A stochastic variant of replicator dynamics in zero-sum games and its invariant measures

Maximilian Engel FU Berlin

Joint work with G. Piliouras (SUTD, DeepMind)

Machine Learning and Dynamical Systems, Fields Institute,

September, 2022

Al programs are learning to improve themselves in different tasks by competing against human players or other Al programs.

Al programs are learning to improve themselves in different tasks by competing against human players or other Al programs.

Generative Adversarial Networks for images, music, videos e.t.c. [GOODFELLOW ET AL 2014]

Al programs are learning to improve themselves in different tasks by competing against human players or other Al programs.

Generative Adversarial Networks for images, music, videos e.t.c. [GOODFELLOW ET AL 2014]

DeepMind AlphaGo (2016), AlphaZero (2017)

Al programs are learning to improve themselves in different tasks by competing against human players or other Al programs.

Generative Adversarial Networks for images, music, videos e.t.c. [GOODPELLOW ET AL 2014]

DeepMind AlphaGo (2016), AlphaZero (2017)

Critical mathematical abstraction is the notion of a zero-sum game [VON NEUMANN 1928, ...] and the concept of Nash equilibria [NASH 1950]

Al programs are learning to improve themselves in different tasks by competing against human players or other Al programs.

Generative Adversarial Networks for images, music, videos e.t.c. [GOODPELLOW ET AL 2014]

DeepMind AlphaGo (2016), AlphaZero (2017)

Critical mathematical abstraction is the notion of a zero-sum game [VON NEUMANN 1928, ...] and the concept of Nash equilibria [NASH 1950]

► Asymptotic stability around/towards Nash equilbria not clear a priori → Hamiltonian structures occur [Hofbauer 1996, Balduzzi et al 2018, ..]

Al programs are learning to improve themselves in different tasks by competing against human players or other Al programs.

Generative Adversarial Networks for images, music, videos e.t.c. [GOODPELLOW ET AL 2014]

DeepMind AlphaGo (2016), AlphaZero (2017)

Critical mathematical abstraction is the notion of a zero-sum game [VON NEUMANN 1928, ...] and the concept of Nash equilibria [NASH 1950]

- ► Asymptotic stability around/towards Nash equilbria not clear a priori → Hamiltonian structures occur [Hofbauer 1996, Balduzzi et al 2018, ..]
- Role of noise/uncertainty for dynamics around Nash equilibria?

Two-player game with n (resp. m) pure strategies for the first (resp. second) agent and payoff matrices

$$\mathbf{A} = (a_{ij})$$
 and $\mathbf{B} = (b_{ji})$.

Two-player game with n (resp. m) pure strategies for the first (resp. second) agent and payoff matrices

$$\mathbf{A} = (a_{ij})$$
 and $\mathbf{B} = (b_{ji})$.

▶ Domain $\mathcal{D} = \Delta_n \times \Delta_m$ consisting of mixed strategies **x** (resp. **y**):

$$\Delta_n := \{ \mathbf{x} \in (0,1)^n : x_1 + \dots + x_n = 1 \}, \\ \Delta_m := \{ \mathbf{y} \in (0,1)^m : y_1 + \dots + y_m = 1 \}.$$

Two-player game with n (resp. m) pure strategies for the first (resp. second) agent and payoff matrices

$$\mathbf{A} = (a_{ij})$$
 and $\mathbf{B} = (b_{ji})$.

▶ Domain $\mathcal{D} = \Delta_n \times \Delta_m$ consisting of mixed strategies **x** (resp. **y**):

$$\Delta_n := \{ \mathbf{x} \in (0,1)^n : x_1 + \dots + x_n = 1 \}, \\ \Delta_m := \{ \mathbf{y} \in (0,1)^m : y_1 + \dots + y_m = 1 \}.$$

We denote by u_i = {Ay}_i and v_j = {Bx}_j the utility of the agent for playing strategy i (resp. j) when the opponent chooses y (resp. x).

Two-player game with n (resp. m) pure strategies for the first (resp. second) agent and payoff matrices

$$\mathbf{A} = (a_{ij})$$
 and $\mathbf{B} = (b_{ji})$.

▶ Domain $\mathcal{D} = \Delta_n \times \Delta_m$ consisting of mixed strategies **x** (resp. **y**):

$$\Delta_n := \{ \mathbf{x} \in (0,1)^n : x_1 + \dots + x_n = 1 \}, \\ \Delta_m := \{ \mathbf{y} \in (0,1)^m : y_1 + \dots + y_m = 1 \}.$$

We denote by u_i = {Ay}_i and v_j = {Bx}_j the utility of the agent for playing strategy i (resp. j) when the opponent chooses y (resp. x).

▶ A game is called zero-sum if $\mathbf{A} = -\mathbf{B}^{\top}$ such that for all $(\mathbf{x}, \mathbf{y}) \in \overline{\mathcal{D}}$

$$\mathbf{x}^{\top} \mathbf{A} \mathbf{y} + \mathbf{y}^{\top} \mathbf{B} \mathbf{x} = \mathbf{0}.$$

A strategy profile (p, q) is a Nash equilibrium if no unilateral profitable deviations exist:

 $\forall i \in [n] : {\mathbf{Aq}}_i \leq {\mathbf{p}}^{\top} {\mathbf{Aq}} \text{ and } \forall j \in [m] : {\mathbf{Bp}}_j \leq {\mathbf{q}}^{\top} {\mathbf{Bp}}.$

A strategy profile (p, q) is a Nash equilibrium if no unilateral profitable deviations exist:

$$orall i \in [n] : \{\mathbf{Aq}\}_i \leq \mathbf{p}^{ op} \mathbf{Aq} \text{ and } orall j \in [m] : \{\mathbf{Bp}\}_j \leq \mathbf{q}^{ op} \mathbf{Bp}.$$

We define a strategy profile (p*, q*) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices -A and -B.

A strategy profile (p, q) is a Nash equilibrium if no unilateral profitable deviations exist:

$$\forall i \in [n] : {\mathbf{Aq}}_i \leq {\mathbf{p}}^\top {\mathbf{Aq}} \text{ and } \forall j \in [m] : {\mathbf{Bp}}_j \leq {\mathbf{q}}^\top {\mathbf{Bp}}.$$

We define a strategy profile (p^{*}, q^{*}) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices −A and −B.
 → each agent interprets the payoffs as costs to be minimized, i.e.

$$\forall i \in [n] : \{\mathbf{A}\mathbf{q}^*\}_i \ge \mathbf{p}^{*\top}\mathbf{A}\mathbf{q}^* \text{ and } \forall j \in [m] : \{\mathbf{B}\mathbf{p}^*\}_j \ge \mathbf{q}^{*\top}\mathbf{B}\mathbf{p}^*.$$

A strategy profile (p, q) is a Nash equilibrium if no unilateral profitable deviations exist:

$$\forall i \in [n] : {\mathbf{Aq}}_i \leq {\mathbf{p}}^{\top} {\mathbf{Aq}} \text{ and } \forall j \in [m] : {\mathbf{Bp}}_j \leq {\mathbf{q}}^{\top} {\mathbf{Bp}}.$$

We define a strategy profile (p^{*}, q^{*}) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices −A and −B.
 → each agent interprets the payoffs as costs to be minimized, i.e.

$$\forall i \in [n] : \{\mathbf{A}\mathbf{q}^*\}_i \ge \mathbf{p}^{*\top}\mathbf{A}\mathbf{q}^* \text{ and } \forall j \in [m] : \{\mathbf{B}\mathbf{p}^*\}_j \ge \mathbf{q}^{*\top}\mathbf{B}\mathbf{p}^*.$$

Support of a mixed strategy **p** is given as $supp(\mathbf{p}) = \{i \in [n] : p_i > 0\}$.

A strategy profile (p,q) is a Nash equilibrium if no unilateral profitable deviations exist:

$$orall i \in [n] : \{\mathbf{Aq}\}_i \leq \mathbf{p}^{ op} \mathbf{Aq} \text{ and } orall j \in [m] : \{\mathbf{Bp}\}_j \leq \mathbf{q}^{ op} \mathbf{Bp}.$$

We define a strategy profile (p^{*}, q^{*}) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices −A and −B.
 → each agent interprets the payoffs as costs to be minimized, i.e.

$$\forall i \in [n] : \{\mathbf{A}\mathbf{q}^*\}_i \ge \mathbf{p}^{*\top}\mathbf{A}\mathbf{q}^* \text{ and } \forall j \in [m] : \{\mathbf{B}\mathbf{p}^*\}_j \ge \mathbf{q}^{*\top}\mathbf{B}\mathbf{p}^*.$$

Support of a mixed strategy **p** is given as $supp(\mathbf{p}) = \{i \in [n] : p_i > 0\}$.

A Nash equilbrium (p, q) is called interior (or fully mixed) if p_i, q_j > 0 for all i, j (in this case, above inequalities are equalities).

A strategy profile (p, q) is a Nash equilibrium if no unilateral profitable deviations exist:

$$orall i \in [n] : \{\mathbf{Aq}\}_i \leq \mathbf{p}^{ op} \mathbf{Aq} \text{ and } orall j \in [m] : \{\mathbf{Bp}\}_j \leq \mathbf{q}^{ op} \mathbf{Bp}.$$

We define a strategy profile (p^{*}, q^{*}) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices −A and −B.
 → each agent interprets the payoffs as costs to be minimized, i.e.

$$\forall i \in [n] : \{\mathbf{A}\mathbf{q}^*\}_i \ge \mathbf{p}^{*\top}\mathbf{A}\mathbf{q}^* \text{ and } \forall j \in [m] : \{\mathbf{B}\mathbf{p}^*\}_j \ge \mathbf{q}^{*\top}\mathbf{B}\mathbf{p}^*.$$

Support of a mixed strategy **p** is given as $supp(\mathbf{p}) = \{i \in [n] : p_i > 0\}$.

- A Nash equilbrium (p, q) is called interior (or fully mixed) if p_i, q_j > 0 for all i, j (in this case, above inequalities are equalities).
- Otherwise, there is a unique maximum support of Nash equilibrium (and anti-equilibrium) strategies.

Replicator dynamics for zero-sum games

Updating the strategies towards improving utility gives the replicator equation [Weibull 1995, Arora et al. 2012]

$$\begin{aligned} \dot{x}_i &= x_i \left(\{ \mathbf{A} \mathbf{y} \}_i - \mathbf{x}^\top \mathbf{A} \mathbf{y} \right) , \\ \dot{y}_j &= y_j \left(\{ \mathbf{B} \mathbf{x} \}_j - \mathbf{y}^\top \mathbf{B} \mathbf{x} \right) . \end{aligned}$$

Replicator dynamics for zero-sum games

Updating the strategies towards improving utility gives the replicator equation [Weibull 1995, Arora et al. 2012]

$$\begin{aligned} \dot{x}_i &= x_i \left(\{ \mathbf{A} \mathbf{y} \}_i - \mathbf{x}^\top \mathbf{A} \mathbf{y} \right) , \\ \dot{y}_j &= y_j \left(\{ \mathbf{B} \mathbf{x} \}_j - \mathbf{y}^\top \mathbf{B} \mathbf{x} \right) . \end{aligned}$$

Lemma ([Piliouras/Shamma 2014])

 If there is a fully mixed Nash equilibrium (p, q), then for any starting point (x₀, y₀) ∈ D the cross entropy

$$V((\mathbf{p},\mathbf{q});(\mathbf{x}(t),\mathbf{y}(t))) = -\sum_{i} p_{i} \ln x_{i}(t) - \sum_{j} q_{i} \ln y_{j}(t)$$

between (\mathbf{p}, \mathbf{q}) and $(\mathbf{x}(t), \mathbf{y}(t))$ is a constant of motion.

Replicator dynamics for zero-sum games

Updating the strategies towards improving utility gives the replicator equation [Weibull 1995, Arora et al. 2012]

$$\begin{aligned} \dot{x}_i &= x_i \left(\{ \mathbf{A} \mathbf{y} \}_i - \mathbf{x}^\top \mathbf{A} \mathbf{y} \right) , \\ \dot{y}_j &= y_j \left(\{ \mathbf{B} \mathbf{x} \}_j - \mathbf{y}^\top \mathbf{B} \mathbf{x} \right) . \end{aligned}$$

Lemma ([Piliouras/Shamma 2014])

 If there is a fully mixed Nash equilibrium (p, q), then for any starting point (x₀, y₀) ∈ D the cross entropy

$$V((\mathbf{p},\mathbf{q});(\mathbf{x}(t),\mathbf{y}(t))) = -\sum_{i} p_{i} \ln x_{i}(t) - \sum_{j} q_{i} \ln y_{j}(t)$$

between (\mathbf{p}, \mathbf{q}) and $(\mathbf{x}(t), \mathbf{y}(t))$ is a constant of motion.

2. Otherwise, let (\mathbf{p}, \mathbf{q}) be a not fully mixed Nash equilibrium of maximal support; then for all $t' \ge 0$

$$\frac{\mathrm{d}V\big((\mathbf{p},\mathbf{q});(\mathbf{x}(t),\mathbf{y}(t))\big)}{\mathrm{d}t}|_{t=t'} < 0,$$

and reversed for anti-equilibria.

Convergence to maximum support

For index sets I and J, corresponding with the Nash equilibrium of maximum support, we set

$$\Delta_1 := \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} \ : \ x_i = 0 = y_j \ \text{ for all } i \in I^c, j \in J^c \},$$

where I^c and J^c denote the complements of I and J respectively.

Convergence to maximum support

For index sets I and J, corresponding with the Nash equilibrium of maximum support, we set

$$\Delta_1 := \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} \ : \ x_i = 0 = y_j \ \text{ for all } i \in I^c, j \in J^c \},$$

where I^c and J^c denote the complements of I and J respectively.

Theorem ([Piliouras/Shamma 2014])

1. If the game does not have an interior equilbirum, then given any interior starting point $z \in D$, the orbit $\Phi(z, \cdot)$ converges to the boundary of the state space.

Convergence to maximum support

For index sets I and J, corresponding with the Nash equilibrium of maximum support, we set

$$\Delta_1 := \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} \ : \ x_i = 0 = y_j \ \text{ for all } i \in I^c, j \in J^c \},$$

where I^c and J^c denote the complements of I and J respectively.

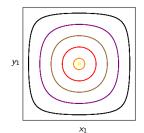
Theorem ([Piliouras/Shamma 2014])

- 1. If the game does not have an interior equilbirum, then given any interior starting point $z \in D$, the orbit $\Phi(z, \cdot)$ converges to the boundary of the state space.
- 2. Furthermore, if (\mathbf{p}, \mathbf{q}) is an equilibrium of maximum support on $\Delta_1 \subset \partial \mathcal{D}$, then the omega-limit set satisfies $\omega(z) \subset int(\Delta_1)$.

Example (matching pennies)

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \mathbf{B} = -\mathbf{A}^{\mathsf{T}}.$$

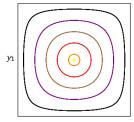
Orbits around **interior** equilbrium.



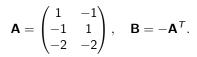
Example (matching pennies)

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \mathbf{B} = -\mathbf{A}^{T},$$

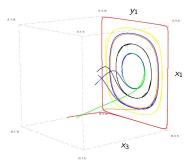
Orbits around **interior** equilbrium.



 x_1



Orbits towards **maximum support**.



Our stochastic model (generalizing [FOSTER/YOUNG 1990]) is the Itô SDE

$$\begin{aligned} \mathrm{d}X_i(t) &= X_i(t) \left(\{ \mathbf{A}\mathbf{Y}(t) \}_i - \mathbf{X}(t)^\top \mathbf{A}\mathbf{Y}(t) \right) \mathrm{d}t + X_i(t) (R(\mathbf{X}) \mathrm{d}\mathcal{W}(t))_i \,, \\ \mathrm{d}Y_j(t) &= Y_j(t) \left(\{ \mathbf{B}\mathbf{X}(t) \}_j - \mathbf{Y}(t)^\top \mathbf{B}\mathbf{X}(t) \right) \mathrm{d}t + Y_j(t) (S(\mathbf{Y}) \mathrm{d}\tilde{\mathcal{W}}(t))_j \,, \end{aligned}$$

where

Our stochastic model (generalizing [FOSTER/YOUNG 1990]) is the Itô SDE

$$\begin{aligned} \mathrm{d}X_i(t) &= X_i(t) \left(\{ \mathbf{A}\mathbf{Y}(\mathbf{t}) \}_i - \mathbf{X}(\mathbf{t})^\top \mathbf{A}\mathbf{Y}(\mathbf{t}) \right) \mathrm{d}t + X_i(t) (R(\mathbf{X}) \mathrm{d}W(t))_i \,, \\ \mathrm{d}Y_j(t) &= Y_j(t) \left(\{ \mathbf{B}\mathbf{X}(\mathbf{t}) \}_j - \mathbf{Y}(\mathbf{t})^\top \mathbf{B}\mathbf{X}(\mathbf{t}) \right) \mathrm{d}t + Y_j(t) (S(\mathbf{Y}) \mathrm{d}\tilde{W}(t))_j \,, \end{aligned}$$

where

• $W = (W_1, \ldots, W_n)^{\top}$ and $\tilde{W} = (\tilde{W}_1, \ldots, \tilde{W}_m)^{\top}$ are independent *n*-dimensional and *m*-dimensional Brownian motions,

Our stochastic model (generalizing [FOSTER/YOUNG 1990]) is the Itô SDE

$$\begin{aligned} \mathrm{d}X_i(t) &= X_i(t) \left(\{ \mathbf{A}\mathbf{Y}(\mathbf{t}) \}_i - \mathbf{X}(\mathbf{t})^\top \mathbf{A}\mathbf{Y}(\mathbf{t}) \right) \mathrm{d}t + X_i(t) (R(\mathbf{X}) \mathrm{d}W(t))_i \,, \\ \mathrm{d}Y_j(t) &= Y_j(t) \left(\{ \mathbf{B}\mathbf{X}(\mathbf{t}) \}_j - \mathbf{Y}(\mathbf{t})^\top \mathbf{B}\mathbf{X}(\mathbf{t}) \right) \mathrm{d}t + Y_j(t) (S(\mathbf{Y}) \mathrm{d}\tilde{W}(t))_j \,, \end{aligned}$$

where

- $W = (W_1, \ldots, W_n)^{\top}$ and $\tilde{W} = (\tilde{W}_1, \ldots, \tilde{W}_m)^{\top}$ are independent *n*-dimensional and *m*-dimensional Brownian motions,
- $(X(0), Y(0)) \sim \mu_0$ in $\overline{\mathcal{D}}$, where μ_0 is some probability measure on $\overline{\mathcal{D}}$

Our stochastic model (generalizing [FOSTER/YOUNG 1990]) is the Itô SDE

$$\begin{aligned} \mathrm{d}X_i(t) &= X_i(t) \left(\{ \mathbf{A}\mathbf{Y}(\mathbf{t}) \}_i - \mathbf{X}(\mathbf{t})^\top \mathbf{A}\mathbf{Y}(\mathbf{t}) \right) \mathrm{d}t + X_i(t) (R(\mathbf{X}) \mathrm{d}W(t))_i \,, \\ \mathrm{d}Y_j(t) &= Y_j(t) \left(\{ \mathbf{B}\mathbf{X}(\mathbf{t}) \}_j - \mathbf{Y}(\mathbf{t})^\top \mathbf{B}\mathbf{X}(\mathbf{t}) \right) \mathrm{d}t + Y_j(t) (S(\mathbf{Y}) \mathrm{d}\tilde{W}(t))_j \,, \end{aligned}$$

where

- $W = (W_1, \ldots, W_n)^{\top}$ and $\tilde{W} = (\tilde{W}_1, \ldots, \tilde{W}_m)^{\top}$ are independent *n*-dimensional and *m*-dimensional Brownian motions,
- $(X(0), Y(0)) \sim \mu_0$ in $\overline{\mathcal{D}}$, where μ_0 is some probability measure on $\overline{\mathcal{D}}$
- ▶ $R: \overline{D} \to \mathbb{R}^{n \times n}$ and $S: \overline{D} \to \mathbb{R}^{m \times m}$ are locally Lipschitz continuous and for all $(\mathbf{X}, \mathbf{Y}) \in \overline{D}$

$$\mathbf{X}^{\top} R(\mathbf{X}) = 0, \quad \mathbf{Y}^{\top} S(\mathbf{Y}) = 0,$$

Our stochastic model (generalizing [FOSTER/YOUNG 1990]) is the Itô SDE

$$\begin{aligned} \mathrm{d}X_i(t) &= X_i(t) \left(\{ \mathbf{A}\mathbf{Y}(\mathbf{t}) \}_i - \mathbf{X}(\mathbf{t})^\top \mathbf{A}\mathbf{Y}(\mathbf{t}) \right) \mathrm{d}t + X_i(t) (R(\mathbf{X}) \mathrm{d}W(t))_i \,, \\ \mathrm{d}Y_j(t) &= Y_j(t) \left(\{ \mathbf{B}\mathbf{X}(\mathbf{t}) \}_j - \mathbf{Y}(\mathbf{t})^\top \mathbf{B}\mathbf{X}(\mathbf{t}) \right) \mathrm{d}t + Y_j(t) (S(\mathbf{Y}) \mathrm{d}\tilde{W}(t))_j \,, \end{aligned}$$

where

- $W = (W_1, \ldots, W_n)^{\top}$ and $\tilde{W} = (\tilde{W}_1, \ldots, \tilde{W}_m)^{\top}$ are independent *n*-dimensional and *m*-dimensional Brownian motions,
- $(X(0), Y(0)) \sim \mu_0$ in $\overline{\mathcal{D}}$, where μ_0 is some probability measure on $\overline{\mathcal{D}}$
- ▶ $R: \overline{D} \to \mathbb{R}^{n \times n}$ and $S: \overline{D} \to \mathbb{R}^{m \times m}$ are locally Lipschitz continuous and for all $(\mathbf{X}, \mathbf{Y}) \in \overline{D}$

$$\mathbf{X}^{\top} R(\mathbf{X}) = 0, \quad \mathbf{Y}^{\top} S(\mathbf{Y}) = 0,$$

giving $\sum_i dX_i(t) = 0$ and $\sum_j dY_j(t) = 0$ such that $\overline{\mathcal{D}}$ is invariant.

Our stochastic model (generalizing [FOSTER/YOUNG 1990]) is the Itô SDE

$$\begin{aligned} \mathrm{d}X_i(t) &= X_i(t) \left(\{ \mathbf{A}\mathbf{Y}(\mathbf{t}) \}_i - \mathbf{X}(\mathbf{t})^\top \mathbf{A}\mathbf{Y}(\mathbf{t}) \right) \mathrm{d}t + X_i(t) (R(\mathbf{X}) \mathrm{d}W(t))_i \,, \\ \mathrm{d}Y_j(t) &= Y_j(t) \left(\{ \mathbf{B}\mathbf{X}(\mathbf{t}) \}_j - \mathbf{Y}(\mathbf{t})^\top \mathbf{B}\mathbf{X}(\mathbf{t}) \right) \mathrm{d}t + Y_j(t) (S(\mathbf{Y}) \mathrm{d}\tilde{W}(t))_j \,, \end{aligned}$$

where

- $W = (W_1, \ldots, W_n)^{\top}$ and $\tilde{W} = (\tilde{W}_1, \ldots, \tilde{W}_m)^{\top}$ are independent *n*-dimensional and *m*-dimensional Brownian motions,
- $(X(0), Y(0)) \sim \mu_0$ in $\overline{\mathcal{D}}$, where μ_0 is some probability measure on $\overline{\mathcal{D}}$
- ▶ $R: \overline{D} \to \mathbb{R}^{n \times n}$ and $S: \overline{D} \to \mathbb{R}^{m \times m}$ are locally Lipschitz continuous and for all $(\mathbf{X}, \mathbf{Y}) \in \overline{D}$

$$\mathbf{X}^{\top} R(\mathbf{X}) = 0, \quad \mathbf{Y}^{\top} S(\mathbf{Y}) = 0,$$

giving $\sum_i dX_i(t) = 0$ and $\sum_j dY_j(t) = 0$ such that $\overline{\mathcal{D}}$ is invariant.

►
$$\exists \xi > 0 \text{ s. t. } \forall i \neq j : \sum_{k=1}^{n} R_{ik}^2(x) + \sum_{k=1}^{n} R_{jk}^2(x) \geq \xi$$
, and $\sum_{k=1}^{n} R_{ik}^2(x) = 0$ iff $x_i = 1$, (and the same for S).

A specific version

Specific choice of R and S such that (in matrix form)

$$d\mathbf{X}(\mathbf{t}) = \left(\operatorname{diag}(X_1(t), \dots, X_n(t)) - \mathbf{X}(\mathbf{t})\mathbf{X}(\mathbf{t})^\top \right) \left(\mathbf{A}\mathbf{Y}(\mathbf{t}) \, \mathrm{d}t + \operatorname{diag}(\sigma_1, \dots, \sigma_n) \, \mathrm{d}W_t \right), \\ \mathbf{d}\mathbf{Y}(\mathbf{t}) = \left(\operatorname{diag}(Y_1(t), \dots, Y_m(t)) - \mathbf{Y}(\mathbf{t})\mathbf{Y}(\mathbf{t})^\top \right) \left(\mathbf{B}\mathbf{X}(\mathbf{t}) \, \mathrm{d}t + \operatorname{diag}(\eta_1, \dots, \eta_m) \, \mathrm{d}\tilde{W}_t \right),$$

where $\sigma_1, \ldots, \sigma_n$ and η_1, \ldots, η_m indicate noise intensities.

A specific version

Specific choice of R and S such that (in matrix form)

$$d\mathbf{X}(\mathbf{t}) = \left(\operatorname{diag}(X_1(t), \dots, X_n(t)) - \mathbf{X}(\mathbf{t})\mathbf{X}(\mathbf{t})^\top \right) \left(\mathbf{A}\mathbf{Y}(\mathbf{t}) \, \mathrm{d}t + \operatorname{diag}(\sigma_1, \dots, \sigma_n) \, \mathrm{d}W_t \right),$$

$$d\mathbf{Y}(\mathbf{t}) = \left(\operatorname{diag}(Y_1(t), \dots, Y_m(t)) - \mathbf{Y}(\mathbf{t})\mathbf{Y}(\mathbf{t})^\top \right) \left(\mathbf{B}\mathbf{X}(\mathbf{t}) \, \mathrm{d}t + \operatorname{diag}(\eta_1, \dots, \eta_m) \, \mathrm{d}\tilde{W}_t \right),$$

where $\sigma_1, \dots, \sigma_n$ and η_1, \dots, η_m indicate noise intensities.

Model describes uncertainty about outcome of the game via random fluctuations around the utilities given by AY(t) and BX(t).

A specific version

Specific choice of R and S such that (in matrix form)

$$d\mathbf{X}(\mathbf{t}) = \left(\operatorname{diag}(X_1(t), \dots, X_n(t)) - \mathbf{X}(\mathbf{t})\mathbf{X}(\mathbf{t})^\top \right) \left(\mathbf{A}\mathbf{Y}(\mathbf{t}) \, \mathrm{d}t + \operatorname{diag}(\sigma_1, \dots, \sigma_n) \, \mathrm{d}W_t \right),$$

$$d\mathbf{Y}(\mathbf{t}) = \left(\operatorname{diag}(Y_1(t), \dots, Y_m(t)) - \mathbf{Y}(\mathbf{t})\mathbf{Y}(\mathbf{t})^\top \right) \left(\mathbf{B}\mathbf{X}(\mathbf{t}) \, \mathrm{d}t + \operatorname{diag}(\eta_1, \dots, \eta_m) \, \mathrm{d}\tilde{W}_t \right),$$

where $\sigma_1, \dots, \sigma_n$ and η_1, \dots, η_m indicate noise intensities.

- Model describes uncertainty about outcome of the game via random fluctuations around the utilities given by AY(t) and BX(t).
- Similar to [HOFBAUER/IMHOF 2009] for monomatrix games, but with crucially different derivation of noise model.

Generator and Lyapunov functions

Generator \mathcal{L} of the associated Markov semigroup P_t acts as

$$\begin{split} \mathcal{L}h(\mathbf{x},\mathbf{y}) &= \lim_{t\downarrow 0} \frac{1}{t} \left(\mathbb{E}_{(\mathbf{x},\mathbf{y})}[h(\mathbf{X}_{\mathbf{t}},\mathbf{Y}_{\mathbf{t}})] - h(\mathbf{x},\mathbf{y}) \right) \\ &= \sum_{i} x_{i} \left(\{\mathbf{A}\mathbf{y}\}_{i} - \mathbf{x}^{\top}\mathbf{A}\mathbf{y} \right) \partial_{x_{i}}h(\mathbf{x},\mathbf{y}) + \sum_{i} y_{i} \left(\{\mathbf{B}\mathbf{x}\}_{i} - \mathbf{y}^{\top}\mathbf{B}\mathbf{x} \right) \partial_{y_{i}}h(\mathbf{x},\mathbf{y}) \\ &+ \frac{1}{2} \sum_{i,j} D_{ij}(\mathbf{x}) \partial_{x_{i}x_{j}}h(\mathbf{x},\mathbf{y}) + \frac{1}{2} \sum_{i,j} \tilde{D}_{ij}(\mathbf{y}) \partial_{y_{i}y_{j}}h(\mathbf{x},\mathbf{y}), \end{split}$$

Generator and Lyapunov functions

Generator \mathcal{L} of the associated Markov semigroup P_t acts as

$$\begin{split} \mathcal{L}h(\mathbf{x},\mathbf{y}) &= \lim_{t\downarrow 0} \frac{1}{t} \left(\mathbb{E}_{(\mathbf{x},\mathbf{y})}[h(\mathbf{X}_{\mathbf{t}},\mathbf{Y}_{\mathbf{t}})] - h(\mathbf{x},\mathbf{y}) \right) \\ &= \sum_{i} x_{i} \left(\{\mathbf{A}\mathbf{y}\}_{i} - \mathbf{x}^{\top}\mathbf{A}\mathbf{y} \right) \partial_{x_{i}}h(\mathbf{x},\mathbf{y}) + \sum_{i} y_{i} \left(\{\mathbf{B}\mathbf{x}\}_{i} - \mathbf{y}^{\top}\mathbf{B}\mathbf{x} \right) \partial_{y_{i}}h(\mathbf{x},\mathbf{y}) \\ &+ \frac{1}{2} \sum_{i,j} D_{ij}(\mathbf{x}) \partial_{x_{i}x_{j}}h(\mathbf{x},\mathbf{y}) + \frac{1}{2} \sum_{i,j} \tilde{D}_{ij}(\mathbf{y}) \partial_{y_{i}y_{j}}h(\mathbf{x},\mathbf{y}), \end{split}$$

where the diffusion matrices D_{ij} , \tilde{D}_{ij} are given as

$$D_{ij}(\mathbf{x}) = \sum_{k=1}^n x_i x_j R_{ik}(\mathbf{x}) R_{jk}(\mathbf{x}), \quad \tilde{D}_{ij}(\mathbf{y}) = \sum_{k=1}^m y_i y_j S_{ik}(\mathbf{y}) S_{jk}(\mathbf{y}).$$

Generator and Lyapunov functions

Generator \mathcal{L} of the associated Markov semigroup P_t acts as

$$\begin{split} \mathcal{L}h(\mathbf{x},\mathbf{y}) &= \lim_{t\downarrow 0} \frac{1}{t} \left(\mathbb{E}_{(\mathbf{x},\mathbf{y})}[h(\mathbf{X}_{\mathbf{t}},\mathbf{Y}_{\mathbf{t}})] - h(\mathbf{x},\mathbf{y}) \right) \\ &= \sum_{i} x_{i} \left(\{\mathbf{A}\mathbf{y}\}_{i} - \mathbf{x}^{\top}\mathbf{A}\mathbf{y} \right) \partial_{x_{i}}h(\mathbf{x},\mathbf{y}) + \sum_{i} y_{i} \left(\{\mathbf{B}\mathbf{x}\}_{i} - \mathbf{y}^{\top}\mathbf{B}\mathbf{x} \right) \partial_{y_{i}}h(\mathbf{x},\mathbf{y}) \\ &+ \frac{1}{2} \sum_{i,j} D_{ij}(\mathbf{x}) \partial_{x_{i}x_{j}}h(\mathbf{x},\mathbf{y}) + \frac{1}{2} \sum_{i,j} \tilde{D}_{ij}(\mathbf{y}) \partial_{y_{i}y_{j}}h(\mathbf{x},\mathbf{y}), \end{split}$$

where the diffusion matrices D_{ij} , \tilde{D}_{ij} are given as

$$D_{ij}(\mathbf{x}) = \sum_{k=1}^n x_i x_j R_{ik}(\mathbf{x}) R_{jk}(\mathbf{x}), \quad \tilde{D}_{ij}(\mathbf{y}) = \sum_{k=1}^m y_i y_j S_{ik}(\mathbf{y}) S_{jk}(\mathbf{y}).$$

Main idea: Use cross entropy functions

$$V(\mathbf{x}, \mathbf{y}) = -\sum_{i \in I} p_i \ln x_i - \sum_{j \in J} q_j \ln y_j,$$

as Lyapunov function for determining invariant measures on $\mathcal{D} \cup \partial \mathcal{D}$.

- (a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
 - (i) supported on the boundary $\partial \mathcal{D}$,
 - (ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i,j}}$, $(i,j) \in \{1, \ldots, n\} \times \{1, \ldots, m\}$, supported on the corners $v_{i,j}$ of ∂D .

- (a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
 - (i) supported on the boundary $\partial \mathcal{D}$,
 - (ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i,j}}$, $(i,j) \in \{1, \ldots, n\} \times \{1, \ldots, m\}$, supported on the corners $v_{i,j}$ of ∂D .
- (b) If the Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, all $\delta_{v_{i,j}}$ are attracting with respect to the interior.

- (a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
 - (i) supported on the boundary $\partial \mathcal{D}$,
 - (ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i,j}}$, $(i,j) \in \{1, \ldots, n\} \times \{1, \ldots, m\}$, supported on the corners $v_{i,j}$ of ∂D .
- (b) If the Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, all $\delta_{v_{i,j}}$ are attracting with respect to the interior.
- (c) If there is no interior Nash equilibrium but only a Nash equilibrium
 (p,q) with maximal support, then

Theorem B (Zero-sum game with noise) Consider the SDE model with the assumptions as above. Then

- (a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
 - (i) supported on the boundary $\partial \mathcal{D}$,
 - (ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i,j}}$, $(i,j) \in \{1, \ldots, n\} \times \{1, \ldots, m\}$, supported on the corners $v_{i,j}$ of ∂D .
- (b) If the Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, all $\delta_{v_{i,j}}$ are attracting with respect to the interior.
- (c) If there is no interior Nash equilibrium but only a Nash equilibrium
 (p,q) with maximal support, then

(i) for "large" noise all $\delta_{v_{i,j}}$ are attracting with respect to the interior.

- (a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
 - (i) supported on the boundary $\partial \mathcal{D}$,
 - (ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i,j}}$, $(i,j) \in \{1, \ldots, n\} \times \{1, \ldots, m\}$, supported on the corners $v_{i,j}$ of ∂D .
- (b) If the Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, all $\delta_{v_{i,j}}$ are attracting with respect to the interior.
- (c) If there is no interior Nash equilibrium but only a Nash equilibrium
 (p,q) with maximal support, then
 - (i) for "large" noise all $\delta_{v_{i,j}}$ are attracting with respect to the interior.
 - (ii) otherwise, for sufficiently "small" noise, the only invariant measures which attract the interior are contained in the subset Δ₁ of ∂D which contains the Nash equilibrium of maximal support.

With

$$V(\mathbf{x},\mathbf{y}) = -\sum_{i} p_i \ln x_i - \sum_{j} q_i \ln y_j, \quad (\mathbf{x},\mathbf{y}) \in \mathcal{D},$$

we have $\lim_{z o \partial \mathcal{D}} V(z) o \infty$ and

With

$$V(\mathbf{x},\mathbf{y}) = -\sum_{i} p_i \ln x_i - \sum_{j} q_i \ln y_j, \quad (\mathbf{x},\mathbf{y}) \in \mathcal{D},$$

we have $\lim_{z \to \partial \mathcal{D}} V(z) \to \infty$ and

$$\begin{aligned} \mathcal{H}(\mathbf{x},\mathbf{y}) &:= \mathcal{L}V(\mathbf{x},\mathbf{y}) = \sum_{i} (-p_{i}) \left(\{\mathbf{A}\mathbf{y}\}_{i} - \mathbf{x}^{\top}\mathbf{A}\mathbf{y} \right) + \sum_{i} (-q_{i}) \left(\{\mathbf{B}\mathbf{x}\}_{i} - \mathbf{y}^{\top}\mathbf{B}\mathbf{x} \right) \\ &+ \sum_{i} p_{i} \left(\sum_{k=1}^{n} R_{ik}^{2}(\mathbf{x}) \right) + \sum_{i} q_{i} \left(\sum_{k=1}^{n} S_{ik}^{2}(\mathbf{y}) \right). \end{aligned}$$

With

$$V(\mathbf{x},\mathbf{y}) = -\sum_{i} p_i \ln x_i - \sum_{j} q_i \ln y_j, \quad (\mathbf{x},\mathbf{y}) \in \mathcal{D},$$

we have $\lim_{z \to \partial \mathcal{D}} V(z) \to \infty$ and

$$\begin{aligned} \mathcal{H}(\mathbf{x},\mathbf{y}) &:= \mathcal{L}V(\mathbf{x},\mathbf{y}) = \sum_{i} (-p_{i}) \left(\{\mathbf{A}\mathbf{y}\}_{i} - \mathbf{x}^{\top}\mathbf{A}\mathbf{y} \right) + \sum_{i} (-q_{i}) \left(\{\mathbf{B}\mathbf{x}\}_{i} - \mathbf{y}^{\top}\mathbf{B}\mathbf{x} \right) \\ &+ \sum_{i} p_{i} \left(\sum_{k=1}^{n} R_{ik}^{2}(\mathbf{x}) \right) + \sum_{i} q_{i} \left(\sum_{k=1}^{n} S_{ik}^{2}(\mathbf{y}) \right). \end{aligned}$$

 \blacktriangleright Recall that for any strategy profile (\mathbf{x},\mathbf{y})

$$L(\mathbf{x},\mathbf{y}) := \sum_{i} (-p_i) \left(\{ \mathbf{A} \mathbf{y} \}_i - \mathbf{x}^\top \mathbf{A} \mathbf{y} \right) + \sum_{j} (-q_j) \left(\{ \mathbf{B} \mathbf{x} \}_j - \mathbf{y}^\top \mathbf{B} \mathbf{x} \right) \leq 0.$$

With

$$V(\mathbf{x},\mathbf{y}) = -\sum_{i} p_i \ln x_i - \sum_{j} q_i \ln y_j, \quad (\mathbf{x},\mathbf{y}) \in \mathcal{D},$$

we have $\lim_{z \to \partial \mathcal{D}} V(z) \to \infty$ and

$$\begin{aligned} \mathcal{H}(\mathbf{x},\mathbf{y}) &:= \mathcal{L}V(\mathbf{x},\mathbf{y}) = \sum_{i} (-p_{i}) \left(\{\mathbf{A}\mathbf{y}\}_{i} - \mathbf{x}^{\top}\mathbf{A}\mathbf{y} \right) + \sum_{i} (-q_{i}) \left(\{\mathbf{B}\mathbf{x}\}_{i} - \mathbf{y}^{\top}\mathbf{B}\mathbf{x} \right) \\ &+ \sum_{i} p_{i} \left(\sum_{k=1}^{n} R_{ik}^{2}(\mathbf{x}) \right) + \sum_{i} q_{i} \left(\sum_{k=1}^{n} S_{ik}^{2}(\mathbf{y}) \right). \end{aligned}$$

► Recall that for any strategy profile (\mathbf{x}, \mathbf{y}) $L(\mathbf{x}, \mathbf{y}) := \sum_{i} (-p_i) \left(\{ \mathbf{A} \mathbf{y} \}_i - \mathbf{x}^\top \mathbf{A} \mathbf{y} \right) + \sum_{j} (-q_j) \left(\{ \mathbf{B} \mathbf{x} \}_j - \mathbf{y}^\top \mathbf{B} \mathbf{x} \right) \le 0.$

1. If Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, then $L(\mathbf{x}, \mathbf{y}) = 0$:

With

$$V(\mathbf{x},\mathbf{y}) = -\sum_{i} p_i \ln x_i - \sum_{j} q_i \ln y_j, \quad (\mathbf{x},\mathbf{y}) \in \mathcal{D},$$

we have $\lim_{z \to \partial \mathcal{D}} V(z) \to \infty$ and

$$\begin{aligned} \mathcal{H}(\mathbf{x},\mathbf{y}) &:= \mathcal{L}V(\mathbf{x},\mathbf{y}) = \sum_{i} (-p_{i}) \left(\{\mathbf{A}\mathbf{y}\}_{i} - \mathbf{x}^{\top}\mathbf{A}\mathbf{y} \right) + \sum_{i} (-q_{i}) \left(\{\mathbf{B}\mathbf{x}\}_{i} - \mathbf{y}^{\top}\mathbf{B}\mathbf{x} \right) \\ &+ \sum_{i} p_{i} \left(\sum_{k=1}^{n} R_{ik}^{2}(\mathbf{x}) \right) + \sum_{i} q_{i} \left(\sum_{k=1}^{n} S_{ik}^{2}(\mathbf{y}) \right). \end{aligned}$$

► Recall that for any strategy profile (\mathbf{x}, \mathbf{y}) $L(\mathbf{x}, \mathbf{y}) := \sum_{i} (-p_i) \left(\{ \mathbf{A} \mathbf{y} \}_i - \mathbf{x}^\top \mathbf{A} \mathbf{y} \right) + \sum_{j} (-q_j) \left(\{ \mathbf{B} \mathbf{x} \}_j - \mathbf{y}^\top \mathbf{B} \mathbf{x} \right) \le 0.$

1. If Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, then $L(\mathbf{x}, \mathbf{y}) = 0$:

 $\blacktriangleright H = \mathcal{L}V(\mathbf{x}, \mathbf{y}) > 0 \text{ on } \mathcal{D} \cup \partial \mathcal{D}.$

With

$$V(\mathbf{x},\mathbf{y}) = -\sum_{i} p_i \ln x_i - \sum_{j} q_i \ln y_j, \quad (\mathbf{x},\mathbf{y}) \in \mathcal{D},$$

we have $\lim_{z \to \partial \mathcal{D}} V(z) \to \infty$ and

$$\begin{aligned} \mathcal{H}(\mathbf{x},\mathbf{y}) &:= \mathcal{L}V(\mathbf{x},\mathbf{y}) = \sum_{i} (-p_{i}) \left(\{\mathbf{A}\mathbf{y}\}_{i} - \mathbf{x}^{\top}\mathbf{A}\mathbf{y} \right) + \sum_{i} (-q_{i}) \left(\{\mathbf{B}\mathbf{x}\}_{i} - \mathbf{y}^{\top}\mathbf{B}\mathbf{x} \right) \\ &+ \sum_{i} p_{i} \left(\sum_{k=1}^{n} R_{ik}^{2}(\mathbf{x}) \right) + \sum_{i} q_{i} \left(\sum_{k=1}^{n} S_{ik}^{2}(\mathbf{y}) \right). \end{aligned}$$

► Recall that for any strategy profile (\mathbf{x}, \mathbf{y}) $L(\mathbf{x}, \mathbf{y}) := \sum_{i} (-p_i) \left(\{ \mathbf{A} \mathbf{y} \}_i - \mathbf{x}^\top \mathbf{A} \mathbf{y} \right) + \sum_{j} (-q_j) \left(\{ \mathbf{B} \mathbf{x} \}_j - \mathbf{y}^\top \mathbf{B} \mathbf{x} \right) \le 0.$

- 1. If Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, then $L(\mathbf{x}, \mathbf{y}) = 0$:
 - $H = \mathcal{L}V(\mathbf{x}, \mathbf{y}) > 0$ on $\mathcal{D} \cup \partial \mathcal{D}$.
 - In particular, on $\partial \mathcal{D}$, $H = \mathcal{L}V(\mathbf{x}, \mathbf{y}) = \xi > 0$.

With

$$V(\mathbf{x},\mathbf{y}) = -\sum_{i} p_i \ln x_i - \sum_{j} q_i \ln y_j, \quad (\mathbf{x},\mathbf{y}) \in \mathcal{D},$$

we have $\lim_{z \to \partial \mathcal{D}} V(z) \to \infty$ and

$$\begin{aligned} \mathcal{H}(\mathbf{x},\mathbf{y}) &:= \mathcal{L}V(\mathbf{x},\mathbf{y}) = \sum_{i} (-p_{i}) \left(\{\mathbf{A}\mathbf{y}\}_{i} - \mathbf{x}^{\top}\mathbf{A}\mathbf{y} \right) + \sum_{i} (-q_{i}) \left(\{\mathbf{B}\mathbf{x}\}_{i} - \mathbf{y}^{\top}\mathbf{B}\mathbf{x} \right) \\ &+ \sum_{i} p_{i} \left(\sum_{k=1}^{n} R_{ik}^{2}(\mathbf{x}) \right) + \sum_{i} q_{i} \left(\sum_{k=1}^{n} S_{ik}^{2}(\mathbf{y}) \right). \end{aligned}$$

► Recall that for any strategy profile (\mathbf{x}, \mathbf{y}) $L(\mathbf{x}, \mathbf{y}) := \sum_{i} (-p_{i}) \left(\{ \mathbf{A} \mathbf{y} \}_{i} - \mathbf{x}^{\top} \mathbf{A} \mathbf{y} \right) + \sum_{j} (-q_{j}) \left(\{ \mathbf{B} \mathbf{x} \}_{j} - \mathbf{y}^{\top} \mathbf{B} \mathbf{x} \right) \leq 0.$

- 1. If Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, then $L(\mathbf{x}, \mathbf{y}) = 0$:
 - $H = \mathcal{L}V(\mathbf{x}, \mathbf{y}) > 0$ on $\mathcal{D} \cup \partial \mathcal{D}$.
 - In particular, on $\partial \mathcal{D}$, $H = \mathcal{L}V(\mathbf{x}, \mathbf{y}) = \xi > 0$.

Hence, almost all trajectories accumulate at ∂D [Khasminskii 2012, Benaim/Strickler 2019], where the only invariant measures lie.

2. Otherwise, consider NE (\mathbf{p}, \mathbf{q}) of maximal support with index sets I and J, the anti-NE $(\mathbf{p}^*, \mathbf{q}^*)$ and

$$\begin{aligned} \Delta_{\partial,1} &:= \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} : x_i = 0 = y_j \text{ for all } i \in I^c, j \in J^c \} \\ \Delta_{\partial,2} &:= \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} : x_i = 0 = y_j \text{ for all } i \in I, j \in J \}. \end{aligned}$$

2. Otherwise, consider NE (\mathbf{p}, \mathbf{q}) of maximal support with index sets I and J, the anti-NE $(\mathbf{p}^*, \mathbf{q}^*)$ and

$$\begin{split} &\Delta_{\partial,1} := \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} : x_i = 0 = y_j \text{ for all } i \in I^c, j \in J^c \} \\ &\Delta_{\partial,2} := \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} : x_i = 0 = y_j \text{ for all } i \in I, j \in J \}. \end{split}$$

Setting

$$egin{aligned} V_0(\mathbf{x},\mathbf{y}) &:= -\sum_i p_i \ln x_i - \sum_j q_j \ln y_j, \ V_1(\mathbf{x},\mathbf{y}) &:= -\sum_i p_i^* \ln x_i - \sum_j q_j^* \ln y_j, \end{aligned}$$

we define $H_0(\mathbf{x}, \mathbf{y}) := \mathcal{L}V_0(\mathbf{x}, \mathbf{y})$ and $H_1(\mathbf{x}, \mathbf{y}) := \mathcal{L}V_1(\mathbf{x}, \mathbf{y})$, and find

2. Otherwise, consider NE (\mathbf{p}, \mathbf{q}) of maximal support with index sets I and J, the anti-NE $(\mathbf{p}^*, \mathbf{q}^*)$ and

$$\begin{split} &\Delta_{\partial,1} := \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} : x_i = 0 = y_j \text{ for all } i \in I^c, j \in J^c \} \\ &\Delta_{\partial,2} := \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} : x_i = 0 = y_j \text{ for all } i \in I, j \in J \}. \end{split}$$

Setting

$$\begin{split} V_0(\mathbf{x},\mathbf{y}) &:= -\sum_i p_i \ln x_i - \sum_j q_j \ln y_j, \\ V_1(\mathbf{x},\mathbf{y}) &:= -\sum_i p_i^* \ln x_i - \sum_j q_j^* \ln y_j, \end{split}$$

we define $H_0(\mathbf{x}, \mathbf{y}) := \mathcal{L}V_0(\mathbf{x}, \mathbf{y})$ and $H_1(\mathbf{x}, \mathbf{y}) := \mathcal{L}V_1(\mathbf{x}, \mathbf{y})$, and find

2.1 for "large noise": $H_0 + H_1 > 0$ on $\partial \mathcal{D} \Rightarrow$ similar to 1.

2. Otherwise, consider NE (\mathbf{p}, \mathbf{q}) of maximal support with index sets *I* and *J*, the anti-NE $(\mathbf{p}^*, \mathbf{q}^*)$ and

$$\begin{split} &\Delta_{\partial,1} := \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} : x_i = 0 = y_j \text{ for all } i \in I^c, j \in J^c \} \\ &\Delta_{\partial,2} := \{ (\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D} : x_i = 0 = y_j \text{ for all } i \in I, j \in J \}. \end{split}$$

Setting

$$egin{aligned} V_0({f x},{f y}) &:= -\sum_i p_i \ln x_i - \sum_j q_j \ln y_j, \ V_1({f x},{f y}) &:= -\sum_i p_i^* \ln x_i - \sum_j q_j^* \ln y_j, \end{aligned}$$

we define $H_0(\mathbf{x}, \mathbf{y}) := \mathcal{L}V_0(\mathbf{x}, \mathbf{y})$ and $H_1(\mathbf{x}, \mathbf{y}) := \mathcal{L}V_1(\mathbf{x}, \mathbf{y})$, and find

2.1 for "large noise": $H_0 + H_1 > 0$ on $\partial \mathcal{D} \Rightarrow$ similar to 1.

2.2 for "small" noise: $H_0(\mathbf{x}, \mathbf{y}) < 0$ on $\Delta_{\partial, 2}$ and $H_1(\mathbf{x}, \mathbf{y}) > 0$ on $\Delta_{\partial, 1} \Rightarrow$ convergence to $\Delta_{\partial, 1}$.

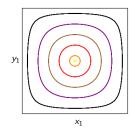
Matching pennies I: 2×2 with interior NE

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \mathbf{B} = -\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix},$$

Matching pennies I: 2×2 with interior NE

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \mathbf{B} = -\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix},$$

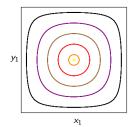
 Support of ergodic measures for deterministic case



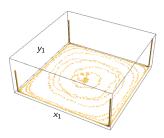
Matching pennies I: 2×2 with interior NE

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}, \quad \mathbf{B} = -\mathbf{A}^{T} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix},$$

Support of ergodic measures for deterministic case



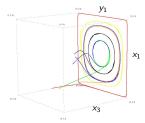
 $\begin{array}{l} \mbox{Ergodic (physical) meas-}\\ \mbox{ure for stochastic case}\\ (\lim_{t \to \infty} \frac{1}{t} \int_0^t f(Z_s) \mathrm{d}s = \int_{\overline{\mathcal{D}}} f(y) \, \mathrm{d}\mu(y) \mbox{ for }\\ \mu = \frac{1}{4} \sum_{i,j} \delta_{i,j}, \mbox{ Lebesgue-almost all } z = Z_0. \end{array}$



Matching pennies II: 2×3 with non-interior NE

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ -2 & -2 \end{pmatrix}, \quad \mathbf{B} = -\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} -1 & 1 & 2 \\ 1 & -1 & 2 \end{pmatrix},$$

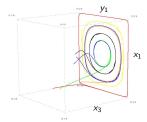
 Support of ergodic measures for deterministic case

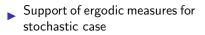


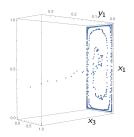
Matching pennies II: 2×3 with non-interior NE

$$\mathbf{A} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \\ -2 & -2 \end{pmatrix}, \quad \mathbf{B} = -\mathbf{A}^{\mathsf{T}} = \begin{pmatrix} -1 & 1 & 2 \\ 1 & -1 & 2 \end{pmatrix},$$

 Support of ergodic measures for deterministic case







Effects of noise in this replicator model:

Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles
- Behavior in contrast both to the Nash equilibrium prediction as well as deterministic replicator equation (recurrence/cycles).

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles
- Behavior in contrast both to the Nash equilibrium prediction as well as deterministic replicator equation (recurrence/cycles).

Additional directions:

 Similar analysis for randomized discrete-time dynamics such as Multiplicative Weights Update

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles
- Behavior in contrast both to the Nash equilibrium prediction as well as deterministic replicator equation (recurrence/cycles).

Additional directions:

- Similar analysis for randomized discrete-time dynamics such as Multiplicative Weights Update
- Noise models that help to approximate Nash equilibrium?

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles
- Behavior in contrast both to the Nash equilibrium prediction as well as deterministic replicator equation (recurrence/cycles).

Additional directions:

- Similar analysis for randomized discrete-time dynamics such as Multiplicative Weights Update
- Noise models that help to approximate Nash equilibrium?

Thank you very much for your attention!