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Introduction

Goal of the talk

A bridge between signature transforms on path space and features
created by recurrent neural networks (fully trained or in the sense of
reservoir computing) might be given by randomized signature.

We provide a representation theoretic viewpoint on randomized
signature.

We show an example of learning dynamics, where randomized
signatures, neural networks (and a bit of domain knownledge) are
used to optimally reconstruct dynamics.
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Introduction

Signature in a nutshell - notation

The signature takes values in the free algebra generated by d
indeterminates e1, . . . , ed given by

T ((Rd )) := {a =
∞∑

k=0

d∑
i1,...,ik =1

ai1...ik ei1 · · · eik}.

Sums and products are defined in the natural way.

We consider the complete locally convex topology making all
projections a 7→ ai1...ik continuous on Ad , hence a convenient vector
space.
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Introduction

Signature in a nutshell - definition

Signature of u is the unique solution of the following CODE in T ((Rd ))

d Sigs,t =
d∑

i=1
Sigs,t ei dui

t , Sigs,s = 1.

and is apparently given by

Sigs,t(a) = a
∞∑

k=0

d∑
i1,...,uk =1

∫
s≤t1≤···≤tk≤t

dui1(t1) · · · duik (tk) ei1 · · · eik .
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Introduction A “splitting result” in spirit of reservoir computing

Signature and its connection to reservoir computing

The following “splitting theorem” is the precise link to reservoir computing. We suppose here that the controlled ordinary
differential equation with characteristics V1, . . . , Vd admits a unique global solution given by an smooth evolution operator
Evol such that Yt = Evolt (y).

Theorem
Let Evol be a smooth evolution operator on RN such that (Evolt (y))t satisfies a controlled ordinary differential equation with
characteristics V1, . . . , Vd . Then for any smooth function g : RN → R and for every M ≥ 0 there is a time-homogenous
linear map W depending on (V1, . . . , Vd , g,M, y) from T M (Rd )→ R such that

g
(

Evolt (y)
)

= W
(
πM (Sigt )

)
+O
(

tM+1
)
,

where πM : T ((Rd ))→ T M (Rd ) is the canonical projection.

Remark
For the proof see e.g. Lyons (1998). It can however be proved in much more generality, e.g. on convenient vector spaces.
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Introduction A “splitting result” in spirit of reservoir computing

Is signature a good reservoir?

This split is not yet fully in spirit of reservoir computing, since unlike
a physical systems where the evaluations are ultrafast, computing
signature up to a high order can take a while, in particular if d is large.

Moreover, regression on signature is the analog on path space of a
polynomial approximation, which can have several disadvantages.

Remedy: information compression by Johnson-Lindenstrauss
projection.
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Two perspectives on randomized signatures The Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss (JL) lemma
We here state the classical version of the Johnson-Lindenstrauss Lemma.

Lemma
For every 0 < ε < 1, and every Q consisting of N point set in some Rn , there is
a linear map f : Rn → Rk with k ≥ 24 log N

3ε2−2ε3 such that

(1− ε)‖v1 − v2‖2 ≤ ‖f (v1)− f (v2)‖2 ≤ (1 + ε)‖v1 − v2‖2

for all v1, v2 ∈ Q, i.e. the geometry of Q is almost preserved after the projection.

The map f is called (JL) map and it can be drawn randomly from a set of
linear projection maps.

Indeed, take a k × n matrix A of with iid standard normal entries. Then
1√
k A satisfies the desired requirements with high probability .

We apply this remarkable result to obtain “versions of signature” in lower
dimensional spaces.
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Two perspectives on randomized signatures Randomized signature (jointly with CC, LG, LG, JP)

Towards randomized signature
We look for (JL) maps on T M(Rd ) which preserve its geometry encoded in some
set of (relevant) directions Q. In order to make this program work, we need the
following definition:

Definition
Let Q be any (finite or infinite) set of elements of norm one in T M(Rd ) with
Q = −Q. For v ∈ T M(Rd ) we define the function

‖v‖Q := inf
{∑

j
|λj |

∣∣ ∑
j
λj vj = v and vj ∈ Q

}
.

We use the convention inf ∅ = +∞ since the function is only finite on span(Q).

The function ‖.‖Q behaves precisely like a norm on the span of Q if
sup{‖v‖ | v ∈ Q} <∞.

Additionally ‖v‖Q1
≥ ‖v‖Q2

for Q1 ⊂ Q2.
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Two perspectives on randomized signatures Randomized signature (jointly with CC, LG, LG, JP)

Towards randomized signature - a first estimate
Proposition

Fix M ≥ 1 and ε > 0. Moreover, let Q be any N point set of vectors with norm
one in T M(Rd ). Then there is linear map f : T M(Rd )→ Rk (with k being the
above JL constant with N), such that∣∣〈v1, v2 − (f ∗ ◦ f )(v2)〉

∣∣ ≤ ε‖v1‖Q‖v2‖Q ,

for all v1, v2 ∈ span(Q), where f ∗ : Rk → T M(Rd ) denotes the adjoint map of f
with respect to the standard inner product on Rk .

By means of this special JL map associated to a point set Q we can now
“project signature” without loosing too much information.
We can then solve the projected and obtain – up to some time – a solution
which is ε-close to signature.
By a slight abuse of notation we write Sigt for the truncated version
πM
(

Sigt
)

in T M(Rd ).
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Two perspectives on randomized signatures Randomized signature (jointly with CC, LG, LG, JP)

Randomized signature is as expressive as signature
Theorem (Cuchiero, Gonon, Grigoryeva, Ortega, Teichmann)

Let u be a smooth control and f a JL map from T M(Rd )→ Rk where k is
determined via some fixed ε and a fixed set Q. We denote by r-Sig the smooth
evolution of the following controlled differential equation on Rk

dXt =
d∑

i=1

( 1√
n

f (f ∗(Xt)ei ) + (1− 1√
n

)f (Sigt ei )
)

dui (t) , X0 ∈ Rk ,

where n = dim(T M(Rd )). Then for each w ∈ T M(Rd )

|〈w ,Sigt −f ∗(r-Sigt(X0))〉|

≤
∣∣〈w ,Evolt(1− f ∗(X0))〉

∣∣+ Cε
d∑

i=1

∫ t

0
‖Evol∗r w‖Q‖ Sigr ei‖Q dr ,

where Evol denotes here the evolution operator corresponding to
dZt =

∑d
i=1

1√
n (f ∗ ◦ f )(Ztei )dui (t) and C = sups≤r≤t, i

∣∣∣ dui (r)
dr

∣∣∣.
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Two perspectives on randomized signatures Randomized signature (jointly with CC, LG, LG, JP)

r -Sig as random dynamical system

We can actually calculate approximately the vector fields which determine the
dynamics of r-Sig by generic random elements.

Theorem (Cuchiero, Gonon, Grigoryeva, Ortega, Teichmann)

For M →∞ (and thus n→∞) the entries of the linear maps

y 7→ 1√
n

f (f ∗(y)ei )

for i = 1, . . . , d, are asymptotically normally distributed with independent entries.
The time dependent bias terms

(1− 1√
n

)f (Sigt ei )

are as well asymptotically normally distributed with independent entries.
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Two perspectives on randomized signatures Randomized signature (jointly with CC, LG, LG, JP)

Randomized signature as reservoir

Practical implementation of randomized signature

Given a set of hyper-parameters θ ∈ Θ, and a dimension k, choose randomly
(often just by independently sampling from a normal distribution) matrices
A1, . . . ,Ad ∈ Rk×k as well as (bias) vectors b1, . . . , bd .

Then one can tune the hyper-parameters and the dimension k such that

dXt =
d∑

i=1
(Ai Xt + bi )dui (t), X0 = x

approximates the CODE Y locally in time via a linear readout W up to
arbitrary precision.

The process X will serve as reservoir. Note that again it does not depend on
the specific dynamics of Y which should be learned.
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Two perspectives on randomized signatures A representation theoretic perspective (jointly with NMC)

Representation theory

Instead of applying the JL Lemma directly on Ad we could construct
faithful representations and evaluate them. Consider a manifold M and
V1, . . . ,Vd vector fields on M such that the map

ei 7→ Vi

from the Lie algebra g ⊂ Ad to the Lie algebra of vector fields does not
have a kernel, in other words there are no non-trivial relations among Lie
brackets of the vector fields V1, . . . ,Vd . Then the algebra of (formal)
differential operators generated by V1, . . . ,Vd and Ad are isomorphic.
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Two perspectives on randomized signatures A representation theoretic perspective (jointly with NMC)

Controlled transport PDEs and the method of
characteristics

Furthermore the solution of the transport equation

dft(s, x) =
d∑

i=1
sVi ft(x)dui (t)

and signature have the same expressive power.

Notice that ft(s, x) = f (Xt) where

dXt =
d∑

i=1
sVi (Xt)dui (t),X0 = x

for x ∈ M, f ∈ C∞(M) and s ∈ R.
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Two perspectives on randomized signatures A representation theoretic perspective (jointly with NMC)

Generic controlled transport PDEs represent signatures

This yields an alternative perspective to understanding reservoirs
constructed by generic vector fields: consider generic vector fields, then
the vector (ft(x))f ,x

0≤t≤T of paths for approximate signature up to arbitrary
precision.

This construction can be fully parallelized and does only depend on a low
dimensional evaluation of the above CODE

dXt =
d∑

i=1
sVi (Xt)dui (t),X0 = x

for x ∈ M, f ∈ C∞(M) and s ∈ R.
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Two perspectives on randomized signatures A representation theoretic perspective (jointly with NMC)

A strengthened version
Let σ be a random (i.e. all coefficients are independently randomly chosen), real
analytic activation function and A1, . . . ,Ad , b1, . . . , bd be randomly chosen
matrices (each with absolutely continuous laws with respect to Lebesgue
measure) and vectors of dimension k, then

Vi (x) := σ(Ai x + bi )

defines vector fields on Rk , which satisfy an even stronger condition, namely that
d∑

i1,...,vk =1,k≤m
bi1···ik Vi1 · · ·Vik id(x) = 0

for all x ∈ Rk implies that all coefficients vanish.

Then the flow at time t

dXt =
d∑

i=1
sVi (Xt)dui (t),X0 = x

for all x ∈ Rk and s contains the same information as signature at t.
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Two perspectives on randomized signatures A representation theoretic perspective (jointly with NMC)

Proof

Generic vector fields are of course meager in the set set of all vector fields,
but can also be constructed by random procedures. This can be seen by
using appropriate metrics on real analytic functions. This does not allow
to conclude about random constructions but gives a hint that real analytic
functions satisfying polynomial differential relations are ’small’.
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Two perspectives on randomized signatures A representation theoretic perspective (jointly with NMC)

Proof

Let us first construct a generic, randomly chosen activation function σ:

There is an activation function σ, i.e. a real analytic, non-constant and
bounded function such that there is no polynomial in finitely many
variables from σ(n)(zil ), for d × k commuting indeterminates zil , which
vanishes (in other words σ does not satisfy any polynomial differential
relations). In other words: σ(n)(zil ) behaves like a triple-indexed,
countable system of free, commutative variables.

For the proof it is sufficient to understand that any polynomial relation
enforces σ to lie in a subset of analytic functions which has measure zero
with respect to independent variations of all coefficients of σ. One can
order the polynomial relations by the maximal degree of derivative in σ
and the overall polynomial degree and therefore proves the set of all
functions satisfying any polynomial relation being negligible.

Josef Teichmann (ETHZ) A representation view on signature September 2022 18 / 49



Two perspectives on randomized signatures A representation theoretic perspective (jointly with NMC)

Proof
Let σ be a generic activation function and consider the vector of formal
powerseries in commuting indeterminates zil

Vi id(x) := (σ(zil ))1≤l≤k

for i = 1, . . . , d . We define (as formal power series)

Vi Vj id(x) := (
k∑

l=1
ajlσ(zil )σ(1)(zjm))1≤m≤k

for invertible k × k matrices (ajl ) yielding a non-commutative algebra
generated by Vi , 1 ≤ i ≤ d .

It is then clear by induction that
d∑

i1,...,vk =1,k≤m
bi1···ik Vi1 · · ·Vik id(x) = 0

leads to all coefficients vanishing.
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Two perspectives on randomized signatures A representation theoretic perspective (jointly with NMC)

Proof

The very reason is that we can identify by looking at the highest derivative
of σ the vector fields applied first to id. This yields by the previously
established freeness of σ(n)(zil ) and induction the result.
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Two perspectives on randomized signatures A representation theoretic perspective (jointly with NMC)

Randomized Signature

For fixed random matrices A,1, . . . ,Ad (components indedently sampled
with respect to a law absolutely continuous to Lebesgue measure) and
fixed x the dynamical systems

dXt =
d∑

i=1
σ(Ai Xt + bi )dui (t), X0 = x

for all possible choices of bi is as expressive as signature.
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An application (jointly with Marc Nübel and Florian Krach)

An application: path dependent neural jump ODEs

The observer does not have knowledge on the specific dynamics of X , but
she knows sufficiently many paths of X and of the corresponding
observations to allow for approximations of the conditional expectation.

Additionally it is assumed that between two observation points, i.e. when
the information σ algebra does not grow, the conditional expectation is
absolutely continuous with respect to time.

Goal is to parametrize the respective path space functionals and to provide
loss functions for learning.
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An application (jointly with Marc Nübel and Florian Krach)

Related Work

(Recurrent) neural networks, signature transforms and the neural ODE
framework are the main ingredients for the (path-dependent) NJ-ODE
model.

The first works, in which they were combined to a model similar to the
one we use, are by Yulia Rubanova et al (Neurips 2019) and Edward De
Brouwer et al (Neurips 2019) (the so called Gated Recurrent Unit ODE
model). We have a different setup in view of model and objective function,
we provide convergence guarantees, and in particular a fully general
stochastic setup for the observed process. Main role model for this paper
is Calypso Herrera et al (ICLR 2021), where the Markovian case is treated.

The most related work in the context of the labelling problem, besides
GRU-ODEs, is the neural controlled differential equation (NCDE) by
Patrick Kidger et al.
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An application (jointly with Marc Nübel and Florian Krach)

Detailed assumptions

Let dX ∈ N and T > 0 be the fixed time horizon. Consider a filtered
probability space (Ω,F ,F := {Ft}0≤t≤T ,P), on which an adapted càdlàg
stochastic process1 X := (Xt)t∈[0,T ] taking values in RdX . We define the
running maximum process

X ?
t := sup

0≤s≤t
|Xs |, 0 ≤ t ≤ T .

Moreover, let J be the random set of discontinuity times of X , defined for
every ω ∈ Ω as J (ω) := {t ∈ [0,T ]|∆Xt(ω) 6= 0}.

1A stochastic process is a collection of random variables Xt : Ω→ RdX , ω 7→ Xt (ω)
for 0 ≤ t ≤ T .
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An application (jointly with Marc Nübel and Florian Krach)

Detailed assumptions

We considering another probability space (Ω̃, F̃ , P̃), on which the random
observation times of the stochastic process are defined. In particular, we
define

n : Ω̃→ N≥0, a random variable with EP̃[n] <∞, which is the
random number of observations, and

ti : Ω̃→ [0,T ] for 0 ≤ i ≤ n, the sorted 2 random variables,
describing the random observation times.

2For all ω̃ ∈ Ω̃, 0 = t0 < t1(ω̃) < · · · < tn(ω̃)(ω̃) ≤ T .
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An application (jointly with Marc Nübel and Florian Krach)

Detailed assumptions

Moreover, we let K := max
{

k ∈ N | P̃(n ≥ k) > 0
}
∈ N ∪ {∞} be the

maximal value of n. We use the notation B([0,T ]) for the Borel σ-algebra
of the set [0,T ] and define for each 1 ≤ k ≤ K

λk : B([0,T ])→ [0, 1], B 7→ λk(B) := P̃(n≥k,(tk−)∈B)
P̃(n≥k) ,

which is a probability measure on the time interval [0,T ]. The time of the
last observation before a certain time t is defined as

(t, ω̃) 7→ τ(t, ω̃) := max{ti (ω̃)|0 ≤ i ≤ n(ω̃), ti (ω̃) ≤ t}.
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An application (jointly with Marc Nübel and Florian Krach)

Detailed assumptions

The observation mask M = (Mk)0≤k≤K is a sequence of random variables
on (Ω̃, F̃ , P̃) taking values in {0, 1}dX such that the j-th coordinate of the
k-th element of the sequence, i.e. Mk,j , signals whether the j-th coordinate
of the stochastic process, denoted Xtk ,j , is observed at observation time tk .
In particular, Mk,j = 1 means that it is observed, while Mk,j = 0 means
that it is not. By abuse of notation, we also write Mtk := Mk .
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An application (jointly with Marc Nübel and Florian Krach)

Information σ-algebra

We define the filtration of the currently available information
A := (At)t∈[0,T ] by

At := σ (Xti ,j |ti ≤ t, j ∈ {1 ≤ l ≤ n|Mti ,l = 1}) ,

where ti are the observation times and σ(·) denotes the generated
σ-algebra. By the definition of τ we have At = Aτ(t) for all t ∈ [0,T ].

(Ω× Ω̃,F ⊗ F̃ ,F⊗ F̃ ,P× P̃) is the filtered product probability space
which, intuitively speaking, combines the randomness of the stochastic
process with the randomness of the observations.
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An application (jointly with Marc Nübel and Florian Krach)

Assumptions on X

We denote the conditional expectation process of X by X̂ = (X̂t)0≤t≤T ,
defined by X̂t := EP×P̃[Xt |At ] and remark that X̂τ(t) 6= Xτ(t) in general,
since observations might be incomplete. Moreover, we define for any
0 ≤ t ≤ T the process X̃≤t to be a continuous version of the rectilinear
interpolation of the observations of X until time t.
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An application (jointly with Marc Nübel and Florian Krach)

Assumptions on X

Its j-th coordinate at time 0 ≤ s ≤ T is given by

X̃≤t
s,j :=

{
Xtl(s,t),j

t`(s,t)−s
t`(s,t)−t`(s,t)−1

+ Xt`(s,t),j
s−t`(s,t)−1

t`(s,t)−t`(s,t)−1
, if t`(s,t)−1 < s ≤ t`(s,t),

Xtl(s,t),j , if s ≤ t`(s,t)−1,

where

l(s, t) := l(s, t, j) := max{0 ≤ l ≤ n|tl ≤ min(s, t),Mtl ,j = 1},
`(s, t) := `(s, t, j) := inf{1 ≤ ` ≤ n|s ≤ t` ≤ t,Mt`,j = 1},

with the standard definition that the infimum of the empty set is ∞ and the
additional definition that t∞ := T .
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An application (jointly with Marc Nübel and Florian Krach)

Assumptions on X

In particular, X̃≤t is the rectilinear interpolation (sometimes denoted as
forward-fill), except that its jumps at tl(s,t) are replaced by linear
interpolations between the previous observation time t`(s,t)−1 and tl(s,t). It
is important to note, that this is not solely a coordinate-wise interpolation,
since the given coordinate might not have been observed at the previous
observation time. Moreover, by this definition, X̃≤τ(t) is Aτ(t)-measurable
for all t, and for any r ≥ t and all s ≤ τ(t) we have X̃≤τ(t)

s = X̃≤τ(r)
s .

Josef Teichmann (ETHZ) A representation view on signature September 2022 31 / 49



An application (jointly with Marc Nübel and Florian Krach)

Assumptions on X

Using At = Aτ(t) and that X̃≤τ(t) ∈ Aτ(t) carries all information available
in Aτ(t), we know that there exist measurable functions
Fj : [0,T ]× [0,T ]×BV c([0,T ])→ R such that X̂t,j = Fj(t, τ(t), X̃≤τ(t)).
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An application (jointly with Marc Nübel and Florian Krach)

Assumptions on X

Assumption
We assume that

1 for every 1 ≤ k, l ≤ K, Mk is independent of tl and of n, P̃(Mk,j = 1) > 0 and M0,j = 1 for all 1 ≤ j ≤ dX (i.e.
every coordinate can be observed at any observation time and X is completely observed at 0) and |Mk |1 > 0 for every
1 ≤ k ≤ K P̃-almost surely (i.e. at every observation time at least one coordinate is observed),

2 the probability that any two observation times are closer than ε > 0 converges to 0 when ε does, i.e. if
δ(ω̃) := min0≤i≤n(ω̃) |ti+1(ω̃)− ti (ω̃)| then limε→0 P̃(δ < ε) = 0,

3 almost surely X is not observed at a jump, i.e. (P× P̃)(tj ∈ J |j ≤ n) = (P× P̃)(∆Xtj 6= 0|j ≤ n) = 0 for all
1 ≤ j ≤ K,

4 Fj are continuous and differentiable in their first coordinate t such that their partial derivatives with respect to t,
denoted by fj , are again continuous and there exists a B > 0 and p ∈ N such that for every t ∈ [0,T ] the functions
fj , Fj are polynomially bounded in X?, i.e.

|Fj (τ(t), τ(t), X̃≤τ(t))| + |fj (t, τ(t), X̃≤τ(t))| ≤ B(X?t + 1)p
,

5 X? is L2p -integrable, i.e. E[(X?T )2p ] <∞.
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An application (jointly with Marc Nübel and Florian Krach)

Detailed assumptions on X

Under Assumption 1 we can rewrite X̂ by the fundamental theorem of
calculus as

X̂t,j = Fj(τ(t), τ(t), X̃≤τ(t)) +
∫ t

τ(t)
fj(s, τ(t), X̃≤τ(t))ds,

implying that it is càdlàg. We remark that jumps of X̂ occur only at new
observation times, i.e., at ti , for 1 ≤ i ≤ n.
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An application (jointly with Marc Nübel and Florian Krach)

The model

Note that we can not use the signature of the true path (Xs)0≤s≤t of the
data up to time t as input, since we only have discrete observations of X
at the observation times ti (which is not sufficient to calculate the
signature of X ). Instead, we use the shifted interpolation
X̃≤t − X0 ∈ BV c

0 ([0,T ]) up to time t and compute the truncated
signature πn(X̃≤t − X0). This signature together with the starting point
X0 include all available information (while the signature of (Xs)0≤s≤t
would include much more then the available information, i.e., it is not
At-measurable). Moreover, the interpolation X̃≤t has bounded variation,
no matter whether this is true for the original path X or not.
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An application (jointly with Marc Nübel and Florian Krach)

The model

Definition

The path-dependent neural jump ODE (PD-NJ-ODE) model (of order
n ∈ N) is given by

H0 = ρθ2 (0, 0, πn(0),X0) ,

dHt = fθ1

(
Ht−, t, τ(t), πn(X̃≤τ(t) − X0),X0

)
dt

+
(
ρθ2

(
Ht−, t, πn(X̃≤τ(t) − X0),X0

)
− Ht−

)
dut ,

Yt = gθ3(Ht).

(1)

The functions fθ1 , ρθ2 and gθ3 are feedforward neural networks with
parameters θ = (θ1, θ2, θ3) ∈ Θ and u is the jump process counting the
observations.
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An application (jointly with Marc Nübel and Florian Krach)

The objective function

Let D to be the set of all RdX -valued A-adapted processes on the probability
space (Ω× Ω̃,F ⊗ F̃ ,F⊗ F̃ ,P× P̃). Then we define our objective functions

Ψ :D→ R,

Z 7→ Ψ(Z ) := EP×P̃

[
1
n

n∑
i=1

(|Mi � (Xti − Zti )|2 + |Mi � (Zti − Zti−)|2)2
]
,

(2)
Φ :Θ→ R, θ 7→ Φ(θ) := Ψ(Y θ(X )), (3)

where � is the element-wise multiplication (Hadamard product) and Φ will be our
(theoretical) loss function. Remark that from the definition of Y θ it directly
follows that it is an element of D, hence Φ is well-defined.
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An application (jointly with Marc Nübel and Florian Krach)

The objective function

Let us assume, that we observe N ∈ N independent realisations of the path X
together with independent realizations of the observation mask M at times
(t(j)

1 , · · · , t(j)
nj ), 1 ≤ j ≤ N, which are themselves independent realisations of the

random vector (n, t1, · · · , tn). In particular, let us assume that X (j) ∼ X ,
M(j) ∼ M and (nj , t(j)

1 , · · · , t(j)
nj ) ∼ (n, t1, · · · , tnj ) are i.i.d. random processes

(respectively variables) for 1 ≤ j ≤ N and that our training data is one realisation
of them.

We write Y θ,j := Y θ(X (j)). Then the Monte Carlo approximation of our loss
function

Φ̂N(θ) := 1
N

N∑
j=1

1
nj

nj∑
i=1

(∣∣∣∣M(j)
i �

(
X (j)

t(j)
i
− Y θ,j

t(j)
i

)∣∣∣∣
2

+
∣∣∣∣M(j)

i �
(

Y θ,j
t(j)

i
− Y θ,j

t(j)
i −

)∣∣∣∣
2

)2

(4)
converges (P× P̃)-a.s. to Φ(θ) as N →∞, by the law of large numbers.
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An application (jointly with Marc Nübel and Florian Krach)

Monte Carlo approximation results

Theorem
Let θmin

m ∈ Θmin
m := argminθ∈Θm{Φ(θ)} for every m ∈ N. If Assumption 1 is

satisfied, then, for m→∞, the value of the loss function Φ (3) converges to the
minimal value of Ψ (2) which is uniquely achieved by X̂ , i.e.

Φ(θmin
m ) m→∞−−−−→ min

Z∈D
Ψ(Z ) = Ψ(X̂ ).

Furthermore, for every 1 ≤ k ≤ K we have that Y θmin
m converges to X̂ as random

variable in L1(Ω× [0,T ],P× λk ). In particular, the limit process
Y := limm→∞ Y θmin

m equals X̂ (P× λk )-almost surely as a random variable on
Ω× [0,T ].
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An application (jointly with Marc Nübel and Florian Krach)

Monte Carlo approximation results

We now assume the size m of the neural network and of the signature truncation
level is fixed and we study the convergence of the Monte Carlo approximation
when the number of samples N increases. Moreover, we show that both types of
convergence can be combined. We define Θ̃M := {θ ∈ ΘM | |θ|2 ≤ M}, which is
a compact subspace of ΘM and recall, that ΘM in Theorem 7 can be replaced by
Θ̃M .
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An application (jointly with Marc Nübel and Florian Krach)

Monte Carlo approximation results

Theorem
Let θmin

m,N ∈ Θmin
m,N := arg infθ∈Θ̃m

{Φ̂N(θ)} for every m,N ∈ N. Then, for every
m ∈ N, (P× P̃)-a.s.

Φ̂N
N→∞−−−−→ Φ uniformly on Θ̃m.

Moreover, for every m ∈ N, (P× P̃)-a.s.

Φ(θmin
m,N) N→∞−−−−→ Φ(θmin

m ) and Φ̂N(θmin
m,N) N→∞−−−−→ Φ(θmin

m ).

In particular, one can define an increasing sequence (Nm)m∈N in N such that for
every 1 ≤ k ≤ K we have that Y θmin

m,Nm converges to X̂ for m→∞ as random
variable in L1(Ω× [0,T ],P× λk ). In particular, the limit process
Y := limm→∞ Y θmin

m,Nm equals X̂ (P× λk )-almost surely as a random variable on
Ω× [0,T ].
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Examples

Experiments

Detailed results can be found in our paper on Arxiv
https://arxiv.org/abs/2206.14284 and the code is available on
Github.

Observation grids are independently sampled, usually 2 ∗ 104 sample
trajectories are used for training.
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Examples

Uncertainty Estimation: Conditional Variance

We estimate uncertainty in the sense of conditional variance of the
observed process:

Var[Xt | Aτ(t)] = E[X 2
t | Aτ(t)]− E[Xt | Aτ(t)]2. (5)

We show results of an experiment for Brownian motion and its square.
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Examples

Estimated conditional Variance for BM
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Examples

Estimation of fractional BM with H = 0.05

In the next example we estimate a fractional Brownian motion irregularly
observed. It is remarkable to see that neither truncated signature alone nor
recurrence alone are fully able to capture as many features os PD-NJ ODE.
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Examples

Estimation of fractional BM with H = 0.05
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Examples

Physionet estimation
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Examples

LOB ten steps ahead prediction
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Conclusion

Conclusion

We provide two view on randomized signature, which constitutes a
bridge between RNNs and signature transforms: a compression view
and a representation theoretic view.

This is motivated by paradigms of reservoir computing and widely
applied signature methods from rough paths theory.

We provide a general learning framework for online estimation and
prediction of stochastic processes. This also paves a road towards
provable machine learning, since we the methodology allows for
randomization approaches.
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