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e Elements of Learning Theory and Function Approximation in RKHSs

e Probability Measures in RKHSs and the Maximum Mean Discrepancy
e Kernel Flows for Learning Chaotic Dynamical Systems: Parametric
Kernel Flows, NonParametric Kernel Flows, Irregular Time-Series, Partial
Observations, Sparse Kernel Flows.

e Detection of Critical Transitions for some Slow-Fast SDEs

e Approximation of Center Manifolds in RKHSs

e Construction of Lyapunov Functions in RKHSs

e Review of Some Concepts of Linear Control Systems

e Approximation of Nonlinear Control Systems in RKHSs

e Review of Some Concepts of Linear SDEs

e Learning SDEs

e Estimation of the Stationary Solution of the Fokker-Planck Equation of
nonlinear SDEs
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Summary of the Approach

e We assume that there is a ¢ : R” — H; 2z + z where H is an RKHS
such that we can perform an analysis (in general, but not necessarily, a
linear analysis) in H then come back to R".

e The transformation ¢ is obtained from the kernel that defines the RKHS
(in general, it is not necessary to explicitly find ¢). In practice, we will use

o(z) = [p1(z) - - - o ()] with

where K is a reproducing kernel and x(t;) are measurements at time ¢;,
i1=1,---,N and N > n.

e Measurements/Data are used to construct the Hilbert Space where
computations become “simpler”.
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Reproducing Kernel Hilbert Spaces

e Historical Context: Appeared in the 1930s as an answer to the question:
when is it possible to embed a metric space into a Hilbert space ?
(Schoenberg, 1937)

e Answer: If the metric satisfies certain conditions, it is possible to embed
a metric space into a special type of Hilbert spaces called RKHSs.

e Properties of RKHSs have been further studied in the 1950s and later
(Aronszajn, 1950; Schwartz, 1964 etc.)
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Reproducing Kernel Hilbert Spaces

e Definition: A Hilbert Space is an inner product space that is complete
and separable with respect to the norm defined by the inner product.

e Definition: For a compact X C R?, and a Hilbert space H of functions
f: X = R, we say that H is a RKHS if there exists k: X x X — R such
that

i. k has the reproducing property, i.e. Vf € H, f(x) = (f(), k(-,x)) (k
is called a reproducing kernel).
ii. kspans H, i.e. H = span{k(x,-)|z € X'}.
e Definition: A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert
space H with a reproducing kernel whose span is dense in H. Equivalently,

a RKHS is a Hilbert space of functions where all evaluation functionals are
bounded and linear.
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Reproducing Kernel Hilbert Spaces

The important properties of reproducing kernels are

e The RKHS is unique.

o Va,y e X, K(x,y) = K(y,x) (symmetry).

o > oy i K (x,25) > 0 for ; € R and 2; € X' (positive definitness).
o (K(x,-),K(y, ) = K(z,y). Using this property, one can immediately
get the canonical feature map (Aronszajn’s feature map): ®.(z) = K(x,-).

e A Mercer kernel is a continuous positive definite kernel.

e The fact that Mercer kernels are positive definite and symmetric reminds
us of similar properties of Gramians and covariance matrices. This is an
essential fact that we are going to use in the following.

e Examples of kernels: k(z,z') = (z,2/)%, k(z,2') = exp (— ”x;;;”%),
k(x,2') = tanh(k(z, z") + 0).
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Reproducing Kernel Hilbert Spaces

e Mercer Theorem: Let (X, u) be a finite-measure space, and suppose
k € Loo(X?) is a symmetric real-valued function such that the integral
operator

Ly : LQ(X) — LQ(X)
F e @)@ = [ ke f@dn()
is positive definite; that is, for all f € La(X'), we have
Sz k@, 2") f(2) f(2")dp(z)dp(a") > 0.
Let U; € Ly(X) be the normalized orthogonal eigenfunctions of Ly,
associated with the eigenvalues \; > 0, sorted in non-increasing order.
Then
i ()\j)j € l,
i k(x,2') = Z;V:Xl AW (x)¥;(x") holds for almost all (z, ). Either
Ny € N, or Ny = 00; in the latter case, the series converges
absolutely and uniformly for almost all (x, 2/),
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Reproducing Kernel Hilbert Spaces

e Proposition (Mercer Kernel Map): If k is a Mercer kernel, it is possible
to construct a mapping ® into a space where k acts as a dot product,

(®(x), () = k(x,2"),

for almost all z,2" € X.
e From Mercer's theorem ® : X — (2 is

®i(x) = V/NVi(a).

e ® is not unique and depends on the measure .
e d is difficult to compute in general.
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Reproducing Kernel Hilbert Spaces

e It is unnecessary to invoke Mercer's theorem just for discussing feature
maps/spaces.
e Example of non-Mercer feature maps using ®(z) = K(x,-)

e For a polynomial kernel K (z,t) = (z,t)%,

D (x1,12) = (22,22, V2 20) € R®.

_ =12
02

e For a Gaussian kernel K (z,t) = e

[Jz] |2 2)kCk oo
i) ::r—>e_02< (2/0‘)0&350‘> e .
k! |oo| =k, k=0

e Mercer theorem is, however, fundamental to find error estimates and
study the smoothing properties of kernels.
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RKHS in Approximation Theory (aka Learning Theory)

e RKHS play an important role in learning theory whose objective is to
find an unknown function f : X — Y from random samples (z;, ;)| .

e For instance, assume that the random probability measure that governs
the random samples is p and is defined on Z := X x Y. Let X be a
compact subset of R"™ and Y = R. If we define the least square error of f
as € = [y, (f(x) — y)*dp, then the function that minimizes the error is
the regression function f, defined as

fo(w) = /R ydp(ylz), @€ X,

where p(y|x) is the conditional probability measure on R.
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RKHS in Approximation Theory (aka Learning Theory)

e Since p is unknown, neither f, nor £ is computable. We only have the

samples s := (z;,¥;)|/",. The error £ is approximated by the empirical
error Es(f) by

Z (1) = yi)* + Allf I

_ 1
m

for A > 0, A plays the role of a regularization parameter.
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RKHS in Approximation Theory (aka Learning Theory)

e In learning theory, the minimization is taken over functions from a
hypothesis space often taken to be a ball of a RKHS H g associated to a
kernel K, and the function fs that minimizes the empirical error & is

m

m
folw) =D oK (w,a5) = > cji(x),
j=1 j=1
where the coefficients (cj);”:l are obtained by solving the linear system
m
Amc; +ZK(a:i,xj)cj =y, 1=1,---m,
j=1

and fs is taken as an approximation of the regression function f,.

e We call learning the process of approximating the unknown function f
from random samples on Z.
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RKHS in Approximation Theory (aka Learning Theory)

e Now, suppose we are given a set of points x = (z1,--- ,x,,) sampled

i.i.d. according to p. Many problems in Learning Theory deal with the
empirical kernel matrix K € R™*™ whose entries are

1
Ki,j = %K(.%'l, ZCj).

e The restriction operator R« : Hx — R™ with a discrete subset
(x3)|", € X is defined as

Raf = (f (i)l

The adjoint of the restriction operator, Ry : R™ — Hx is given by

m
Ryc = ZQ‘K(SU,JC@'), ceR™
i=1
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RKHS in Change Point Detection

e We will consider a sequence of samples x1, x2,--- ,z, from a domain X.
e We are interested in detecting a possible change-point 7, such that
before 7, the samples x; ~ P i.i.d for i < 7, where P is the so-called
background distribution, and after the change-point, the samples z; ~ @
i.i.d for ¢ > 7+ 1, where ) is a post-change distribution.

e We map the dataset in an RKHS 7 then compute a measure of
discrepancy A,,.

e A, issmall if P =@ and large if P and @) are far apart.

e We will use the maximum mean discrepancy (MMD)

MMD[H, P,Q] :=  sup {E.[f(x)] —E,[f(»)]},
FerlIflI<1

as a measure of heteregoneity.
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Probability Measures in RKHSes

e Let H be an RKHS on the separable metric space X, with a continuous
feature mapping ¢ : X — H. Assume that k is bounded, i.e.

supy k(z,z) < oo.

e Let P be the set of Borel probability measures on X. We define the
mapping to H of P € P as the expectation of ¢(x) with respect to P, i.e.

up:P — H
P — [, é(x)dP(z) =: p(P) (kernel mean embedding of P)

e The maximum mean discrepancy (MMD) between two probability
measures P and (@) is defined as the distance between two such mappings

MMD(P,Q) = |[(P) — p1x(Q) ]34,
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Probability Measures in RKHSes

e The maximum mean discrepancy (MMD) is defined as (Gretton et al.,
2007)

MMD(P,Q) = llur — polln, 1

= (Bow (k(z, ) + By y (k(y,y)) — 2Eay (k(z,y))?

where x and 2’ are independent random variables drawn according to P, y
and 3/ are independent random variables drawn according to ), and z is
independent of y.
e This quantity is a pseudo-metric on distributions, i.e. it satisfies all the
qualities of a metric except MMD(P, Q) = 0 iff P = Q.
e For the MMD to be a metric, it is sufficient that the kernel is
characteristic, i.e. the map pup : P — H is injective. This is satisfied by
the Gaussian kernel (both on compact domains and on R?) for example.
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Probability Measures in RKHSes

¢ RKHS embedding:
P — pu(P) = Expk(-, X) € Hy,

P = [Ep1(X), - Eps(X)] € R?

e Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]
between P and Q:

N I
1 (P) = Extk( X))
a

I\

I\

! I\

h I\

o “‘
114(Q) = Ev[k(-. ¥)] 7
Y ~Q — e m ool
y N 11k (P) — 11 (@) e

MMD (P, Q) = [[pr (P) — 11 (Q) 54,

sup [E/(X) —E/(Y)]
FEHR N, <1
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Probability Measures in RKHSes

e For characteristic kernels, the MMD metrizes the weak- * topology on
probability measures

MMDy(P,,P) -0« P, ~ P

e For characteristic kernels: convergence in distribution iff convergence in
MMD.

e It is an Integral Probability Metric that can be computed directly from
data without having to estimate the density as an intermediate step.

e Given two i.i.d samples (x1,--+ ,x,,) from P and (y1, -+ ,¥ym) from Q,
an unbiased estimate of the MMD is

MMD? :— m(ml—l) S (i 5) + k(i 57) — k(s y7) — k(,32)]
i#£]
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Kernel Flows for Learning Chaotic Dynamical Systems
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Kernel Flows for Learning Chaotic Dynamical Systems

e Problem P : Given input/output data (z1,91), -+, (zn,yn) € X X R,
recover an unknown function u* mapping X to R such that u*(z;) = y;
forie{l,...,N}.

e In the setting of optimal recovery, Problem P can be turned into a well
posed problem by restricting candidates for u to belong to a Banach space
of functions B endowed with a norm defined as

||ul|* = supgep- (J ¢(@)u(x)dx)?
P o) K (,y)$(y)dwdy)

and identifying the optimal recovery as the minimizer of the relative error

[lu — v||?
[lull>

where the max is taken over u € I3 and the min is taken over candidates in
v € B such that v(z;) = u(x;) = y;.

min,maxy,
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Kernel Flows for Learning Chaotic Dynamical Systems

e The method of KFs is based on the premise that a kernel is good if there
is no significant loss in accuracy in the prediction error if the number of
data points is halved. This led to the introduction of
[ —v°|?
P= "=z
[l

which is the relative error between v*, the optimal recovery of u* based on
the full dataset X = {(z1,41),...,(xn,yn)}, and v® the optimal recovery
of both u* and v* based on half of the dataset X* = {(z;,v;) | i € S}
(Card(S) = N/2) which admits the representation

vS = (yS)TASK(xS, )

with y¥ = {y; | i € S}, 2° = {z; | i € 8}, A° = (©°)7 1, 07 ; = K(zj,z3).
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Kernel Flows for Learning Chaotic Dynamical Systems

Given a family of kernels Ky(x,z’) parameterized by 6, the KF algorithm
can then be described as follows :

1. Select random subvectors X? and Y of X and Y (through uniform
sampling without replacement in the index set {1,...,N})

2. Select random subvectors X¢ and Y of X? and Y (by selecting, at
random, uniformly and without replacement, half of the indices
defining X)

3. Let

Yc,TK Xc¢ Xxe¢ —IY
p(0, X" Y" X V) =1~ vaTKz((X”,’Xb))‘lYZ ’
be the squared relative error (in the RKHS norm || - ||k, defined by
Kj) between the interpolants u® and u° obtained from the two nested
subsets of the dataset and the kernel Kjy
4. Evolve 6 in the gradient descent direction of p, i.e. 8 <— 0 —dVgp
5. Repeat.
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Kernel Flows for Learning Chaotic Dynamical Systems

o Let x1,..., 2, ... be a time series in R%. Our goal is to forecast x,41
given the observation of z1,...,z,.

e We work under the assumption that this time series can be
approximated by a solution of a dynamical system of the form

Zk+1 = fT(Zk) s 7Zk77-T+1)7

where 7T € N* and fT may be unknown.
e Given 7 € N*, the approximation of the dynamical can then be recast as
that of interpolating fT from pointwise measurements

F(Xy) =Y fork=1,...,N

with X := (gsr—1,-.-,Tk), Yy := X1y and N =n — 7.
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Kernel Flows for Learning Chaotic Dynamical Systems

e Given a reproducing kernel Hilbert space of candidates for fT, and using
the relative error in the RKHS norm || - || as a loss, the regression of the
data (X, Yy) with the kernel K associated with provides a minimax
optimal approximation of fTin . This interpolant (in the absence of
measurement noise) is

fla) = K(z, X)(K(X,X))"'Y

where X = (X1,...,Xn), Y = (Y1,...,YN), k(X,X) for the N x N
matrix with entries k(X;, X;), and k(z, X) is the N vector with entries
e Use different variants of Kernel Flows (KF) to learn the kernel K from
the data (X, Yy).

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022



Kernel Flows for Learning Chaotic Dynamical Systems

Assume the kernel K to be parameterized by 6. To update 0 in Ky, we
minimize one of the following metrics (different variants of KFs)
» Metric associated to the RKHS norm

YC’TKQ(XC, Xc)fl)/;:

YITKy(X0, X0)-1y?

P Metric associated to Lyapunov exponents and the premise that a
kernel is good if the estimate of the maximal Lyapunov exponent
obtained from the kernel approximation of the dynamics does not
change if half of the data is used.

p(0, X°, Y X V¢ :=1—

pL = |[Amax,N — Amax,n/2]

» Metric associated to the Maximum Mean Discrepancy (MMD) and
minimize
PMMD = MMD(SI; SQ)

between two different samples of the time series.
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Kernel Flows for Learning Chaotic Dynamical Systems

e We use the kernel

Hx _ yHZ‘ Hw—;JH% _H-’E—;JHQ
k(z,y) = agmax{0,1 - "—2 L aje °T +age °2
l=—yll3
+ ageoesiieamllonvlle Ry oy|z — g3
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Kernel Flows for Learning Chaotic Dynamical Systems

e Bernoulli map z(k + 1) = 2z(k) mod 1

10 10 08
08 08 06
06
ae. 04
04 04
02
02
02
00
00
00
0 50 100 150 200 0 50 100 150 200 0 25 50 75 100 125 150 175 200

Figure: Time series generated by the true dynamics, approximation using the
learned kernel and the kernel without learning for different initial conditions
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Kernel Flows for Learning Chaotic Dynamical Systems

e Lorenz system

with s = 10, r = 28, b = 10/3.

Boumediene Hamzi
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Kernel Flows for Learning Chaotic Dynamical Systems
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Figure: Time series generated by the true dynamics (red) and the approximation
with the learned kernel (blue) - x component in the left figure, y component in
the middle figure, z component in the right figure.
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Kernel Flows for Learning Chaotic Dynamical Systems
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Figure: Difference between the true and the approximated dynamics with the
learned kernel using p (red (first, third and fifth from the left)), with the initial
kernel (green (second, fourth and sixth from the left)). x-component in the two
figures at the left, y-component in the middle two figures, z-component in the

right two figures.
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: Projection of the true attractor and approximation of the attractor using a
learned kernel on the XY,XZ and YZ axes (first, third and fifth from the left),
Projection of the true attractor and approximation of the attractor using with
initial kernel on the XY,XZ and YZ axes (second, fourth and sixth from the left)
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Kernel Flows for Learning Chaotic Dynamical Systems

Figure: True attractor (blue) and approximation of the attractor using a learned
kernel (red) [left], True attractor (blue) and approximation of the attractor using
initial kernel (red) [right]
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Kernel Flows for Learning Chaotic Dynamical Systems

e HYCOM: 800 core-hours per day of forecast on a Cray XC40 system

e CESM: 17 million core-hours on Yellowstone, NCAR's high-performance computing resource
e Architecture optimized LSTM: 3 hours of wall time on 128 compute nodes of the Theta
supercomputer.

e Our method: 40 seconds to train on a single node machine (laptop) without acceleration

HYCOM (PDE) CESM (PDE)

—— Predicted Hycom

0 25 50 100 125 150 175

75
Week
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Kernel Flows for Learning Chaotic Dynamical Systems
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

e Write X := (X4,...,Xy) and Y := (Y1,...,Yn) for the input/output
training data. Our goal is to learn a kernel of the form

K?(x,2') = K(¢(z, 1), (2", 1)),

where K is a standard kernel and ¢ maps the input space into itself.
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

e The warping of the input space ¢ satisfies the following ODE

with
v(a,t) =T(z,q)T(¢,9) "¢, and ¢=—-V[p(q)],
where
» ¢ corresponds to position variables in X'V starting from
q(0) = X = (Xy,---, Xn).
» T'is an operator/vector-valued kernel, I'(¢, q) is an N x N matrix
with entries I'(¢;, g;).

» T'(z,q) is a 1 x N vector with entries I'(z, g;).
> p is the kernel flow loss associated with the input/output data (¢,Y).
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

e Using an explicit Euler scheme and regularizing with a nugget A > 0
leads to an iteration of the form

On+1(7) = Pn () + €vp(Pn(T)).

with ¢o(z) = .
e Writing X = (Xy,...,Xx) for the training points and

an = On(X) = (¢n(X1),...,Pn(Xn)), the discretized equations take the
form

dn+1 = 4dn — EVP(Qn)
and .
Un(x) = F(x’qn)(r(qﬂn qn) + )‘I)i (QHJrl - Qn)/e
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Nonparametric Kernel Flows for Learning Chaotic
Dynamical Systems

Predicted vs true tr t KF MMD
Predicted vs true trajectory, KF 500 000 iterations recicted vs true frajectory,

10 ~— {

True trajectory

500 —— True trajectory
Prediction o 100 200 300

400 500
—— Prediction

o 100 200 00 400

(a) Time series (red) and the prediction (b) Time series (red) and the prediction
(blue) by the learned kernel with p (blue) by the learned kernel with pararp

Figure: Prediction results for the Bernoulli map
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Figure: Deformation of input for different iterations of the flow

and deformed final data (right).
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Figure: Convergence of the losses p and pyap-
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Kernel Flows for Learning Irregularly-Sampled Time Series

e The above approach fails to be accurate for irregularly sampled series
because it discards the information contained in the t.
e To address this issue, we consider the model

Trir = 1@ Ak, Tty Dt i1)s

which incorporates the time differences Ay = t51 — t; between
observations.

e That is, we employ a time-aware time series representations by
interleaving observations and time differences.

e The proposed strategy is then to construct a surrogate model by
regressing f1 from past data and a kernel Kj learned with Kernel Flows as
described previously. Note that the past data takes are

Xk = (ka, Ak, oy Lhtr—15 Ak+7—1)y Yk = Tr41 and N=n—r.
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Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Attractor reconstruction (left), Time series reconstruction (right) without
learning the kernel
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Kernel Flows for Learning Irregularly-Sampled Time

Figure: Reconstruction of the test time series of the Lorenz map with regular
Kernel Flows (left) and irregular KFs (regular).
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Kernel Flows for Learning Irregularly-Sampled Time Series

Figure: Approach with regular Kernel Flows (left), Approach with irregular Kernel
Flows (right).
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

e Consider the dynamical system

o4 1) = fal) = | 1 ]

where f € C(R" x R™ R"™),

e We assume that we have access to measurements from the first n
components of the x—variable that we denote as =™ and that the
remaining m components, that we denote as 2", are not observed, i.e. we
only observe z"(1),...,2"(l). Our goal is to forecast x(l + 1) given the
observation of "(1),...,x"(l).
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

e This is equivalent to minimizing the following optimization problem w.r.t
fn, fm and the the unknown m—variables required in the representer
formula.

N
min £ = || fullf, + [ fullf, A Y <(fn(w?,w?)—x?+1)2+(fm(w?,3?2")—36?11)

i=1

olet A= (x3,---,27,), B= (a5, ,2},), C=(..,(a},2]"),...).
The minimizers of the loss £ are f,,(-) = '1(-, O)(T'1(C,C) + A\~ 11;) 71 A,
fim(:) = Ta(-,C)(To(C, C) + A~11;) "L B which leads to the following

reduced optimization problem

ming AT(T'1(C,C) + A1) LA+ BT (I (C,0) + A1, 'B
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

Consider the Lorenz system

T = O'(y—.%'),

y = zlp—2)-y,
Z = xzy— Pz

8

with 0 =10, p = 28, 3 = 5. First, we consider the case where we have
access to the x and y variables but not z.

We follow the following steps: i.) find the auxiliary variable z,, ii.) use
kernel flows to learn the parameters of the kernel

—ll= - yl3
2
202

2\ —1 2
2 llz —yllz 2 llz —yliz 2 —llz = yll2
011 <1+T + 6715 max 0,17T + 6074 exp T +
10 13 15

.2 2 L2 2
—sin® (7llz — yl|3/017 z —y||? —sin® (7llz — yll5/021
9%6 exp < ( ) exp [ — I vll2 + 930 exp ( )

2 -1 -0
Kg(z,y) =67 exp ( ) +03 (aTy+03)" +05 (03 + 63l —wll3) 2 +63 (03 + e —ul3) "+

2
6%8 19 032
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

We generate 200 data points using initial conditions z(0) = 0, y(0) =0,
z(0) = 0, and sampling time ¢s = 0.01, and we use gradient descent with
step size 7 = 107 to solve the optimization problem to find the auxiliary
variable z,.

For prediction, we started with a time delay 77 = 3 but the results were

poor. By increasing the time delay to 71 = 4, the results improve and are
in the figures below.
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

i

20 0 &0 B

True (blue) vs. Prediction (red) of the x variable (top), True (blue) vs. Prediction (red) of the y variable (middle), True (blue)

vs. Prediction (red) of the y variable (bottom)
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

The errors between the true and approximated values over longer
simulation intervals are plotted in the figures below.
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08

02
00

08

08
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Kernel Flows for Learning Partially-Observed Dynamical
Systems

Figure: Reconstruction from true data (blue) vs. approximation (red) of the
attractor.
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Sparse Kernel Flows for Learning Chaotic Dynamics

e Consider a kernel of the form
Kgo(z,y) ZB ki, y; 0

e Sparsify K¢ by L1 regularization

T

K-l
L(p,0) =argminl — M

=
Y

+ A6l

e We apply it to a database of 131 chaotic dynamical systems.
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Sparse Kernel Flows for Learning Chaotic Dynamics

We use the following kernel

1

—lle — yli3 2 -1 -8
K<z,y>:efexp(TQ +03 (o y+83)" +03 (83 + 63l —wl3) 2 +063 (B3 +ll=—wil3) "

o2\ 1 o2
+o? <1+ llz y”z) + 62 max <0 L e 2@,“2)
82 8
2 —sin (ﬂllwfyllg/ﬁg) Hasfy‘b —sin? (7er7yH%/,812)
+ 07 exp 5 exp 5
Bio B3
+ 65 exp e vl + 0% (31 +516HI*ZJH2) 3
2634 °
2 (a2 —B17 | 42 e —wllz) ", o lz = yll2
011 (318 + lle - yl\z) +607, [ 1+ B + 63y max (0,1 — —1%
19

B30
2 <—Sin2 (Wl\x—yl\z/ﬂ'zl)) ( Hﬂc—yH'z)
+ 074 exp exp | —

+

B3, B23
02
—sin” (wlz — yll2/B24)
+ 0%5 exp 5
'325
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Sparse Kernel Flows for Learning Chaotic Dynamics

Example 1: Complex Ca®toscillations

%Z:szn_%"i"/?)_"kfy_kz
i =Vo—-V3—-k

dty_ 2 3 1Y

d

—a=pVi—Vs—ea

dt
here Vin = Vo + Vi3, Va = Vinaminms, Va = Vius s 7iog 7o
where Vi = Vo + V15, Va = V2 7755 Vs = Vs gigom 72 Kl at

2n

_ aP
Vs = Vs griar m o
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Sparse Kernel Flows for Learning Chaotic Dynamics
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Sparse Kernel Flows for Learning Chaotic Dynamics

Example 2: Multiple interacting Chua electronic circuits

Equation:

where

d
= aly — [(@))

dty:ac—y+z

d
BV A
- Y

5
1
fl@)=mzz+ ) 5 (mi = mi1) (Jo + i = |2 = cia)
=1

Boumediene Hamzi

MLDS in RKHS

3rd Symp. on MLDS, Fields Inst., 09/2022



Sparse Kernel Flows for Learning Chaotic Dynamics
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Sparse Kernel Flows for Learning Chaotic Dynamics

Index Name CaTwoPlusQuasiperiodic MultiChua
Regular KFs Sz’iri f;:S Regular KFs S?;ri };'):S

coefficients 01 3.007 0.169 1.149 1.016
02 15.886 -3.287 1.558 1.834
63 2.260 0.495 1.131 0.965
64 3.290 0.166 1.152 0.974
05 3.297 0.113 1.152 0.965
O¢ 4.735 0.009 0.731 0.853
(74 5.063 0 1.516 0.852
03 0.947 0.769 0.162 0
[Z28) 3.055 0.294 1.378 1.013
610 2.404 0.505 1.307 0.962
011 3.892 0.204 1.575 1.017
012 3.895 0.133 1.578 1.019
013 6.611 0 1.204 0.941
014 8.462 -0.038 3.709 1.220
015 -2.451 7.375 0.538 0.232

error criterion SMAPE 0.006 3.40 x 107° 0.069 0.004
Hausdorff Distance 2.789 0.013 12.056 0.216

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields In



Detection of Critical Transitions for MultiScale Systems
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Detection of Critical Transitions for MultiScale Systems

e Consider the fast-slow SDE

o= Lh@an) + Do)
oy = fowy,@2) + 02m2(T)

where f; € C(R%R) and fo € C(R?;R) are Lipschitz and 7y, 12 are
independent white Gaussian noises.
e 11 is a fast variable in comparison to the slow variable x5.

e The set Cy = {(x1,79) € R?: f1(w1,29) = 0} is called the critical
manifold.

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022



MultiScale Systems

e The van der Pol model.
e The equations of the model are

. 1
xrpT = *(1‘2
€

z3(z1 + 0)) + ﬁm(t)

27
158"

o = —5—1‘14-02772@)

§=1,01=0.1,00 = 0.1, = 0.01.
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MultiScale Systems

vdP model  (-2031) M Y
B, M
“ 08
\
06§ =
--» «- \--» g -
o=
215
06 $5 04 203 -02 01,40 Oo1 02X
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MultiScale Systems

e Numerical Simulation

o1z

o1 -

o.oa

0.06

o.0a

0.02
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Detection of Critical Transitions for MultiScale Systems

o We'll use the following Gabor wavelet as basis to build the reproducing
kernel :

3
w

2 1 w _w2(t—7')2
Gruwo(t) :=(=)4y/—cos(w(t —7)+8)e o | t,7,0eR w,a>0
o'

This wavelet allows only to recognize modes of the form

t — cos(w(t — 7) + ) “a la Fourier series”.

e In our context, we extend these wavelets to detect signals of the form
t — y(w(t — 1) + ) for 2m-periodic signal y € L2(]0,2x]). This can be
done using

2 1 w 7w2(t—7—)2
Xyirw,0(t) = (ﬁ)4 Ey(w(t —7)+0)e 2 t,r,0eER w,a>0

Given x, we construct the Gram matrix whose entries are

Ky;T7w,9(8’ t) = Xy;T,w,O(S)Xy;T,w,e(t)7 s, t e [07 1]
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Detection of Critical Transitions for MultiScale Systems

e The reproducing kernel K, associated to y, we integrate K., 4(s,t)
w.r.t 7,w, 6 over their domain of definition :

emax Wmax Tmax
(s,1) / / Kyrwo(s,t)drdwdf, s,t€0,1]

wmln Tmln
e For stochastic van der Pol, the function y and the corresponding kernel
are

04 50 — new kemnel
—— old kermnel

o 1000 2000 3000 4000 5000 6000 -20 -15 -10 -05 0o o5 10 15 20

Figure: The function y used to build the kernel k(s,t) (left), Projection on the

s—axis of the plot of the kernel K¢(s,t) from vs. kernel K (s, t)(right)
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Detection of Critical Transitions for MultiScale Systems

Van der Pol oscillator - Noise

ar
Noise

os
‘ “‘
e
e

Van der Pol oscillator - Reconstru

Value

o 10

s
Time

Figure: Reconstruction and noise for stochastic Van der Pol
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Detection of Critical Transitions for MultiScale Systems

e We define the energy of a sliding window W; = [i7, (i + 1)7] of width T
as

& =v] KZ Ko, K7'v;

where K7(s,t) = 3. Ky, (s,t) + 0?1, with o large and I, the identity
matrix, v; is the signal in the interval [i, (i + 1)7],
Ky, (s,t) = K(x(s),z(t)) with s,t € W;, and K, (s,t) = 0 otherwise.
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Detection of Critical Transitions for MultiScale Systems

signal as a function of © signal as a function of t

—— inner product as a function of tau

inner product as a function of tau

04 04
02 02
00 00
-0.2 -0.2
-0.4 -0.4
-0.6 0.6
-0.8 -0.8
-10 -1.0

oo 25 S50 75 100 125 150 175 200 0o 25 S50 75 100 125 150 175 200

signal as a function of t
—— inner product as a function of tau

oo 25 50 75 100 125 150 175 200

Figure: Energy £ for o = 0.01 (top left) and o = 0.1 (top right), a = 2.0
(bottom)
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Center Manifold Approximation
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Center Manifold Analysis

Consider a dynamical system
&= f(x) = Fr+ f(x)

of large dimension n, and F' = %(m)|mzo.

Suppose = 0 is an equilibrium, i.e. f(0) = 0.

e Goal: Analyze the stability of this equilibrium.

e If F' has all its eigenvalues with negative real parts = The origin is
asymptotically stable.

e If I’ has some eigenvalues with positive real parts = The origin is
unstable.
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Center Manifold Analysis

o If o(F) < 0 (some eigenvalues of F are with zero real parts with the rest
of the eigenvalues having negative real parts): The linearization fails to
determine the stability properties of the origin.

e After a linear change of coordinates, we have

i1 = P+ fi(z,22)
&y = Foxo+ fo(zr,x2)

where o(Fy) = 0 and o(F3) < 0.

e Intuitively, we expect the stability of the equilibrium to only depend on
the nonlinear terms fl(xl,xg). The center manifold theorem correctly
formalizes this intuition.
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Center Manifold Analysis

e A center manifold is an invariant manifold, x2 = 6(x1), tangent to the
x1 directions at x = 0.
e Since

i1 = Pz + fi(z,z2)

iy = Fhao+ fo(z1,22)
and x2 = 0(x1), we deduce that 6 satisfies the PDE
F26(z1)+f2(21,0(21))= 40 (21) (Fren+ i (21,0(21)))-

e The Center Manifold Theorem ensures that there are smooth solutions
to this PDE.
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Center Manifold Analysis

e The center dynamics is the dynamics on the center manifold,
T = Fla + fl(:L‘l, 9(1?1))

e Center Manifold Theorem: The equilibria z; = 0,29 = 0 of the original
dynamics is locally asymptotically stable iff the equilibria 1 = 0 of the
center dynamics is locally asymptotically stable.

e After solving the PDE, this reduces the problem to analyzing the
nonlinear stability of a lower dimensional system.

e Our Contributions: kernel methods to approximate the center manifold,
a data-based version of the center manifold theorem.
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Center Manifold Analysis: Main results

e Let 6 be an approximant of the center manifold 8. Given the constraints
0(0) = 0 and D,0(0) = 0, we use a generalized version of the representer
theorem and write

N+1

kaaz,azﬁ-za k(x,0)pi,

e (=) Under certain conditions, we prove that if the equilibrium z; = 0 of

= Fyzy + fi(x, 0(x1)).

is asymptotically stable then the equilibrium x1 = 0, x5 = 0 of the full
order dynamics is asymptotically stable ((asymptotic) stability-preserving
property- in one direction at least, second direction is still missing).

e We also prove that ||z ¢(t) — $17é(t)|| is bounded.
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Numerical Experiments: Example 1

e We consider the 2-dimensional system

&= fi(z,y) =y

j = folr,y) = -y —2° &

e Analytically, the center manifold is y = —2% + O(2?).

e We generate the training data by solving the system with an implicit
Euler scheme for initial time tg = 0, final time T = 1000 and with the
timestep At = 0.1. We initiate the numerical procedure with initial values
(xo,y0) € {£0.8} x {£0.8} and store the resulting data pairs in X and YV’
after discarding all data whose z-values are not contained in the
neighborhood [—0.1, 0.1] which results in N = 38248 data pairs. We use
the kernels ki (z,y) := (14 zy/2)" and ko(z,y) = e~ (@¥)°/2,
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Numerical Experiments: Example 1

. +10-3 Approximation for k; , <103 Approximation for ko

-0.1 -0.05 0 0.05 0.1 -0.1 -0.05 0 0.05 0.1
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Numerical Experiments: Example 2

e Consider the (2 4 1)-dimensional system

. 0 —1 T T
=L+ Ni(z,y) = (1 0) (x;) ty <x;>

J= Loy + No(z,y) = —y — 23 — 25 + °.
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Numerical Experiments: Example 2

Il

4
poly

4
TP

Figure: Approximations h

corresponding residuals 7,
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Construction of Lyapunov Functions from Data
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Summary of the Approach

e We will consider a nonlinear ODE & = f(x), x € R™ and assume that f
is not known but z(t;), i =1,--- , N, are known.

e We approximate f from x(tl) i=1,---,N.

e We find a Lyapunov function V for f

o We prove that V is also a Lyapunov function for f.
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Lyapunov Functions

e Consider the system of ODEs 3 : { x(Oj): i g($)7 with x € R"”,
f e Co(R",R") where 0 > 1, n € N.

Flow S;§ := x(t), solution of X.

e Assumptions

» 0 is an equilibrium (f(0) = 0)

» 0 is exponentially asymptotically stable (real parts of all eigenvalues
of Df(0) are negative)

e Definition (Basin of Attraction) The basin of attraction of 0 is
A= {& € R"|S{ =100 0}

e The basin of attraction A can be determined using Lyapunov functions.
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Lyapunov Functions

Theorem (Lyapunov 1893)
Let V : R" - R, K C R" a compact set.

» V decreases along solutions, i.e. (if V' is smooth)

V(@) = SV (@(t))lemo = YV (@) - f(z) <0

for all x € K\ {0} ( V' is the orbital derivative = derivative along
the solution )

» K is sublevel set of V, i.e. K = {z € R"|V(z) < R}.
Then K C A.
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Existence of Lyapunov Functions

e “Converse Theorems” (Massera 1949) etc. - but not constructive !
e Theorem (Existence of V, Bhatia) Let f € C?, 0 > 1, 0 exponentially
stable equilibrium. Then there exists V' € C7(A, R) with

V'(z):=VV(z)- f(z)=—|z|[* forall z€ A

The Lyapunov function V' is uniquely defined up to a constant.
o Idea: V(z) = [ ||Sex||*dt.
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Computation of Lyapunov Functions

e Gies| proposed an algorithm to approximate Lyapunov functions using
radial basis functions.

e Error estimates for this approach have been proved by Giesl and
Wendland.

e The method is based on finding an approximate solution of a first-order
linear PDE:

LV(z) = —|lz|[* (LV(2) = —p(z) with p(z)>0)

with LV :=V/(z) := VV(x) - f(z).
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Computation of Lyapunov Functions (Giesl, 2007)

e Theorem (Giesl, 2007)

Consider & = f(x) with f € C?(R™,R") and let zo be an equilibrium such
that all eigenvalues of D f(xo) have a negative real part. Let

p(z) € C7(R",R) satisfy the following conditions: a.) p(z) > 0 for

x # x9, b.) p(z) = O(||z — z0||9) with n > 0 for z — z, c.) For all

€ > 0, p has a lower positive bound on R™ \ B(zo, €) where B(zg,€) is a
the ball centered at x( of radius e.

Then there exists a Lyapunov function V; € C?(A(z),R) such that
Vi(zo) =0 and

LVi(z) = fi(x) == —p(x), forall =€ A(zo),

where A(z) is the basin of attraction of xy.
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Computation of Lyapunov Functions (Giesl, 2007)

Algorithm: Let ®(z) = ¢x(||z||) be a radial function where 9 is a
Wendland function (compact support). Consider the grid points
Xy ={x1, -+ ,xny} C R™. Consider the following ansatz

=

Vi(x) =) Bi(0a, 0 L)V ®(z — ),

k=1

where (05, o L)Y denotes differentiation with respect to y then evaluation
at y = xy.
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Computation of Lyapunov Functions (Giesl, 2007)

By considering the interpolation conditions
LVi(xj) = LV (z5) = fi(zj),
and by plugin in the ansatz

N
Zﬂk (0z; 0 L)*(6x), 0 L) ®(x —y) = LV (x;) = fi(z;) = 5,
i1

:ajk

one gets a system of linear algebraic equations for the 3 in Ss:
AB =7,

where the matrix A is symmetric and positive definite.
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Estimates on Lyapunov Functions (Giesl and Wendland,

2007)

e Theorem(Giesl & Wendland, 2007)

Let ¢, k € N, be a Wendland function and let

®(x) = Yi(||z]|) € C**(R",R) be a radial basis function. Let

f € C7(R™,R) where 0 > ™1 + k. Then, for each compact set
Ky C A(zg) there is C* such that

V' (x) — V{(x)] < C*hY for all z € Ko,

where h := max,cx, mingcx, ||z — y|| is the fill distance and A = 1/2 for
kE=1land A=1fork>2 (or A=k —1/2).
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Computation of Lyapunov Functions from Data

e Giesl's approach assumes that the right hand side of (ODE) is known,
and sampled values of f are used at chosen grid points.

e We assume the underlying system X where f is unknown but, instead,
we have sampled data values (z;;y;)|™, with y; = f(z;)+n,i=1,---,m
with each x; € A(Z), and € R? is an independent random variable drawn
from a probability distribution with zero mean and variance o2 € R?.

e Our approximation algorithm looks for suitable functions in an RKHS.

e Error estimates are derived for some RKHSes that are also Sobolev
spaces.
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Numerical Experiment

Consider the nonlinear system

. 2
T = —T]+T1x5 (2)
To = —T9— $2$%

It can be checked that V(z) = 23 + 3 is a Lyapunov function for the
system. First, we used Algorithm 1 to approximate the right hand side of
(2) with m = 400 points and z := (z;,y;)/", are such that the points xz;
are equidistantly distributed over [—0.95,0.95] .
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Numerical Experiment

Figure: Lyapunov function using Algorithm 2 with 360 points(top), 1520 points
(bottom)
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Numerical Experiment

Figure: Orbital derivative of the Lyapunov function with respect to the original
system using Algorithm 2 with 360 points(top), 1520 points (bottom).
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Approximation of Control Systems in
Reproducing Kernel Hilbert Spaces
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Review of Some Concepts from Linear Control Theory

e Consider a linear control system

£ = Ax+ Bu
y = Cx ’

where x € R", w € R?, y € RP, (A, B) is controllable, (A, C) is observable
and A is Hurwitz.

e We define the controllability and the observability Gramians as,
respectively, W, = [¢ ABBTeA dt, W, = I AtOTCeA dt.

e These two matrices can be viewed as a measure of the controllability
and the observability of the system.
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Review of Some Concepts from Linear Control Theory

e Consider the past energy, L.(z¢), defined as the minimal energy required
to reach xg from O in infinite time

1 0

L. = inf )2 dt.

@)=t 5[ ol
z(—00)=0,2(0)=x0

e Consider the future energy, L,(x), defined as the output energy
generated by releasing the system from its initial state z(tp) = z, and
zero input u(t) =0 for t > 0, i.e.

Lofeo) =5 [ )P e,

for x(tg) = xo and u(t) = 0,t > 0.

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022



Review of Some Concepts from Linear Control Theory

e In the linear case, it can be shown that
- T
L.(zo) = %x—ch Y20,  Lo(z0) = s Woo.
e Moreover, W, and W, satisfy the following Lyapunov equations

AW, +W.A"=—-BB", A"W,+W,A=-C'C.
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Controllability and Observability Energies in Model
Reduction of Linear Control Systems

e Gramians have several uses in Linear Control Theory. For example, for
the purpose of model reduction.

e Balancing: find a representation where the system's observable and
controllable subspaces are aligned so that reduction, if possible, consists of
eliminating uncontrollable states which are also the least observable.

e More formally, we would like to find a new coordinate system such that

W, =W, =% =diag{o1, - ,on},

where o1 > g9 > -+ > 0, > 0. If (F,G) is controllable and (F, H) is
observable, then there exists a transformation such that the state space
expressed in the transformed coordinates (TFT~1, TG, HT ') is balanced
and TW.I" =T "W, T-! =%.
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Balancing of Linear Control Systems

e Typically one looks for a gap in the singular values {o;} for guidance as
to where truncation should occur. If we see that there is a k£ such that
Ok > 011, then the states most responsible for governing the
input-output relationship of the system are (x1,--- ,x) while
(Tkt1,.-.,x,) are assumed to make negligible contributions.

e Although several methods exist for computing 7', the general idea is to
compute the Cholesky decomposition of W, so that W, = ZZ', and form
the SVD UX2U" of Z'W.Z. Then T is given by

T=x30"7"1,
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Controllability and Observability Energies for Nonlinear

Systems

e Consider the nonlinear system X

{9’6 = f(@)+ 2% gi(x)ui,
y = h(z),

with x € R, u € R™, y € RP, f(0) =0, ¢;(0) =0 for 1 <i <m, and
h(0) = 0.

Hypothesis H: The linearization of the system around the origin is
controllable, observable and F = %|z:0 is asymptotically stable.
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Controllability and Observability Energies for Nonlinear

Systems

e Theorem (Scherpen, 1993) If the origin is an asymptotically stable
equilibrium of f(x) on a neighborhood W of the origin, then for all
x € W, Lo(x) is the unique smooth solution of

0L, 1
(@) f (@) + 5

under the assumption that this equation has a smooth solution on W (L,
is a Lyapunov function). Furthermore for all x € W, L.(x) is the unique
smooth solution of

)
e ) f(a) + 3 e ()gla)g () () =0, Lef0) = 0

under the assumption that this equation has a smooth solution L. on W
and that the origin is an asymptotically stable equilibrium of
—(f(x) + g(x)g"(z) = () on W,

Boumediene Hamzi MLDS in RKHS 3rd Symp. on MLDS, Fields Inst., 09/2022



Balancing of Nonlinear Systems

e Theorem (Scherpen) Consider system X under Hypothesis H and the
assumptions in the preceding theorem. Then, there exists a neighborhood
W of the origin and coordinate transformation = = (z) on W converting
the energy functions into the form

where o1(x) > o9(x) > -+ > o,(z). The functions o;(-) are called Hankel
singular value functions.
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Balancing of Nonlinear Systems

e In the above framework for balancing of nonlinear systems, one needs to
solve (or numerically evaluate) the PDEs and compute the coordinate
change = = (z2).

e However there are no systematic methods or tools for solving these
equations.

e Various approximate solutions based on Taylor series expansions have
been proposed Krener (2007, 2008), Fujimoto and Tsubakino (2008).

e Newman and Krishnaprasad (2000) introduce a statistical approximation
based on exciting the system with white Gaussian noise and then
computing the balancing transformation using an algorithm from
differential topology.

e An essentially linear empirical approach, similar to Moore's empirical
approach, was proposed by Lall, Marsden and Glavaski (2002).
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Computing the Controllability and Observability Energies:
Linear Case

e Analytic Approach: The Gramians W, and W, satisfy the Lyapunov
equations
FW.+W.F'= -GGT,
F'W,+W,F=—-H"H.

e Data-Based Approach: Moore showed that W, and W, can be obtained
from the impulse responses of ;. For instance,

W, = /X )T dt, WO—/ YT ()Y (t)dt

where X (t) is the response to u‘(t) = e; with (0) = 0, and Y (¢) is the
output response to u(t) = 0 and z(0) = e;.

Given X () and Y'(t), one can perform PCA to obtain W, and W,
respectively.
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Empirical Estimates of the Gramians

The observability and controllability Gramians may be estimated
statistically from typical system trajectories:

7T & 7T Y
Wo=—S"Xt)X(t), W,= Y ()Y ().
WmNi:1()() pN;()()

where t; € [0,7],i =1,...,N, X(t) = [2(¢) --- 2™(t)], and
Y(t)=1[y'(t) -y O if {7 ()}, {57 (1)}]-, are measured
(vector-valued) responses and outputs of the system.
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Computing the Controllability and Observability Energies
for Nonlinear Systems

Questions

e How to compute the controllability and observability energies from data ?
e How to extend Moore's empirical approach to Nonlinear Control Systems
,

e Are there “Gramians” for Nonlinear Systems 7 and in the affirmative,
how to compute them from data ?

e Idea ! Use of kernel methods. A kernel based procedure may be
interpreted as mapping the data, through “feature maps”, from the
original input space into a potentially higher dimensional Reproducing
Kernel Hilbert Space where linear methods may then be used.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

e We consider a general nonlinear system of the form

z = f(x,u)

{ y = h(z)
with z € R", uw € R™, y € RP, f(0,0) =0, and h(0) = 0.
e Assume that the method of linear balancing can be applied to the
nonlinear system when lifted into an RKHS.
e In the linear case, L.(z9) = %l’ch_lxo and Ly(zg) = %ngOxg can be
rewritten as L.(z¢) = % <ijo,m0> and L,(zp) = % (Woxo, x0).
e In the nonlinear case, it may be tempting to write, in H,
Le(z) =1 <th, h> and Lo(z) = 1 (W,h, h) where h = ®(z) = K (z, )
and @ : R™ — H. However, there are some complications...
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

e We can show that
Le(z) = L (ARERK + A 2L RERK K, Ky
% <R*( RXR; + )‘I)_QRmea K:Jc>
= gke(2) (£ K. + M) " ke(),
where k¢ () := Ry K, = (K(m,x“))fj:ql is the Ng-dimensional column
vector containing the kernel products between x and the controllability

samples.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

e Similarly, letting x now denote the collection of m = Np observability
samples, we can approximate the future output energy by
Lo(z) = H{W,K,, K,) (3)

= shko(2)ko(@) = 5 kol(@)]3

where ko () := (K(x,du))fjjl is the Np-dimensional column vector
containing the kernel products between x and the observability samples.
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Balanced Reduction of Nonlinear Control Systems in RKHS

e We consider a general nonlinear system of the form

y = h(x)
with z € R", uw € R™, y € RP, f(0,0) =0, and h(0) = 0. We assume
that the origin of & = f(x,0) is asymptotically stable.
Proposed Data-Driven Approach:
» Assume that we can apply the method of linear balancing when the
system is lifted to a high (possibly infinite) dimensional feature space.

» Carry out balancing and truncation (linear techniques) implicitly in
the feature space (discard unimportant states).

» Construct a nonlinear reduced-order model by learning approximations
to f, h defined directly on the reduced state space.
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Balancing in RKHS

Idea: We can perform balancing/truncation in feature space by lifting the
data into ‘H via ®, and simultaneously diagonalizing the corresponding
covariance operators.

The standard empirical controllability Gramian (in R"™)

L T N T N m
c= mN (tZ)X(tZ)T = mN Z Z‘T](t )x](tZ)T
=1 i=1 j=1
becomes
T N m
Co=— Z;; (@ (27 (t3)), ), (27 (1))
for example.
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Balancing in RKHS

e “Balancing” is carried out implicitly in H by simultaneous
diagonalization of K. and K.
o If KM2K, K% = US2UT, we can define the aligning transformation

T =xY2U"/ K.

e The dimension of the state space is reduced by discarding small
eigenvalues {Zii}?:qﬂ, and projecting onto the subspace in H associated
with the first ¢ < n largest eigenvalues.

e This leads to the nonlinear state-space dimensionality reduction map
II: R" — RY? given by

O(z) = T'ke(z), zeR"
q

where
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An Experiment

Consider the 7 — D system (Nilsson, 2009)

1
3

T5

—xi’—}—u Ty = —x% —x%xg—&—?)xlx%—u

—x§+x5+u x'4:—xi+x1—a:2+x3+2u

acla:gxg—xg—&-u a'c6:m5—xg—x§+2u
j:7:—2m%+2m5—x7—x§—|—4u

y::cl—x§+x3+$4$3+x5—2x6+2x7
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Experiment: Inputs

>
4
4
>

Excite with impulses: inputs (K.) and initial conditions (K,,u = 0).
Learn f, h using a 10Hz square wave input signal u.

Reduce to a second-order system.

Simulate the reduced system with a different input,

u(t) = 1 (sin(273t) + sq(2n5t — 7/2))

and compare the output to that of the original system.
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Experiment

log(singular values of the Hankel kernel matrix




Experiment

Control Input

Control Input u(t)

|
0 02 04 06 08 1 1.2 1.4 1.6 1.8 2

Time (sg
Original and Reduced System Responses

Original
= = = Reduced

Outputs y(t) and §(t)
o

-0.5
‘JO 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)
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SDEs in Reproducing Kernel Hilbert Spaces
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Review of Some Concepts for Linear Stochastic Differential
Equations

e Consider the stochastically excited stable dynamical control systems
affine in the input u© € R?

&= f(z)+ G(z)u
where G : R™ — R"*7 is a smooth matrix-valued function. We replace the

control inputs by sample paths of white Gaussian noise processes, giving
the corresponding stochastic differential equation (SDE)

dX, = f(X;)dt + G(X;)dw,?

with Wt(Q) a g—dimensional Brownian motion. The solution X; to this
SDE is a Markov stochastic process with transition probability density
p(t, z) that satisfies the Fokker-Planck (or Forward Kolmogorov) equation

op .
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Review of Some Concepts for Linear Stochastic Differential
Equations

e In the context of linear Gaussian theory where we are given an
n—dimensional system of the form dX; = AX,dt + Bth(q), with

A e R"™™ B e R™ 1, the transition density is Gaussian.

e |t is therefore sufficient to find the mean and covariance of the solution
X (t) in order to uniquely determine the transition probability density.
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Review of Some Concepts for Linear Stochastic Differential
Equations

e The mean satisfies 4E[z] = AE[ ] and thus E[z(t)] = eA*E[2(0)]. If A
is Hurwitz, lim;_,o E[z(t)] =

e The covariance satisfies th[ 21] = AE[z2T] + E[z2T]A + BBT.

e Hence, Q = limy_,o, E[z2'] satisfies the Lyapunov system

AQ+ QA"=—-BB'". So, Q =W, = fooo At BBTeA™ dt, where W, is the
controllability Gramian, which is positive iff the pair (A, B) is controllable.
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Review of Some Concepts for Linear Stochastic Differential
Equations

e Combining the above facts, the steady-state probability density is given
by

o) = Z-1e BTW e _ oLt

with Z = /(2m)"det(WV,).
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Extension to the Nonlinear Case

e The preceding suggests the following key observations in the linear
setting: Given an approximation L. of L. we obtain an approximation for
Poo Of the form

~ fI:c(a:)

Poo(T) X €

e Although the above relationship between p~, and L. holds for only a
small class of systems (e.g. linear and some Hamiltonian systems), by
mapping a nonlinear system into a suitable reproducing kernel Hilbert
space we may reasonably extend this connection to a broad class of
nonlinear systems.
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Nonlinear SDEs in RKHSes

e Assumptionl: Given a suitable choice of kernel K, if the R%valued
stochastic process x(t) is a solution to the (ergodic) stochastically excited
nonlinear system

dX, = f(Xy)dt + G(X;) o AW

the H-valued stochastic process (® o x)(t) =: X (t) can be reasonably
modelled as an Ornstein-Uhlenbeck process

dX(t) = AX(t)dt +VCdW (t), X(0)=0eH

where A is linear, negative and is the infinitesimal generator of a strongly
continuous semigroup e*“, C'is linear, continuous, positive and
self-adjoint, and W (t) is the cylindrical Wiener process.
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Nonlinear SDEs in RKHSes

e Assumption2: The measure P, is the invariant measure of the OU
process and P, is the pushforward along ® of the unknown invariant
measure i, on the statespace X we would like to approximate.

e Assumption3: The measure [ is absolutely continuous with respect to
Lebesgue measure, and so admits a density.
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Nonlinear SDEs in RKHSes

e The stationary measure L is defined on a finite dimensional space, so
together with part (iii) of Assumption A, we may consider the
corresponding density

poo(x) X eXp(_Lc(x))
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Experiment

Consider the SDE dX = —5X° + 10X3 + v2dW.
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Conclusions

e We used kernel flows to approximate chaotic dynamical systems.

e We used the maximum mean discrepancy and extended kernel mode
decomposition to detect critical transitions.

e We introduced estimators for the controllability /observability energies of
nonlinear control systems. We used these energies to perform model
approximation of nonlinear control systems using a linear technique.

e We showed that the controllability energy estimator may be used to
estimate the stationary solution of the Fokker-Planck equation governing
nonlinear SDEs using a linear estimate.

e We introduced a data-based approach for the construction of Lyapunov
functions, Center Manifold Approximation and Center Manifold Theorem.
e These results collectively argue that working in reproducing kernel Hilbert
spaces offers tools for a data-based theory of nonlinear dynamical systems.
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