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Outline

• Elements of Learning Theory and Function Approximation in RKHSs
• Probability Measures in RKHSs and the Maximum Mean Discrepancy
• Kernel Flows for Learning Chaotic Dynamical Systems: Parametric
Kernel Flows, NonParametric Kernel Flows, Irregular Time-Series, Partial
Observations, Sparse Kernel Flows.
• Detection of Critical Transitions for some Slow-Fast SDEs
• Approximation of Center Manifolds in RKHSs
• Construction of Lyapunov Functions in RKHSs
• Review of Some Concepts of Linear Control Systems
• Approximation of Nonlinear Control Systems in RKHSs
• Review of Some Concepts of Linear SDEs
• Learning SDEs
• Estimation of the Stationary Solution of the Fokker-Planck Equation of
nonlinear SDEs
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Summary of the Approach

• We assume that there is a φ : Rn → H;x 7→ z where H is an RKHS
such that we can perform an analysis (in general, but not necessarily, a
linear analysis) in H then come back to Rn.
• The transformation φ is obtained from the kernel that defines the RKHS
(in general, it is not necessary to explicitly find φ). In practice, we will use
φ(x) = [φ1(x) · · ·φN (x)]T with

φi(x) = K(x, x(ti))

where K is a reproducing kernel and x(ti) are measurements at time ti,
i = 1, · · · , N and N � n.
• Measurements/Data are used to construct the Hilbert Space where
computations become “simpler”.
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Reproducing Kernel Hilbert Spaces

• Historical Context: Appeared in the 1930s as an answer to the question:
when is it possible to embed a metric space into a Hilbert space ?
(Schoenberg, 1937)
• Answer: If the metric satisfies certain conditions, it is possible to embed
a metric space into a special type of Hilbert spaces called RKHSs.
• Properties of RKHSs have been further studied in the 1950s and later
(Aronszajn, 1950; Schwartz, 1964 etc.)
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Reproducing Kernel Hilbert Spaces

• Definition: A Hilbert Space is an inner product space that is complete
and separable with respect to the norm defined by the inner product.
• Definition: For a compact X ⊆ Rd, and a Hilbert space H of functions
f : X → R, we say that H is a RKHS if there exists k : X × X → R such
that

i. k has the reproducing property, i.e. ∀f ∈ H, f(x) = 〈f(·), k(·, x)〉 (k
is called a reproducing kernel).

ii. k spans H, i.e. H = span{k(x, ·)|x ∈ X}.
• Definition: A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert
space H with a reproducing kernel whose span is dense in H. Equivalently,
a RKHS is a Hilbert space of functions where all evaluation functionals are
bounded and linear.
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Reproducing Kernel Hilbert Spaces

The important properties of reproducing kernels are
• The RKHS is unique.
• ∀x, y ∈ X , K(x, y) = K(y, x) (symmetry).
• ∑m

i,j=1 αiαjK(xi, xj) ≥ 0 for αi ∈ R and xi ∈ X (positive definitness).
• 〈K(x, ·),K(y, ·)〉H = K(x, y). Using this property, one can immediately
get the canonical feature map (Aronszajn’s feature map): Φc(x) = K(x, ·).

• A Mercer kernel is a continuous positive definite kernel.
• The fact that Mercer kernels are positive definite and symmetric reminds
us of similar properties of Gramians and covariance matrices. This is an
essential fact that we are going to use in the following.

• Examples of kernels: k(x, x′) = 〈x, x′〉d, k(x, x′) = exp
(
− ||x−x

′||22
2σ2

)
,

k(x, x′) = tanh(κ〈x, x′〉+ θ).

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022 6 / 126



Reproducing Kernel Hilbert Spaces

• Mercer Theorem: Let (X , µ) be a finite-measure space, and suppose
k ∈ L∞(X 2) is a symmetric real-valued function such that the integral
operator

Lk : L2(X ) → L2(X )

f 7→ (Lkf)(x) =

∫
X
k(x, x′)f(x′)dµ(x′)

is positive definite; that is, for all f ∈ L2(X ), we have∫
X 2 k(x, x′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0.

Let Ψj ∈ L2(X ) be the normalized orthogonal eigenfunctions of Lk
associated with the eigenvalues λj > 0, sorted in non-increasing order.
Then

i. (λj)j ∈ `1,

ii. k(x, x′) =
∑NX

j=1 λjΨj(x)Ψj(x
′) holds for almost all (x, x′). Either

NX ∈ N, or NX =∞; in the latter case, the series converges
absolutely and uniformly for almost all (x, x′).
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Reproducing Kernel Hilbert Spaces

• Proposition (Mercer Kernel Map): If k is a Mercer kernel, it is possible
to construct a mapping Φ into a space where k acts as a dot product,

〈Φ(x),Φ(x′)〉 = k(x, x′),

for almost all x, x′ ∈ X .
• From Mercer’s theorem Φ : X → `2 is

Φi(x) =
√
λiΨi(x).

• Φ is not unique and depends on the measure µ.
• Φ is difficult to compute in general.
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Reproducing Kernel Hilbert Spaces

• It is unnecessary to invoke Mercer’s theorem just for discussing feature
maps/spaces.
• Example of non-Mercer feature maps using Φ(x) = K(x, ·)
• For a polynomial kernel K(x, t) = 〈x, t〉2,

Φ : (x1, x2)→ (x2
1, x

2
2,
√

2x1x2) ∈ R3.

• For a Gaussian kernel K(x, t) = e−
||x−t||2
σ2 ,

Φ : x→ e−
||x||2
σ2

(√
(2/σ2)kCkα

k!
xα
)∣∣∣∣∞
|α|=k,k=0

∈ `2.

• Mercer theorem is, however, fundamental to find error estimates and
study the smoothing properties of kernels.
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RKHS in Approximation Theory (aka Learning Theory)

• RKHS play an important role in learning theory whose objective is to
find an unknown function f : X → Y from random samples (xi, yi)|mi=1.
• For instance, assume that the random probability measure that governs
the random samples is ρ and is defined on Z := X × Y . Let X be a
compact subset of Rn and Y = R. If we define the least square error of f
as E =

∫
X×Y (f(x)− y)2dρ, then the function that minimizes the error is

the regression function fρ defined as

fρ(x) =

∫
R
ydρ(y|x), x ∈ X,

where ρ(y|x) is the conditional probability measure on R.
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RKHS in Approximation Theory (aka Learning Theory)

• Since ρ is unknown, neither fρ nor E is computable. We only have the
samples s := (xi, yi)|mi=1. The error E is approximated by the empirical
error Es(f) by

Es(f) =
1

m

m∑
i=1

(f(xi)− yi)2 + λ||f ||2H,

for λ ≥ 0, λ plays the role of a regularization parameter.
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RKHS in Approximation Theory (aka Learning Theory)

• In learning theory, the minimization is taken over functions from a
hypothesis space often taken to be a ball of a RKHS HK associated to a
kernel K, and the function fs that minimizes the empirical error Es is

fs(x) =

m∑
j=1

cjK(x, xj) =

m∑
j=1

cjφj(x),

where the coefficients (cj)
m
j=1 are obtained by solving the linear system

λmci +

m∑
j=1

K(xi, xj)cj = yi, i = 1, · · ·m,

and fs is taken as an approximation of the regression function fρ.
• We call learning the process of approximating the unknown function f
from random samples on Z.
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RKHS in Approximation Theory (aka Learning Theory)

• Now, suppose we are given a set of points x = (x1, · · · , xm) sampled
i.i.d. according to ρ. Many problems in Learning Theory deal with the
empirical kernel matrix K ∈ Rm×m whose entries are

Ki,j =
1

m
K(xi, xj).

• The restriction operator Rx : HK → Rm with a discrete subset
(xi)|mi=1 ∈ X is defined as

Rxf = (f(xi))
m
i=1

The adjoint of the restriction operator, R∗x : Rm → HK is given by

R∗xc =

m∑
i=1

ciK(x, xi), c ∈ Rm
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RKHS in Change Point Detection

• We will consider a sequence of samples x1, x2, · · · , xn from a domain X .
• We are interested in detecting a possible change-point τ , such that
before τ , the samples xi ∼ P i.i.d for i ≤ τ , where P is the so-called
background distribution, and after the change-point, the samples xi ∼ Q
i.i.d for i ≥ τ + 1, where Q is a post-change distribution.
• We map the dataset in an RKHS H then compute a measure of
discrepancy ∆n.
• ∆n is small if P = Q and large if P and Q are far apart.
• We will use the maximum mean discrepancy (MMD)

MMD[H, P,Q] := sup
f∈H,||f ||≤1

{Ex[f(x)]− Ey[f(y)]},

as a measure of heteregoneity.
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Probability Measures in RKHSes

• Let H be an RKHS on the separable metric space X , with a continuous
feature mapping φ : X → H. Assume that k is bounded, i.e.
supX k(x, x) <∞.
• Let P be the set of Borel probability measures on X . We define the
mapping to H of P ∈ P as the expectation of φ(x) with respect to P, i.e.

µP : P → H
P 7→

∫
X φ(x)dP (x) =: µk(P ) (kernel mean embedding of P)

• The maximum mean discrepancy (MMD) between two probability
measures P and Q is defined as the distance between two such mappings

MMD(P,Q) = ||µk(P )− µk(Q)||Hk
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Probability Measures in RKHSes

• The maximum mean discrepancy (MMD) is defined as (Gretton et al.,
2007)
MMD(P,Q) := ||µP − µQ||H,

=
(
Ex,x′(k(x, x′)) + Ey,y′(k(y, y′))− 2Ex,y(k(x, y)

) 1
2

where x and x′ are independent random variables drawn according to P , y
and y′ are independent random variables drawn according to Q, and x is
independent of y.
• This quantity is a pseudo-metric on distributions, i.e. it satisfies all the
qualities of a metric except MMD(P,Q) = 0 iff P = Q.
• For the MMD to be a metric, it is sufficient that the kernel is
characteristic, i.e. the map µP : P → H is injective. This is satisfied by
the Gaussian kernel (both on compact domains and on Rd) for example.
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Probability Measures in RKHSes

• RKHS embedding:

P → µk(P ) = EX∼Pk(·, X) ∈ Hk

P → [Eϕ1(X), · · · ,Eϕs(X)] ∈ Rs

Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:

MMDk(P , Q) = kµk(P ) � µk(Q)kHk
= sup

f2Hk: kfkHk
1

|Ef(X) � Ef(Y )|

Characteristic kernels: MMDk(P , Q) = 0 iff P = Q.
• Gaussian RBF exp(� 1

2�2 kx � x0k2
2), Matérn family, inverse multiquadrics.

For characteristic kernels on LCH X , MMD metrizes weak* topology on
probability measures [Sriperumbudur,2010],

MMDk (Pn, P )! 0, Pn  P.

D.Sejdinovic (University of Oxford) Learning with Kernel Embeddings Oslo, 06/05/2017 4 / 18
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Probability Measures in RKHSes

• For characteristic kernels, the MMD metrizes the weak- ? topology on
probability measures

MMDk(Pn, P )→ 0⇔ Pn  P

• For characteristic kernels: convergence in distribution iff convergence in
MMD.
• It is an Integral Probability Metric that can be computed directly from
data without having to estimate the density as an intermediate step.
• Given two i.i.d samples (x1, · · · , xm) from P and (y1, · · · , ym) from Q,
an unbiased estimate of the MMD is

MMD2
u :=

1

m(m− 1)

m∑
i 6=j

[k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj , yi)]
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Kernel Flows for Learning Chaotic Dynamical Systems

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022 19 / 126



Kernel Flows for Learning Chaotic Dynamical Systems

• Problem P : Given input/output data (x1, y1), · · · , (xN , yN ) ∈ X × R,
recover an unknown function u∗ mapping X to R such that u∗(xi) = yi
for i ∈ {1, ..., N}.
• In the setting of optimal recovery, Problem P can be turned into a well
posed problem by restricting candidates for u to belong to a Banach space
of functions B endowed with a norm defined as

||u||2 = supφ∈B∗
(
∫
φ(x)u(x)dx)2

(
∫
φ(x)K(x, y)φ(y)dxdy)

and identifying the optimal recovery as the minimizer of the relative error

minvmaxu
||u− v||2
||u||2 ,

where the max is taken over u ∈ B and the min is taken over candidates in
v ∈ B such that v(xi) = u(xi) = yi.
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Kernel Flows for Learning Chaotic Dynamical Systems

• The method of KFs is based on the premise that a kernel is good if there
is no significant loss in accuracy in the prediction error if the number of
data points is halved. This led to the introduction of

ρ =
||v∗ − vs||2
||v∗||2

which is the relative error between v∗, the optimal recovery of u∗ based on
the full dataset X = {(x1, y1), . . . , (xN , yN )}, and vs the optimal recovery
of both u∗ and v∗ based on half of the dataset Xs = {(xi, yi) | i ∈ S}
(Card(S) = N/2) which admits the representation

vs = (ys)TAsK(xs, ·)

with ys = {yi | i ∈ S}, xs = {xi | i ∈ S}, As = (Θs)−1, Θs
i,j = K(xsi , x

s
j).
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Kernel Flows for Learning Chaotic Dynamical Systems

Given a family of kernels Kθ(x, x
′) parameterized by θ, the KF algorithm

can then be described as follows :

1. Select random subvectors Xb and Y b of X and Y (through uniform
sampling without replacement in the index set {1, . . . , N})

2. Select random subvectors Xc and Y c of Xb and Y b (by selecting, at
random, uniformly and without replacement, half of the indices
defining Xb)

3. Let

ρ(θ,Xb, Y b, Xc, Y c) := 1− Y c,TKθ(X
c, Xc)−1Yc

Y f,TKθ(Xb, Xb)−1Y b
,

be the squared relative error (in the RKHS norm ‖ · ‖Kθ defined by
Kθ) between the interpolants ub and uc obtained from the two nested
subsets of the dataset and the kernel Kθ

4. Evolve θ in the gradient descent direction of ρ, i.e. θ ← θ − δ∇θρ
5. Repeat.
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Kernel Flows for Learning Chaotic Dynamical Systems

• Let x1, . . . , xk, . . . be a time series in Rd. Our goal is to forecast xn+1

given the observation of x1, . . . , xn.
• We work under the assumption that this time series can be
approximated by a solution of a dynamical system of the form

zk+1 = f †(zk, . . . , zk−τ†+1),

where τ † ∈ N∗ and f † may be unknown.
• Given τ ∈ N∗, the approximation of the dynamical can then be recast as
that of interpolating f † from pointwise measurements

f †(Xk) = Yk for k = 1, . . . , N

with Xk := (xk+τ−1, . . . , xk), Yk := xk+τ and N = n− τ .
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Kernel Flows for Learning Chaotic Dynamical Systems

• Given a reproducing kernel Hilbert space of candidates for f †, and using
the relative error in the RKHS norm ‖ · ‖ as a loss, the regression of the
data (Xk, Yk) with the kernel K associated with provides a minimax
optimal approximation of f † in . This interpolant (in the absence of
measurement noise) is

f(x) = K(x,X)(K(X,X))−1Y

where X = (X1, . . . , XN ), Y = (Y1, . . . , YN ), k(X,X) for the N ×N
matrix with entries k(Xi, Xi), and k(x,X) is the N vector with entries
k(x,Xi).
• Use different variants of Kernel Flows (KF) to learn the kernel K from
the data (Xk, Yk).
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Kernel Flows for Learning Chaotic Dynamical Systems

Assume the kernel K to be parameterized by θ. To update θ in Kθ, we
minimize one of the following metrics (different variants of KFs)
I Metric associated to the RKHS norm

ρ(θ,Xb, Y b, Xc, Y c) := 1− Y c,TKθ(X
c, Xc)−1Yc

Y f,TKθ(Xb, Xb)−1Y b

I Metric associated to Lyapunov exponents and the premise that a
kernel is good if the estimate of the maximal Lyapunov exponent
obtained from the kernel approximation of the dynamics does not
change if half of the data is used:

ρL = |λmax,N − λmax,N/2|
I Metric associated to the Maximum Mean Discrepancy (MMD) and

minimize
ρMMD = MMD(S1, S2)

between two different samples of the time series.
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Kernel Flows for Learning Chaotic Dynamical Systems

• We use the kernel

k(x, y) = α0 max{0, 1− ||x− y||
2
2|

σ0
}+ α1 e

||x−y||22
σ21 + α2e

− ||x−y||2
σ22

+ α3e
−σ3 sin2(σ4π||x−y||2)e

− ||x−y||
2
2

σ25 + α4||x− y||22
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Kernel Flows for Learning Chaotic Dynamical Systems

• Bernoulli map x(k + 1) = 2x(k) mod 1

(a) Time series generated by the
true dynamics (red) and the
approximation (blue) with the

learned kernel (left) and the initial
kernel (right), for an irrational

initial condition π/10.

(b) Time series generated by the true
dynamics (red), the approximation
with the learned kernel (blue), the

kernel approximation without
learning the kernel (green), for a

rational initial condition 0.1

Figure: Time series generated by the true dynamics, approximation using the
learned kernel and the kernel without learning for different initial conditions
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Kernel Flows for Learning Chaotic Dynamical Systems

• Lorenz system

dx

dt
= s(y − x)

dy

dt
= rx− y − xz

dz

dt
= xy − bz

with s = 10, r = 28, b = 10/3.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Time series generated by the true dynamics (red) and the approximation
with the learned kernel (blue) - x component in the left figure, y component in
the middle figure, z component in the right figure.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Difference between the true and the approximated dynamics with the
learned kernel using ρ (red (first, third and fifth from the left)), with the initial
kernel (green (second, fourth and sixth from the left)). x-component in the two
figures at the left, y-component in the middle two figures, z-component in the
right two figures.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Projection of the true attractor and approximation of the attractor using a
learned kernel on the XY,XZ and YZ axes (first, third and fifth from the left),
Projection of the true attractor and approximation of the attractor using with
initial kernel on the XY,XZ and YZ axes (second, fourth and sixth from the left)

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022 31 / 126



Kernel Flows for Learning Chaotic Dynamical Systems

Figure: True attractor (blue) and approximation of the attractor using a learned
kernel (red) [left], True attractor (blue) and approximation of the attractor using
initial kernel (red) [right]
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Kernel Flows for Learning Chaotic Dynamical Systems

• HYCOM: 800 core-hours per day of forecast on a Cray XC40 system
• CESM: 17 million core-hours on Yellowstone, NCAR’s high-performance computing resource
• Architecture optimized LSTM: 3 hours of wall time on 128 compute nodes of the Theta
supercomputer.
• Our method: 40 seconds to train on a single node machine (laptop) without acceleration
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Kernel Flows for Learning Chaotic Dynamical Systems
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

• Write X := (X1, . . . , XN ) and Y := (Y1, . . . , YN ) for the input/output
training data. Our goal is to learn a kernel of the form

Kφ(x, x′) = K(φ(x, 1), φ(x′, 1)) ,

where K is a standard kernel and φ maps the input space into itself.
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

• The warping of the input space φ satisfies the following ODE{
φ̇(x, t) = v(φ(x, t), t)

φ(x, 0) = x

with
v(x, t) = Γ(x, q)Γ(q, q)−1q̇, and q̇ = −∇

[
ρ(q)

]
,

where

I q corresponds to position variables in XN starting from
q(0) = X = (X1, · · · , XN ).

I Γ is an operator/vector-valued kernel, Γ(q, q) is an N ×N matrix
with entries Γ(qi, qj).

I Γ(x, q) is a 1×N vector with entries Γ(x, qi).

I ρ is the kernel flow loss associated with the input/output data (q, Y ).
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

• Using an explicit Euler scheme and regularizing with a nugget λ > 0
leads to an iteration of the form

φn+1(x) = φn(x) + εvn(φn(x)).

with φ0(x) = x.
• Writing X = (X1, . . . , XN ) for the training points and
qn := φn(X) := (φn(X1), . . . , φn(XN )), the discretized equations take the
form

qn+1 = qn − ε∇ρ(qn)

and
vn(x) = Γ(x, qn)

(
Γ(qn, qn) + λI

)−1
(qn+1 − qn)/ε
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

(a) Time series (red) and the prediction
(blue) by the learned kernel with ρ

(b) Time series (red) and the prediction
(blue) by the learned kernel with ρMMD

Figure: Prediction results for the Bernoulli map
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Figure: Deformation of input for different iterations of the flow function φL (left)
and deformed final data (right).

Figure: Convergence of the losses ρ and ρMMD.
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Kernel Flows for Learning Irregularly-Sampled Time Series

• The above approach fails to be accurate for irregularly sampled series
because it discards the information contained in the tk.
• To address this issue, we consider the model

xk+1 = f †(xk,∆k, . . . , xk−τ†+1,∆k−τ†+1),

which incorporates the time differences ∆k = tk+1 − tk between
observations.
• That is, we employ a time-aware time series representations by
interleaving observations and time differences.
• The proposed strategy is then to construct a surrogate model by
regressing f † from past data and a kernel Kθ learned with Kernel Flows as
described previously. Note that the past data takes are
Xk := (xk,∆k, . . . , xk+τ−1,∆k+τ−1), Yk := xk+1 and N = n− τ .
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Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Attractor reconstruction (left), Time series reconstruction (right) without
learning the kernel
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Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Reconstruction of the test time series of the Lorenz map with regular
Kernel Flows (left) and irregular KFs (regular).
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Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Approach with regular Kernel Flows (left), Approach with irregular Kernel
Flows (right).
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

• Consider the dynamical system

x(k + 1) = f(x(k)) =

[
fn(x)
fm(x)

]
where f ∈ C(Rn × Rm,Rn+m).
• We assume that we have access to measurements from the first n
components of the x−variable that we denote as xn and that the
remaining m components, that we denote as xm, are not observed, i.e. we
only observe xn(1), . . . , xn(l). Our goal is to forecast x(l + 1) given the
observation of xn(1), . . . , xn(l).
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

• This is equivalent to minimizing the following optimization problem w.r.t
fn, fm and the the unknown m−variables required in the representer
formula.

min L = ||fn||2Γ1
+||fm||2Γ2

+λ

N∑
i=1

(
(fn(xni , x

m
i )−xni+1)2+(fm(xni , x

m
i )−xmi+1)2

)
,

• Let A = (xn2 , · · · , xnl+1), B = (xm2 , · · · , xml+1), C = (. . . , (xni , x
m
i ), . . .).

The minimizers of the loss L are fn(·) = Γ1(·, C)(Γ1(C,C) + λ−1Id)
−1A,

fm(·) = Γ2(·, C)(Γ2(C,C) + λ−1Id)
−1B which leads to the following

reduced optimization problem

minBA
T (Γ1(C,C) + λ−1Id)

−1A+BT (Γ2(C,C) + λ−1Id)
−1B
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

Consider the Lorenz system

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,
ż = xy − βz

with σ = 10, ρ = 28, β = 8
3 . First, we consider the case where we have

access to the x and y variables but not z.
We follow the following steps: i.) find the auxiliary variable za, ii.) use
kernel flows to learn the parameters of the kernel

Kθ(x, y) =θ
2
1 exp

(
−‖x− y‖22

2θ20

)
+ θ

2
3

(
x
>
y + θ

2
2

)2
+ θ

2
6

(
θ
2
4 + θ

2
5‖x− y‖

2
2

)− 1
2 + θ

2
9

(
θ
2
8 + ‖x− y‖22

)−θ7 +

θ
2
11

(
1 +
‖x− y‖22
θ210

)−1

+ θ
2
12 max

(
0, 1−

‖x− y‖22
θ213

)
+ θ

2
14 exp

(
−‖x− y‖2

2θ215

)
+

θ
2
16 exp

− sin2
(
π‖x− y‖22/θ17

)
θ218

 exp

(
−
‖x− y‖22
θ19

)
+ θ

2
20 exp

− sin2
(
π‖x− y‖22/θ21

)
θ222
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

We generate 200 data points using initial conditions x(0) = 0, y(0) = 0,
z(0) = 0, and sampling time ts = 0.01, and we use gradient descent with
step size η = 10−7 to solve the optimization problem to find the auxiliary
variable za.
For prediction, we started with a time delay τ † = 3 but the results were
poor. By increasing the time delay to τ † = 4, the results improve and are
in the figures below.
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

True (blue) vs. Prediction (red) of the x variable (top), True (blue) vs. Prediction (red) of the y variable (middle), True (blue)

vs. Prediction (red) of the y variable (bottom)
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

The errors between the true and approximated values over longer
simulation intervals are plotted in the figures below.

Figure: Errors between the true and the approximation of x−variable (top), the
true and the approximation of y−variable (middle), and the true and the
approximation of z−variable (bottom)
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

Figure: Reconstruction from true data (blue) vs. approximation (red) of the
attractor.
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Sparse Kernel Flows for Learning Chaotic Dynamics

• Consider a kernel of the form

Kβ,θ(x, y) =

m∑
i=1

β2
i ki(x, y; θ)

• Sparsify Kβ,θ by L1 regularization

L(β, θ) = arg min
β,θ

1−
y>c K

−1
β,θyc

y>b K
−1
β,θyb

+ λ‖θ‖1

• We apply it to a database of 131 chaotic dynamical systems.
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Sparse Kernel Flows for Learning Chaotic Dynamics

We use the following kernel

K(x, y) =θ
2
1 exp

(
−‖x− y‖22

2β2
1

)
+ θ

2
2

(
x
>
y + β

2
2

)2
+ θ

2
3

(
β
2
3 + β

2
4‖x− y‖

2
2

)− 1
2 + θ

2
4

(
β
2
6 + ‖x− y‖22

)−β5

+ θ
2
5

(
1 +
‖x− y‖22

β2
7

)−1

+ θ
2
6 max

(
0, 1−

‖x− y‖22
β2
8

)

+ θ
2
7 exp

− sin2
(
π‖x− y‖22/β9

)
β2
10

 exp

(
−
‖x− y‖22
β11

)
+ θ

2
8 exp

− sin2
(
π‖x− y‖22/β12

)
β2
13


+ θ

2
9 exp

(
−‖x− y‖2

2β2
14

)
+ θ

2
10

(
β
2
15 + β

2
16‖x− y‖2

)− 1
2 +

θ
2
11

(
β
2
18 + ‖x− y‖2

)−β17 + θ
2
12

(
1 +
‖x− y‖2
β2
19

)−1

+ θ
2
13 max

(
0, 1−

‖x− y‖2
β2
20

)

+ θ
2
14 exp

(
− sin2 (π‖x− y‖2/β21)

β2
22

)
exp

(
−
‖x− y‖2
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)

+ θ
2
15 exp
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25

)

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022 52 / 126



Sparse Kernel Flows for Learning Chaotic Dynamics

Example 1: Complex Ca2+oscillations

d

dt
z = Vin − V2 + V3 + kfy − kz

d

dt
y = V2 − V3 − kfy

d

dt
a = βV4 − V5 − εa

where Vin = V0 + V1β, V2 = VM2
z2

K2
2+z2

, V3 = VM3
zm

Km
z +zm

y2

K2
y+y2

a4

K4
a+a4

,

V5 = VM5
ap

Kp
5+ap

zn

Kn
d +zn .
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Sparse Kernel Flows for Learning Chaotic Dynamics

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022 54 / 126



Sparse Kernel Flows for Learning Chaotic Dynamics

Example 2: Multiple interacting Chua electronic circuits
Equation:

d

dt
x = a(y − f(x))

d

dt
y = x− y + z

d

dt
z = −by

where

f(x) = m7x+

5∑
i=1

1

2
(mi −mi+1) (|x+ ci+1| − |x− ci+1|)
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Sparse Kernel Flows for Learning Chaotic Dynamics
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Sparse Kernel Flows for Learning Chaotic Dynamics

Index Name
CaTwoPlusQuasiperiodic MultiChua

Regular KFs
Sparse KFs

(λ = 1)
Regular KFs

Sparse KFs
(λ = 2)

coefficients θ1 3.007 0.169 1.149 1.016
θ2 15.886 -3.287 1.558 1.834
θ3 2.260 0.495 1.131 0.965
θ4 3.290 0.166 1.152 0.974
θ5 3.297 0.113 1.152 0.965
θ6 4.735 0.009 0.731 0.853
θ7 5.063 0 1.516 0.852
θ8 0.947 0.769 0.162 0
θ9 3.055 0.294 1.378 1.013
θ10 2.404 0.505 1.307 0.962
θ11 3.892 0.204 1.575 1.017
θ12 3.895 0.133 1.578 1.019
θ13 6.611 0 1.294 0.941
θ14 8.462 -0.038 3.709 1.220
θ15 -2.451 7.375 0.538 0.232

error criterion SMAPE 0.006 3.40× 10−5 0.069 0.004
Hausdorff Distance 2.789 0.013 12.056 0.216
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Detection of Critical Transitions for MultiScale Systems
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Detection of Critical Transitions for MultiScale Systems

• Consider the fast-slow SDE

ẋ1 =
1

ε
f1(x1, x2) +

σ1√
ε
η1(τ),

ẋ2 = f2(x1, x2) + σ2η2(τ)

where f1 ∈ C(R2;R) and f2 ∈ C(R2;R) are Lipschitz and η1, η2 are
independent white Gaussian noises.
• x1 is a fast variable in comparison to the slow variable x2.
• The set C0 = {(x1, x2) ∈ R2 : f1(x1, x2) = 0} is called the critical
manifold.
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MultiScale Systems

• The van der Pol model.
• The equations of the model are

ẋ1 =
1

ε
(x2 −

27

4 δ3
x2

1(x1 + δ)) +
σ1√
ε
η1(t)

ẋ2 = −δ
2
− x1 + σ2η2(t)

δ = 1, σ1 = 0.1, σ2 = 0.1, ε = 0.01.
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MultiScale Systems

PREDICTABILITY OF CRITICAL TRANSITIONS PHYSICAL REVIEW E 92, 052905 (2015)
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FIG. 2. (Color online) Time series of the fast variable x and
the slow variable y of the QIF model, simulated using the Euler-
Maruyama method with parameter values (ϵ,δ,σ1) = (0.02,0.5,0.2).

also resembles the theta model for excitable neurons [43,44].
In the noiseless case, the value of y determines the number of
equilibria of the fast flow of x. For a positive y, we have two
equilibrium branches Ca±

0 = {x = ±√
y,y > 0}, whose union

together with the fold point at (0,0) is the critical manifold C0.
Note that Ca+

0 is attracting, while Ca−
0 is repelling. When

y is negative, the fast subsystem has no equilibria at all. In
particular, a saddle-node (or fold) bifurcation occurs at y = 0.
Therefore, the critical manifold of the QIF model is attracting
in quadrant I (x > 0,y > 0) and repelling in quadrant II
(x < 0,y > 0) as is illustrated in Fig. 1.

When 0 < ϵ ≪ 1 and starting from the point (1,1) and
uniformly decreasing y, the trajectory of the solution travels
near the attracting critical manifold Ca+

0 towards the fold point
(0,0). Shortly before reaching the fold point, depending upon
the noise level, the system may perform a noise-induced jump
across the flattening potential barrier between the stable and
the unstable equilibria and arrive in quadrant II. In quadrant
II, the repelling critical manifold drives the system further and
further towards negative infinity in x. In our model, however,
the system is considered to be in an excited state, when the
fast variable x is below a threshold −δ and reset to the initial
condition (1,1).

Numerical simulations of equations (11) and (12) using
the Euler-Maruyama method [45] generate time series of N
observations {xn} and {yn} at discrete time steps tn = t0 + n$t .
Here t0 denotes the initial time, n = 0,1, . . . ,N − 1 is the
index of each time step, and $ is a constant time interval of
numerical integration.

As illustrated in Fig. 2, CTs can be observed in the time
series of the fast variable x while the slow variable y acts as
the slowly changing bifurcation parameter. Since the system is
reset to the initial state (1,1) after x exceeds a certain threshold
−δ, we can use the QIF model to generate an arbitrary amount
of CTs, which we are going to investigate below from a
statistical perspective.

The stochastic QIF model may not only have direct
relevance for many transitions in neuroscience [42,46] as a
local normal form to model the subthreshold dynamics before
spiking or bursting but the QIF model could also be viewed

as useful for any applications with local fold dynamics and
global resets.

B. The van der Pol model

In addition to the purely local QIF model with resets, it
is also natural to compare it to a model, where the resets
are via a smooth global nonlinearity. The classical example
to study are van der Pol [47] (or FitzHugh-Nagumo [48])
relaxation oscillators [49]. In particular, we consider f (x,y) =
y − 27

4δ3 x
2(x + δ), F (x,y) ≡ 1, g(x,y) = − δ

2 − x, G(x,y) ≡
0 and obtain a version of the van der Pol (vdP) system

ẋ = 1
ϵ

[
y − 27

4δ3
x2(x + δ)

]
+ σ1√

ϵ
η1(t), (13)

ẏ = − δ

2
− x. (14)

The precise choice of the form of the model will be motivated
in more detail below, particularly with respect to the parameter
δ. When the external stimulus exceeds a certain threshold, the
behavior of the system changes qualitatively from a stable
fixed point to a limit cycle undergoing a Hopf bifurcation.

The deterministic version of the model, i.e., σ1 = 0, has one
fixed point, (xFP,yFP) = (− δ

2 , 27
32 ), which is unstable under the

assumptions δ ∈ (−
√

3,0) and 0 < ϵ ≪ 1. A trajectory of the
stochastic vdP (σ1 ̸= 0) forms a noisy relaxation-oscillation-
type periodic orbit involving two rapid transitions and two slow
drifts as is illustrated in Fig. 3. Since the critical manifold of
the vdP model has two fold points at (− 2

3δ,1) and (0,0), the
manifold is naturally split into three parts (left, middle, and
right)

Cl
vdP = CvdP ∩

{
(x,y) : x < − 2

3δ
}
, (15)

Cm
vdP = CvdP ∩

{
(x,y) : − 2

3δ < x < 0
}
, (16)

Cr
vdP = CvdP ∩ {(x,y) : x > 0}. (17)

By investigating the stability of the equilibria of of the fast
variable x for a fixed y (in the ϵ → 0 limit), we see that Cl

vdP,
Cr

vdP are normally hyperbolic attracting parts of the critical
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−0.6 −0.5 −0.4 −0.3 −0.2 −0.1  0.1  0.2 x
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(0,0)

(−2δ/3,1)

FIG. 3. (Color online) The dynamics of the vdP model. The
parameters (ϵ,δ,σ1) = (0.02,0.5,0.1). Analogous to Fig. 1, the critical
manifold (black lines, solid for the attracting part and dashed for the
repelling part), the fold points at (− 2

3 δ,1) and (0,0) (red circles) and
the numerical solution trajectory [blue (gray) solid line] are plotted
in state space. The dashed double arrows indicate the orientation of
the relaxations in the noisy case and the noise-induced transitions for
the fast variable.
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MultiScale Systems

• Numerical Simulation

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022 62 / 126



Detection of Critical Transitions for MultiScale Systems

• We’ll use the following Gabor wavelet as basis to build the reproducing
kernel :

Gτ,ω,θ(t) := (
2

π3
)
1
4

√
ω

α
cos(ω(t− τ) + θ)e−

ω2(t−τ)2
α2 , t, τ, θ ∈ R ω, α > 0

This wavelet allows only to recognize modes of the form
t→ cos(ω(t− τ) + θ) “à la Fourier series”.
• In our context, we extend these wavelets to detect signals of the form
t→ y(ω(t− τ) + θ) for 2π-periodic signal y ∈ L2([0, 2π]). This can be
done using

χy;τ,ω,θ(t) := (
2

π3
)
1
4

√
ω

α
y(ω(t− τ) + θ)e−

ω2(t−τ)2
α2 , t, τ, θ ∈ R ω, α > 0

Given χ, we construct the Gram matrix whose entries are

Ky;τ,ω,θ(s, t) := χy;τ,ω,θ(s)χy;τ,ω,θ(t), s, t ∈ [0, 1]
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Detection of Critical Transitions for MultiScale Systems

• The reproducing kernel Ky associated to y, we integrate Ky;τ,ω,θ(s, t)
w.r.t τ, ω, θ over their domain of definition :

Ky(s, t) =

∫ θmax

θmin

∫ ωmax

ωmin

∫ τmax

τmin

Ky;τ,ω,θ(s, t)dτ dω dθ, s, t ∈ [0, 1]

• For stochastic van der Pol, the function y and the corresponding kernel
are

Figure: The function y used to build the kernel k(s, t) (left), Projection on the
s−axis of the plot of the kernel KG(s, t) from vs. kernel Kχ(s, t) (right)
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Detection of Critical Transitions for MultiScale Systems

Figure: Reconstruction and noise for stochastic Van der Pol
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Detection of Critical Transitions for MultiScale Systems

• We define the energy of a sliding window Wi = [iτ, (i+ 1)τ ] of width τ
as

Ei = vTi K
−1
T KωiK

−1
T vi

where KT (s, t) =
∑

iKwi(s, t) + σ2Id with σ large and Id the identity
matrix, vi is the signal in the interval [iτ, (i+ 1)τ ],
Kwi(s, t) = K(x(s), x(t)) with s, t ∈Wi, and Kwi(s, t) = 0 otherwise.
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Detection of Critical Transitions for MultiScale Systems

Figure: Energy E for α = 0.01 (top left) and α = 0.1 (top right), α = 2.0
(bottom)
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Center Manifold Approximation
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Center Manifold Analysis

Consider a dynamical system

ẋ = f(x) = Fx+ f̄(x)

of large dimension n, and F = ∂ f
∂ x (x)|x=0.

Suppose x = 0 is an equilibrium, i.e. f(0) = 0.
• Goal: Analyze the stability of this equilibrium.
• If F has all its eigenvalues with negative real parts ⇒ The origin is
asymptotically stable.
• If F has some eigenvalues with positive real parts ⇒ The origin is
unstable.
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Center Manifold Analysis

• If σ(F ) ≤ 0 (some eigenvalues of F are with zero real parts with the rest
of the eigenvalues having negative real parts): The linearization fails to
determine the stability properties of the origin.
• After a linear change of coordinates, we have

ẋ1 = F1x1 + f̄1(x1, x2)

ẋ2 = F2x2 + f̄2(x1, x2)

where σ(F1) = 0 and σ(F2) < 0.
• Intuitively, we expect the stability of the equilibrium to only depend on
the nonlinear terms f̄1(x1, x2). The center manifold theorem correctly
formalizes this intuition.
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Center Manifold Analysis

• A center manifold is an invariant manifold, x2 = θ(x1), tangent to the
x1 directions at x = 0.
• Since

ẋ1 = F1x1 + f̄1(x1, x2)

ẋ2 = F2x2 + f̄2(x1, x2)

and x2 = θ(x1), we deduce that θ satisfies the PDE

F2θ(x1)+f̄2(x1,θ(x1))= ∂θ
∂x1

(x1)(F1x1+f̄1(x1,θ(x1))).

• The Center Manifold Theorem ensures that there are smooth solutions
to this PDE.
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Center Manifold Analysis

• The center dynamics is the dynamics on the center manifold,

ẋ1 = F1x1 + f̄1(x1, θ(x1)).

• Center Manifold Theorem: The equilibria x1 = 0, x2 = 0 of the original
dynamics is locally asymptotically stable iff the equilibria x1 = 0 of the
center dynamics is locally asymptotically stable.
• After solving the PDE, this reduces the problem to analyzing the
nonlinear stability of a lower dimensional system.
• Our Contributions: kernel methods to approximate the center manifold,
a data-based version of the center manifold theorem.
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Center Manifold Analysis: Main results

• Let θ̂ be an approximant of the center manifold θ. Given the constraints
θ(0) = 0 and Dxθ(0) = 0, we use a generalized version of the representer
theorem and write

θ̂(x) =

N+1∑
i=1

k(x, xi)αi +

m∑
i=1

∂
(2)
i k(x, 0)βi,

• (⇒) Under certain conditions, we prove that if the equilibrium x1 = 0 of

ẋ1 = F1x1 + f̄1(x1, θ̂(x1)).

is asymptotically stable then the equilibrium x1 = 0, x2 = 0 of the full
order dynamics is asymptotically stable ((asymptotic) stability-preserving
property- in one direction at least, second direction is still missing).
• We also prove that ||x1,θ(t)− x1,θ̂(t)|| is bounded.
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Numerical Experiments: Example 1

• We consider the 2-dimensional system

ẋ = f1(x, y) = xy

ẏ = f2(x, y) = −y − x2
(1)

• Analytically, the center manifold is y = −x2 +O(x3).
• We generate the training data by solving the system with an implicit
Euler scheme for initial time t0 = 0, final time T = 1000 and with the
timestep ∆t = 0.1. We initiate the numerical procedure with initial values
(x0, y0) ∈ {±0.8} × {±0.8} and store the resulting data pairs in X and Y
after discarding all data whose x-values are not contained in the
neighborhood [−0.1, 0.1] which results in N = 38248 data pairs. We use
the kernels k1(x, y) := (1 + xy/2)4 and k2(x, y) = e−(x−y)2/2.

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022 74 / 126



Numerical Experiments: Example 1
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Numerical Experiments: Example 2

• Consider the (2 + 1)-dimensional system

ẋ = L1x+N1(x, y) =

(
0 −1
1 0

)(
x1

x2

)
+ y

(
x1

x2

)
ẏ = L2y +N2(x, y) = −y − x2

1 − x2
2 + y2.
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Numerical Experiments: Example 2

Figure: Approximations ĥ4poly and ĥ
1/2
Gauss of the center manifold (first row), and

corresponding residuals r4poly and r
1/2
Gauss (second row)
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Construction of Lyapunov Functions from Data
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Summary of the Approach

• We will consider a nonlinear ODE ẋ = f(x), x ∈ Rn and assume that f
is not known but x(ti), i = 1, · · · , N , are known.
• We approximate f from x(ti), i = 1, · · · , N .
• We find a Lyapunov function V̂ for f̂ .
• We prove that V̂ is also a Lyapunov function for f .

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022 79 / 126



Lyapunov Functions

• Consider the system of ODEs Σ :

{
ẋ = f(x),

x(0) = ξ
with x ∈ Rn,

f ∈ Cσ(Rn,Rn) where σ ≥ 1, n ∈ N.
Flow Stξ := x(t), solution of Σ.
• Assumptions

I 0 is an equilibrium (f(0) = 0)

I 0 is exponentially asymptotically stable (real parts of all eigenvalues
of Df(0) are negative)

• Definition (Basin of Attraction) The basin of attraction of 0 is

A := {ξ ∈ Rn|Stξ →t→∞ 0}

• The basin of attraction A can be determined using Lyapunov functions.
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Lyapunov Functions

Theorem (Lyapunov 1893)
Let V : Rn → R+, K ⊂ Rn a compact set.

I V decreases along solutions, i.e. (if V is smooth)

V ′(x) =
d

dt
V (x(t))|t=0 = ∇V (x) · f(x) < 0

for all x ∈ K \ {0} ( V ′ is the orbital derivative = derivative along
the solution )

I K is sublevel set of V , i.e. K = {x ∈ Rn|V (x) ≤ R}.
Then K ⊂ A.
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Existence of Lyapunov Functions

• “Converse Theorems” (Massera 1949) etc. - but not constructive !
• Theorem (Existence of V, Bhatia) Let f ∈ Cσ, σ ≥ 1, 0 exponentially
stable equilibrium. Then there exists V ∈ Cσ(A,R) with

V ′(x) := ∇V (x) · f(x) = −||x||2 for all x ∈ A

The Lyapunov function V is uniquely defined up to a constant.
• Idea: V (x) =

∫∞
0 ||Stx||2dt.
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Computation of Lyapunov Functions

• Giesl proposed an algorithm to approximate Lyapunov functions using
radial basis functions.
• Error estimates for this approach have been proved by Giesl and
Wendland.
• The method is based on finding an approximate solution of a first-order
linear PDE:

LV (x) = −||x||2 (LV (x) = −p(x) with p(x) > 0)

with LV := V ′(x) := ∇V (x) · f(x).
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Computation of Lyapunov Functions (Giesl, 2007)

• Theorem (Giesl, 2007)
Consider ẋ = f(x) with f ∈ Cσ(Rn,Rn) and let x0 be an equilibrium such
that all eigenvalues of Df(x0) have a negative real part. Let
p(x) ∈ Cσ(Rn,R) satisfy the following conditions: a.) p(x) > 0 for
x 6= x0, b.) p(x) = O(||x− x0||η2) with η > 0 for x→ x0, c.) For all
ε > 0, p has a lower positive bound on Rn \B(x0, ε) where B(x0, ε) is a
the ball centered at x0 of radius ε.
Then there exists a Lyapunov function V1 ∈ Cσ(A(x0),R) such that
V1(x0) = 0 and

LV1(x) = f1(x) := −p(x), for all x ∈ A(x0),

where A(x0) is the basin of attraction of x0.
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Computation of Lyapunov Functions (Giesl, 2007)

Algorithm: Let Φ(x) = ψk(||x||) be a radial function where ψk is a
Wendland function (compact support). Consider the grid points
XN = {x1, · · · , xN} ⊂ Rn. Consider the following ansatz

V1(x) =

N∑
k=1

βk(δxk ◦ L)yΦ(x− y),

where (δxk ◦ L)y denotes differentiation with respect to y then evaluation
at y = xk.
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Computation of Lyapunov Functions (Giesl, 2007)

By considering the interpolation conditions

LV1(xj) = LV (xj) = f1(xj),

and by plugin in the ansatz

N∑
i=1

βk (δxj ◦ L)x(δxk ◦ L)yΦ(x− y)︸ ︷︷ ︸
=ajk

= LV (xj) = f1(xj) =: γj ,

one gets a system of linear algebraic equations for the β in βs:

Aβ = γ,

where the matrix A is symmetric and positive definite.
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Estimates on Lyapunov Functions (Giesl and Wendland,
2007)

• Theorem(Giesl & Wendland, 2007)
Let ψk, k ∈ N, be a Wendland function and let
Φ(x) = ψk(||x||) ∈ C2k(Rn,R) be a radial basis function. Let
f ∈ Cσ(Rn,R) where σ ≥ n+1

2 + k. Then, for each compact set
K0 ⊂ A(x0) there is C∗ such that

|V ′(x)− V ′1(x)| ≤ C∗hθ for all x ∈ K0,

where h := maxy∈K0 minx∈Xn ||x− y|| is the fill distance and λ = 1/2 for
k = 1 and λ = 1 for k ≥ 2 (or λ = k − 1/2).
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Computation of Lyapunov Functions from Data

• Giesl’s approach assumes that the right hand side of (ODE) is known,
and sampled values of f are used at chosen grid points.
• We assume the underlying system Σ where f is unknown but, instead,
we have sampled data values (xi; yi)|mi=1 with yi = f(xi) + η, i = 1, · · · ,m
with each xi ∈ A(x̄), and η ∈ Rd is an independent random variable drawn
from a probability distribution with zero mean and variance σ2 ∈ Rd.
• Our approximation algorithm looks for suitable functions in an RKHS.
• Error estimates are derived for some RKHSes that are also Sobolev
spaces.
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Numerical Experiment

Consider the nonlinear system

ẋ1 = −x1 + x1x
2
2

ẋ2 = −x2 − x2x
2
1

(2)

It can be checked that V (x) = x2
1 + x2

2 is a Lyapunov function for the
system. First, we used Algorithm 1 to approximate the right hand side of
(2) with m = 400 points and z := (xi, yi)

m
i=1 are such that the points xi

are equidistantly distributed over [−0.95, 0.95] .
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Numerical Experiment
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Figure: Lyapunov function using Algorithm 2 with 360 points(top), 1520 points
(bottom)
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Numerical Experiment
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Figure: Orbital derivative of the Lyapunov function with respect to the original
system using Algorithm 2 with 360 points(top), 1520 points (bottom).
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Approximation of Control Systems in
Reproducing Kernel Hilbert Spaces
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Review of Some Concepts from Linear Control Theory

• Consider a linear control system

ẋ = Ax+Bu
y = Cx

,

where x ∈ Rn, u ∈ Rq, y ∈ Rp, (A,B) is controllable, (A,C) is observable
and A is Hurwitz.
• We define the controllability and the observability Gramians as,
respectively, Wc =

∫∞
0 eAtBB>eA

>t dt, Wo =
∫∞

0 eA
>tC>CeAt dt.

• These two matrices can be viewed as a measure of the controllability
and the observability of the system.
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Review of Some Concepts from Linear Control Theory

• Consider the past energy, Lc(x0), defined as the minimal energy required
to reach x0 from 0 in infinite time

Lc(x0) = inf
u∈L2(−∞,0),

x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞
‖u(t)‖2 dt.

• Consider the future energy, Lo(x0), defined as the output energy
generated by releasing the system from its initial state x(t0) = x0, and
zero input u(t) = 0 for t ≥ 0, i.e.

Lo(x0) =
1

2

∫ ∞
0
‖y(t)‖2 dt,

for x(t0) = x0 and u(t) = 0, t ≥ 0.
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Review of Some Concepts from Linear Control Theory

• In the linear case, it can be shown that

Lc(x0) = 1
2x
>
0W
−1
c x0, Lo(x0) = 1

2x
>
0Wox0.

• Moreover, Wc and Wo satisfy the following Lyapunov equations

AWc +WcA
>= −BB>, A>Wo +WoA = −C>C.
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Controllability and Observability Energies in Model
Reduction of Linear Control Systems

• Gramians have several uses in Linear Control Theory. For example, for
the purpose of model reduction.
• Balancing: find a representation where the system’s observable and
controllable subspaces are aligned so that reduction, if possible, consists of
eliminating uncontrollable states which are also the least observable.
• More formally, we would like to find a new coordinate system such that

Wc = Wo = Σ = diag{σ1, · · · , σn},

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. If (F,G) is controllable and (F,H) is
observable, then there exists a transformation such that the state space
expressed in the transformed coordinates (TFT−1, TG,HT−1) is balanced
and TWcT

>= T−>WoT
−1 = Σ.
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Balancing of Linear Control Systems

• Typically one looks for a gap in the singular values {σi} for guidance as
to where truncation should occur. If we see that there is a k such that
σk � σk+1, then the states most responsible for governing the
input-output relationship of the system are (x1, · · · , xk) while
(xk+1, . . . , xn) are assumed to make negligible contributions.
• Although several methods exist for computing T , the general idea is to
compute the Cholesky decomposition of Wo so that Wo = ZZ>, and form
the SVD UΣ2U> of Z>WcZ. Then T is given by

T = Σ
1
2U>Z−1.
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Controllability and Observability Energies for Nonlinear
Systems

• Consider the nonlinear system Σ{
ẋ = f(x) +

∑m
i=1 gi(x)ui,

y = h(x),

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f(0) = 0, gi(0) = 0 for 1 ≤ i ≤ m, and
h(0) = 0.
Hypothesis H: The linearization of the system around the origin is
controllable, observable and F = ∂f

∂x |x=0 is asymptotically stable.
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Controllability and Observability Energies for Nonlinear
Systems

• Theorem (Scherpen, 1993) If the origin is an asymptotically stable
equilibrium of f(x) on a neighborhood W of the origin, then for all
x ∈W , Lo(x) is the unique smooth solution of

∂Lo
∂x

(x)f(x) +
1

2
h>(x)h(x) = 0, Lo(0) = 0

under the assumption that this equation has a smooth solution on W (Lo
is a Lyapunov function). Furthermore for all x ∈W , Lc(x) is the unique
smooth solution of

∂Lc
∂x

(x)f(x) +
1

2

∂Lc
∂x

(x)g(x)g>(x)
∂>Lc
∂x

(x) = 0, Lc(0) = 0

under the assumption that this equation has a smooth solution L̄c on W
and that the origin is an asymptotically stable equilibrium of
−(f(x) + g(x)g>(x)∂L̄c∂x (x)) on W .
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Balancing of Nonlinear Systems

• Theorem (Scherpen) Consider system Σ under Hypothesis H and the
assumptions in the preceding theorem. Then, there exists a neighborhood
W of the origin and coordinate transformation x = ϕ(z) on W converting
the energy functions into the form

Lc(ϕ(z)) =
1

2
z>z,

Lo(ϕ(z)) =
1

2

n∑
i=1

z2
i σi(zi)

2,

where σ1(x) ≥ σ2(x) ≥ · · · ≥ σn(x). The functions σi(·) are called Hankel
singular value functions.
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Balancing of Nonlinear Systems

• In the above framework for balancing of nonlinear systems, one needs to
solve (or numerically evaluate) the PDEs and compute the coordinate
change x = ϕ(z).
• However there are no systematic methods or tools for solving these
equations.
• Various approximate solutions based on Taylor series expansions have
been proposed Krener (2007, 2008), Fujimoto and Tsubakino (2008).
• Newman and Krishnaprasad (2000) introduce a statistical approximation
based on exciting the system with white Gaussian noise and then
computing the balancing transformation using an algorithm from
differential topology.
• An essentially linear empirical approach, similar to Moore’s empirical
approach, was proposed by Lall, Marsden and Glavaski (2002).
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Computing the Controllability and Observability Energies:
Linear Case

• Analytic Approach: The Gramians Wc and Wo satisfy the Lyapunov
equations

FWc +WcF
>= −GG>,

F>Wo +WoF = −H>H.
• Data-Based Approach: Moore showed that Wc and Wo can be obtained
from the impulse responses of ΣL. For instance,

Wc =

∫ ∞
0

X(t)X(t)Tdt, Wo =

∫ ∞
0

Y T (t)Y (t)dt

where X(t) is the response to ui(t) = ei with x(0) = 0, and Y (t) is the
output response to u(t) = 0 and x(0) = ei.
Given X(t) and Y (t), one can perform PCA to obtain Wc and Wo

respectively.
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Empirical Estimates of the Gramians

The observability and controllability Gramians may be estimated
statistically from typical system trajectories:

Ŵc =
T

mN

N∑
i=1

X(ti)X(ti)
>, Ŵo =

T

pN

N∑
i=1

Y (ti)Y (ti)
>.

where ti ∈ [0, T ], i = 1, . . . , N , X(t) =
[
x1(t) · · · xm(t)

]
, and

Y (t) = [y1(t) · · · yn(t)]> if {xj(t)}mj=1, {yj(t)}nj=1 are measured
(vector-valued) responses and outputs of the system.
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Computing the Controllability and Observability Energies
for Nonlinear Systems

Questions
• How to compute the controllability and observability energies from data ?
• How to extend Moore’s empirical approach to Nonlinear Control Systems
?
• Are there “Gramians” for Nonlinear Systems ? and in the affirmative,
how to compute them from data ?
• Idea ! Use of kernel methods. A kernel based procedure may be
interpreted as mapping the data, through “feature maps”, from the
original input space into a potentially higher dimensional Reproducing
Kernel Hilbert Space where linear methods may then be used.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• We consider a general nonlinear system of the form{
ẋ = f(x, u)
y = h(x)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f(0, 0) = 0, and h(0) = 0.
• Assume that the method of linear balancing can be applied to the
nonlinear system when lifted into an RKHS.
• In the linear case, Lc(x0) = 1

2x
T
0 W

−1
c x0 and Lo(x0) = 1

2x
T
0 Wox0 can be

rewritten as Lc(x0) = 1
2

〈
W †c x0, x0

〉
and Lo(x0) = 1

2 〈Wox0, x0〉.
• In the nonlinear case, it may be tempting to write, in H,

Lc(x) = 1
2

〈
W †c h, h

〉
and Lo(x) = 1

2 〈Woh, h〉 where h = Φ(x) = K(x, ·)
and Φ : Rn → H. However, there are some complications...
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• We can show that

L̂c(x) = 1
2

〈
( 1
mR∗xRx + λI)−2 1

mR∗xRxKx,Kx

〉
= 1

2m

〈
R∗x( 1

mRxR∗x + λI)−2RxKx,Kx

〉
= 1

2mkc(x)>( 1
mKc + λI)−2kc(x),

where kc(x) := RxKx =
(
K(x, xµ)

)Nq
µ=1

is the Nq-dimensional column
vector containing the kernel products between x and the controllability
samples.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• Similarly, letting x now denote the collection of m = Np observability
samples, we can approximate the future output energy by

L̂o(x) = 1
2

〈
ŴoKx,Kx

〉
(3)

= 1
2m

〈
R∗xRxKx,Kx

〉
= 1

2mko(x)>ko(x) = 1
2m ‖ko(x)‖22

where ko(x) :=
(
K(x, dµ)

)Np
µ=1

is the Np-dimensional column vector
containing the kernel products between x and the observability samples.
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Balanced Reduction of Nonlinear Control Systems in RKHS

• We consider a general nonlinear system of the form{
ẋ = f(x, u)
y = h(x)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f(0, 0) = 0, and h(0) = 0. We assume
that the origin of ẋ = f(x, 0) is asymptotically stable.

Proposed Data-Driven Approach:

I Assume that we can apply the method of linear balancing when the
system is lifted to a high (possibly infinite) dimensional feature space.

I Carry out balancing and truncation (linear techniques) implicitly in
the feature space (discard unimportant states).

I Construct a nonlinear reduced-order model by learning approximations
to f, h defined directly on the reduced state space.
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Balancing in RKHS

Idea: We can perform balancing/truncation in feature space by lifting the
data into H via Φ, and simultaneously diagonalizing the corresponding
covariance operators.

The standard empirical controllability Gramian (in Rn)

Ŵc =
T

mN

N∑
i=1

X(ti)X(ti)
>=

T

mN

N∑
i=1

m∑
j=1

xj(ti)x
j(ti)

>

becomes

Cc =
T

mN

N∑
i=1

m∑
j=1

〈
Φ
(
xj(ti)

)
, ·
〉
HΦ

(
xj(ti)

)
for example.
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Balancing in RKHS

• “Balancing” is carried out implicitly in H by simultaneous
diagonalization of Kc and Ko.

• If K
1/2
c KoK

1/2
c = UΣ2U>, we can define the aligning transformation

T = Σ1/2U>
√
K†c .

• The dimension of the state space is reduced by discarding small
eigenvalues {Σii}ni=q+1, and projecting onto the subspace in H associated
with the first q < n largest eigenvalues.
• This leads to the nonlinear state-space dimensionality reduction map
Π : Rn → Rq given by

Π(x) = T>q kc(x), x ∈ Rn

where
kc(x) :=

(
K(x, x1(t1)), . . . ,K(x, xm(tN ))

)>
.
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An Experiment

Consider the 7−D system (Nilsson, 2009)

ẋ1 = −x3
1 + u ẋ2 = −x3

2 − x2
1x2 + 3x1x

2
2 − u

ẋ3 = −x3
3 + x5 + u ẋ4 = −x3

4 + x1 − x2 + x3 + 2u

ẋ5 = x1x2x3 − x3
5 + u ẋ6 = x5 − x3

6 − x3
5 + 2u

ẋ7 = −2x3
6 + 2x5 − x7 − x3

5 + 4u

y = x1 − x2
2 + x3 + x4x3 + x5 − 2x6 + 2x7
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Experiment: Inputs

I Excite with impulses: inputs (Kc) and initial conditions (Ko, u = 0).

I Learn f̂ , ĥ using a 10Hz square wave input signal u.

I Reduce to a second-order system.

I Simulate the reduced system with a different input,

u(t) = 1
2

(
sin(2π3t) + sq(2π5t− π/2)

)
and compare the output to that of the original system.
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Experiment
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Experiment
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SDEs in Reproducing Kernel Hilbert Spaces
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Review of Some Concepts for Linear Stochastic Differential
Equations

• Consider the stochastically excited stable dynamical control systems
affine in the input u ∈ Rq

ẋ = f(x) +G(x)u ,

where G : Rn → Rn×q is a smooth matrix-valued function. We replace the
control inputs by sample paths of white Gaussian noise processes, giving
the corresponding stochastic differential equation (SDE)

dXt = f(Xt)dt+G(Xt)dW
(q)
t

with W
(q)
t a q−dimensional Brownian motion. The solution Xt to this

SDE is a Markov stochastic process with transition probability density
ρ(t, x) that satisfies the Fokker-Planck (or Forward Kolmogorov) equation

∂ρ

∂t
= −〈 ∂

∂x
, fρ〉+

1

2

n∑
j,k=1

∂2

∂xj∂xk
[(GGT )jkρ] =: Lρ .

The differential operator L on the right-hand side is referred to as the
Fokker-Planck operator. The steady-state probability density is a solution
of the equation

Lρ∞ = 0.
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Review of Some Concepts for Linear Stochastic Differential
Equations

• In the context of linear Gaussian theory where we are given an

n−dimensional system of the form dXt = AXtdt+BdW
(q)
t , with

A ∈ Rn×n, B ∈ Rn×q, the transition density is Gaussian.
• It is therefore sufficient to find the mean and covariance of the solution
X(t) in order to uniquely determine the transition probability density.
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Review of Some Concepts for Linear Stochastic Differential
Equations

• The mean satisfies d
dtE[x] = AE[x] and thus E[x(t)] = eAtE[x(0)]. If A

is Hurwitz, limt→∞ E[x(t)] = 0.
• The covariance satisfies d

dtE[xxT ] = AE[xxT ] + E[xxT ]A+BBT .
• Hence, Q = limt→∞ E[xx>] satisfies the Lyapunov system

AQ+QA>= −BB>. So, Q = Wc =
∫∞

0 eAtBB>eA
>t dt, where Wc is the

controllability Gramian, which is positive iff the pair (A,B) is controllable.
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Review of Some Concepts for Linear Stochastic Differential
Equations

• Combining the above facts, the steady-state probability density is given
by

ρ∞(x) = Z−1e−
1
2
x>W−1

c x = Z−1e−Lc(x)

with Z =
√

(2π)ndet(Wc).
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Extension to the Nonlinear Case

• The preceding suggests the following key observations in the linear
setting: Given an approximation L̂c of Lc we obtain an approximation for
ρ∞ of the form

ρ̂∞(x) ∝ e−L̂c(x)

• Although the above relationship between ρ∞ and Lc holds for only a
small class of systems (e.g. linear and some Hamiltonian systems), by
mapping a nonlinear system into a suitable reproducing kernel Hilbert
space we may reasonably extend this connection to a broad class of
nonlinear systems.
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Nonlinear SDEs in RKHSes

• Assumption1: Given a suitable choice of kernel K, if the Rd-valued
stochastic process x(t) is a solution to the (ergodic) stochastically excited
nonlinear system

dXt = f(Xt)dt+G(Xt) ◦ dW (q)
t

the H-valued stochastic process (Φ ◦ x)(t) =: X(t) can be reasonably
modelled as an Ornstein-Uhlenbeck process

dX(t) = AX(t)dt+
√
CdW (t), X(0) = 0 ∈ H

where A is linear, negative and is the infinitesimal generator of a strongly
continuous semigroup etA, C is linear, continuous, positive and
self-adjoint, and W (t) is the cylindrical Wiener process.
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Nonlinear SDEs in RKHSes

• Assumption2: The measure P∞ is the invariant measure of the OU
process and P∞ is the pushforward along Φ of the unknown invariant
measure µ∞ on the statespace X we would like to approximate.
• Assumption3: The measure µ∞ is absolutely continuous with respect to
Lebesgue measure, and so admits a density.
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Nonlinear SDEs in RKHSes

• The stationary measure µ∞ is defined on a finite dimensional space, so
together with part (iii) of Assumption A, we may consider the
corresponding density

ρ∞(x) ∝ exp
(
−L̂c(x))
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Experiment

Consider the SDE dX = −5X5 + 10X3 +
√

2dW .
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Conclusions

• We used kernel flows to approximate chaotic dynamical systems.
• We used the maximum mean discrepancy and extended kernel mode
decomposition to detect critical transitions.
• We introduced estimators for the controllability/observability energies of
nonlinear control systems. We used these energies to perform model
approximation of nonlinear control systems using a linear technique.
• We showed that the controllability energy estimator may be used to
estimate the stationary solution of the Fokker-Planck equation governing
nonlinear SDEs using a linear estimate.
• We introduced a data-based approach for the construction of Lyapunov
functions, Center Manifold Approximation and Center Manifold Theorem.
• These results collectively argue that working in reproducing kernel Hilbert
spaces offers tools for a data-based theory of nonlinear dynamical systems.
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10. Stefan Klus, Feliks Nüske, Boumediene Hamzi (2020), Kernel-based approximation of the Koopman generator and the Schrödinger operator.

11. Andreas Bittracher, Stefan Klus, Boumediene Hamzi, Peter Koltai and Christof Schütte (2020), Dimensionality Reduction of Complex
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