𝑀

recursive block
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𝑁1

𝑁11

𝑁12

𝑁21

𝑁22

y𝑡

𝛽(𝜇)

𝑁2

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 ) y𝑡+𝑙

ሶ𝛽 𝜇 = 0

𝛽(𝜇)

x𝑡

𝜇

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙

തx𝑡+𝑙

𝜇

Center manifold blockCenter manifold block

• Applies constraint on the latent space dynamics

• Forwards the reduced dynamics in time according to the normal forms of bifurcations

• Searches and finds the best normal form that fits the data while optimizing its parameters

• Transient dynamics are captured by off-manifold equations in the latent space

Nonlinear Stability Analysis: A deep-learning approach

𝑁𝐶𝑀

recursive block
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𝑁1

𝑁11

𝑁12

𝑁21

𝑁22

y𝑡

𝛽(𝜇)

(recursive block)

𝑁2

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 ) y𝑡+𝑙

ሶ𝛽 𝜇 = 0

𝛽(𝜇)

x𝑡

𝜇

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙

തx𝑡+𝑙

ҧ𝜇

𝑁𝐶𝑀

Parameter-dependent decoder

• Transforms the latent space dynamics back to the observation coordinates

• Setting 𝛽 𝜇 = 0 and 𝑦𝑖 = 0, 𝑖 = 2,… , 𝑛𝑙 , the transformation identifies center 

manifold of the dynamics in the observation space

Nonlinear Stability Analysis: A deep-learning approach
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𝐿1 =
1

𝑁
෍

𝑘=1

𝑁

x𝑡𝑘 − തx𝑡𝑘
2
+ 𝜇𝑡𝑘 − ҧ𝜇𝑡𝑘

2
=

1

𝑁
෍

𝑘=1

𝑁

x𝑡𝑘 − 𝑁21 𝑁11 x𝑡𝑘 , 𝜇 , 𝛽
2
+ 𝜇𝑡𝑘 − 𝑁22 𝑁12 𝜇𝑡𝑘

2

1- Autoencoder loss: enforcing reconstruction

Training procedure

𝑁1 𝑁2

𝑁11

𝑁12

𝑁21

𝑁22

y𝑡

𝛽(𝜇)

x𝑡

𝜇𝑡

തx𝑡

ҧ𝜇𝑡

Nonlinear Stability Analysis: A deep-learning approach
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2- State prediction loss: enforcing predictability 

𝑁1

𝑁11

𝑁12

𝑁21

𝑁22

y𝑡

𝛽(𝜇)

𝑁2

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 ) y𝑡+𝑙

ሶ𝛽 𝜇 = 0

𝛽(𝜇)

x𝑡

𝜇𝑡

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙

തx𝑡+𝑙

ҧ𝜇𝑡+1

𝑁𝐶𝑀

𝐿2 =
1

𝑁
෍

𝑘=1

𝑁

x𝑡𝑘+𝑙 − തx𝑡𝑘+𝑙
2

=
1

𝑁
෍

𝑘=1

𝑁

x𝑡𝑘+𝑙 − 𝑁2 𝑁𝐶𝑀 𝑁1 x𝑡𝑘 , 𝜇 , 𝛽
2

Training procedure

Nonlinear Stability Analysis: A deep-learning approach
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3- Code prediction loss: enforcing sequentiality

𝑁11

𝑁12

y𝑡+𝑙

𝛽(𝜇)

x𝑡+𝑙

𝜇𝑡+𝑙

𝑁21

𝑁22

y𝑡

𝛽(𝜇)

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 )

ሶ𝛽 𝜇 = 0
𝛽(𝜇)

x𝑡

𝜇𝑡

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙

𝑁𝐶𝑀
ത𝑦𝑡+𝑙

𝐿3 =
1

𝑁
෍

𝑘=1

𝑁

y𝑡𝑘+𝑙 − ത𝑦𝑡𝑘+𝑙
2

=
1

𝑁
෍

𝑘=1

𝑁

𝑁1(x𝑡𝑘+𝑙 , 𝜇) − 𝑁𝐶𝑀 𝑁1(x𝑡𝑘 , 𝜇), 𝛽
2

Training procedure

Nonlinear Stability Analysis: A deep-learning approach

𝑁1 𝑁1
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𝛾
1

𝑁
෍

𝑘=1

𝑁

y𝑡𝑘+𝑙 − ത𝑦𝑡𝑘+𝑙
2

1

𝑁
෍

𝑘=1

𝑁

x𝑡𝑘+𝑙 − തx𝑡𝑘+𝑙
2

𝐿𝑜𝑠𝑠 =
1

𝑁
෍

𝑘=1

𝑁

x𝑡𝑘 − തx𝑡𝑘
2

Nonlinear Stability Analysis: A deep-learning approach

Training procedure: summary

+

+

Adjusting the latent 
space penalty
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ሶ𝑦1 =
𝜎

𝜎 + 1
𝜇 − 1 𝑦1 − 𝑦1

3 + 𝑂(4)

 Center manifold dynamics

instability type

 Center manifold approximation

𝑥2 = 𝑥1 +
1

𝜎 + 1
𝑥1 𝜇 − 1 −

1

𝑏 𝜎 + 1
𝑥1
3 −

𝜎

𝜎 + 1 3 𝑥1 𝜇 − 1 2 + 𝑂(4)

𝑥3 =
1

𝑏
𝑥1
2 +

2𝜎

𝑏 𝜎+1
𝑥1
2 𝜇 − 1 + 𝑂(4)

 Lorenz equation

ሶ𝑥1 = −𝜎 𝑥1 − 𝑥2
ሶ𝑥2 = 𝑥1 𝜇 − 𝑥3 − 𝑥2
𝑥3 = 𝑥1𝑥2 − 𝑏𝑥3

Deep Learning for Nonlinear Stability Analysis: Example

𝛽(𝜇)

ሶ𝑦2 = −𝑏𝑦2

ሶ𝑦3 = −(𝜎 + 1)𝑦3

18



• Lorenz equation

• All measurements are recorded before instability, i.e. 0 ≪ 𝜇 < 1

Nonlinear Stability Analysis: Lorenz system

ℎ 𝑦1, 𝛽 ?
𝛽 𝜇 ?
𝜆𝑖?

unknowns:

ሶ𝑥1 = −4 𝑥1 − 𝑥2
ሶ𝑥2 = 𝑥1 𝜇 − 𝑥3 − 𝑥2
ሶ𝑥3 = 𝑥1𝑥2 − 0.25𝑥3

19A. Ghadami & B.I.Epureanu. "Deep learning for centre manifold reduction and stability analysis in nonlinear systems.” Philos. Trans. Royal Soc. A (2022)

Randomly sampled dynamics

Φ

Encoder

Ψ

Decodery𝑡 y𝑡+𝑙
x𝑡+𝑙

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 )

ሶ𝛽 𝜇 = 0

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2,3

𝜇𝑡

x𝑡

𝑁𝐶𝑀

recursive block

𝜇𝑡+𝑙
𝛽 𝜇 𝛽 𝜇



Reference latent space dynamics (CM theory) Identified latent space dynamics

ሶ𝑦1 = 0.8(𝜇 − 1)𝑦1 − 𝑦1
3

ሶ𝑦2 = −0.25𝑦2
ሶ𝑦3 = −5𝑦3

Supercritical pitchfork with one center 
manifold and two stable manifolds

ሶ෤𝑦1 = 𝛽(𝜇) ෤𝑦1 − ෤𝑦1
3

ሶ෤𝑦2 = −0.23 ෤𝑦2
ሶ෤𝑦3 = −4.14 ෤𝑦3

Supercritical pitchfork with one center 
manifold and two stable manifolds

identified

reference

Nonlinear Stability Analysis: Lorenz system

ሶ𝑥1 = −4 𝑥1 − 𝑥2
ሶ𝑥2 = 𝑥1 𝜇 − 𝑥3 − 𝑥2
ሶ𝑥3 = 𝑥1𝑥2 − 0.25𝑥3

• Lorenz equation

20



y =
𝑦1
0
0

𝛽 = 𝜖 ≪ 1
𝑵𝟐𝟏 x

• Center manifold identification

Nonlinear Stability Analysis: Lorenz system

Identified
Reference

21



ሶ𝑧1 = 6𝜇𝑧1 + 10𝜇𝑧2 − 2𝑎𝑧1𝑧2 − 2𝑎𝑧2
2,

ሶ𝑧2 = 2𝑧2 + 𝑏𝜇 − 5𝜇𝑧1 − 9𝜇𝑧2 + 𝑎𝑧1
2 + 4𝑎𝑧1𝑧2 + 3𝑎𝑧2

2,

ሶ𝑧3 = −0.575𝑧3 + 0.425𝑧4,

ሶ𝑧4 = 0.425𝑧3 − 0.575𝑧4.

x = p1𝑧1 + p2𝑧2 +⋯+ p6𝑧1𝑧3,• Large dimensional observation vector p𝑖 ∈ R100

• System dynamics

𝜆1,2 = 0,−2ൠ

Eigenvalues at 𝜇 = 0

ൠ
𝜆3,4 = −0.15, −1

Constant eigenvalues

Nonlinear Stability Analysis: Large-dimensional observations

22A. Ghadami & B.I.Epureanu. "Deep learning for centre manifold reduction and stability analysis in nonlinear systems.” Philos. Trans. Royal Soc. A (2022)

Φ

Encoder

Ψ

Decoder
y𝑡 y𝑡+𝑙

x𝑡+𝑙

time

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 )

ሶ𝛽 𝜇 = 0

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙x𝑡

POD

𝑛𝑙 = 4

𝑁𝐶𝑀

recursive block

Randomly sampled dynamics

𝛽 𝜇 𝛽 𝜇𝜇 𝜇



-0.05 -0.04 -0.03 -0.02 -0.01 0
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

(
)

 Center manifold theory

Approximated by the trained network

Nonlinear Stability Analysis: Large-dimensional observations

Reference dynamics Identified dynamics 
(latent space dimension 𝑛𝑙 = 4)

ሶ𝑦1 = 𝛽 𝜇 𝑦1 − 𝑦1
3

ሶ𝑦2 = −0.15𝑦2

ሶ𝑦3 = −𝑦3

ሶ𝑦4 = −2𝑦4

Bifurcation type: 
Supercritical pitchfork 
bifurcation

ሶ෤𝑦1 = 𝛽 𝜇 ෤𝑦1 − ෤𝑦1
3

ሶ෤𝑦2 = −0.148෤𝑦2
ሶ෤𝑦3 = −0.955෤𝑦3

ሶ෤𝑦4 = −1.967෤𝑦4
Bifurcation type: 
Supercritical pitchfork 
bifurcation

23

Φ

Encoder

Ψ

Decoder
y𝑡 y𝑡+𝑙

x𝑡+𝑙

time

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 )

ሶ𝛽 𝜇 = 0

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙x𝑡

POD

𝑛𝑙 = 4

𝑁𝐶𝑀

recursive block

Randomly sampled dynamics

𝛽 𝜇 𝛽 𝜇𝜇 𝜇



Reference dynamics Identified dynamics 
(latent space dimension 𝑛𝑙 = 4)

Identified dynamics 
(latent space dimension 𝑛𝑙 = 1)

Nonlinear Stability Analysis: Large-dimensional observations

ሶ𝑦1 = 𝛽 𝜇 𝑦1 − 𝑦1
3

ሶ𝑦2 = −0.15𝑦2
ሶ𝑦3 = −𝑦3
ሶ𝑦4 = −2𝑦4

Bifurcation type: 
Supercritical pitchfork 
bifurcation

ሶ෤𝑦1 = 𝛽 𝜇 ෤𝑦1 − ෤𝑦1
3

Error on test dataset: 2.11 x 10-3

ሶ෤𝑦1 = 𝛽 𝜇 ෤𝑦1 − ෤𝑦1
3

ሶ෤𝑦2 = −0.148෤𝑦2
ሶ෤𝑦3 = −0.955෤𝑦3

ሶ෤𝑦4 = −1.967෤𝑦4

Bifurcation type: 
Supercritical pitchfork 
bifurcation

Error on test dataset: 2.96 x 10-6

Bifurcation type: 
Supercritical pitchfork 
bifurcation
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Φ

Encoder

Ψ

Decoder
y𝑡 y𝑡+𝑙

x𝑡+𝑙

time

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 )

ሶ𝛽 𝜇 = 0,

x𝑡

𝑁𝐶𝑀

recursive block

Randomly sampled dynamics

𝛽 𝜇 𝛽 𝜇𝜇 𝜇

𝑛𝑙 = 1



• Identified latent space dynamics and center manifold for different choices of 

latent space dimensionality 

-0.05 -0.04 -0.03 -0.02 -0.01 0
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

(
)

Identified using latent space dimension n
l
=1

Identified using latent space dimension n
l
=4

 Center manifold theory (Nonlinear)

-0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

Identified using latent space dimension n
l
=1

Identified using latent space dimension n
l
=4

 Center manifold theory (Nonlinear)

𝑥37

𝑥
4
8

Nonlinear Stability Analysis: Large-dimensional observations
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Deep Learning and Forecasting Bifurcations

• Motivation: Predicting critical transitions and bifurcation diagrams from 

safe measurements

• Bifurcation forecasting method: rate of recovery from perturbations is an 

indicator and is correlated to distance to bifurcations

26• B.I. Epureanu et al. ”Rate of recovery from perturbations as a means to forecast future stability of living systems." Sci. Rep. (2018)

• J. Lim & B. I. Epureanu. "Forecasting a class of bifurcations: Theory and experiment." Phys. Rev. E (2011)

• A. Ghadami & B. I. Epureanu. "Bifurcation forecasting for large dimensional oscillatory systems.” J. Comput. Nonlinear Dyn. (2016).

• B. I. Epureanu et al. "Forecasting bifurcations from large perturbation recoveries in feedback ecosystems.” PloS One (2015)



Deep Learning and Forecasting Bifurcations

• Challenge: 

• Recovery rates must be identified on manifold

• Approximated recovery rates might be affected by the observations

• Sparce and random sampling affect the recovery rate approximations

• Deep learning for approximating the recovery rates

𝜇

𝜆𝑦1

𝑦1 = 𝑐1

𝑦1 = 𝑐𝑛
⋮

𝜇

𝑥𝑖
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Φ

Encoder

Ψ

Decoder
y𝑡 y𝑡+𝑙

x𝑡+𝑙

time

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 )

ሶ𝛽 𝜇 = 0

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2, . . , 𝑛𝑙x𝑡

𝑁𝐶𝑀

recursive block

Randomly sampled dynamics

𝛽 𝜇 𝛽 𝜇𝜇 𝜇



ሶ𝑦 = 𝜇𝑦 − 𝑦3

Deep Learning and Forecasting Bifurcations

x = p1𝑦 + p2(𝜇𝑦 + 𝑦2) + p3 𝜇2𝑦 + 𝑦3 ,

Example

Low-dimensional dynamics 

Large-dimensional observations p𝑖 ∈ ℝ20
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28A. Ghadami & B.I. Epureanu, ”A deep-learning approach to construct bifurcation diagrams in nonlinear dynamical systems”, in preparation.



Summary

• Deep learning approach for bifurcation analysis in dynamical systems

• Rooted in center manifold theory 

• Identifies the bifurcation type and its parametric normal form on the center manifold

• Advantageous for data-driven analysis and order reduction with limited information 

regarding the underlying low-dimensional dynamics is available
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Randomly sampled dynamics

Φ

Encoder

Ψ

Decodery𝑡 y𝑡+𝑙
x𝑡+𝑙

ሶ𝑦1 = ℎ(𝑦1, 𝛽 𝜇 )

ሶ𝛽 𝜇 = 0

ሶ𝑦𝑖 = 𝜆𝑖𝑦𝑖 , 𝑖 = 2,3

𝜇𝑡

x𝑡

𝑁𝐶𝑀

recursive block

𝜇𝑡+𝑙
𝛽 𝜇 𝛽 𝜇



Thank you
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