
A stochastic variant of replicator dynamics in
zero-sum games and its invariant measures

Maximilian Engel

FU Berlin

Joint work with G. Piliouras (SUTD, DeepMind)

Machine Learning and Dynamical Systems, Fields Institute,

September, 2022

CRC 1114



Game Theory and Machine Learning
AI programs are learning to improve themselves in different tasks by
competing against human players or other AI programs.

Generative Adversarial
Networks for images, music,
videos e.t.c. [Goodfellow et al 2014]

DeepMind AlphaGo (2016),
AlphaZero (2017)

I Critical mathematical abstraction is the notion of a zero-sum game
[von Neumann 1928, ...] and the concept of Nash equilibria [Nash 1950]

I Asymptotic stability around/towards Nash equilbria not clear a priori
→ Hamiltonian structures occur [Hofbauer 1996, Balduzzi et al 2018, ..]

I Role of noise/uncertainty for dynamics around Nash equilibria?
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Two agents model

Two-player game with n (resp. m) pure strategies for the first
(resp. second) agent and payoff matrices

A = (aij) and B = (bji ).

I Domain D = ∆n ×∆m consisting of mixed strategies x (resp. y):

∆n := {x ∈ (0, 1)n : x1 + · · ·+ xn = 1},
∆m := {y ∈ (0, 1)m : y1 + · · ·+ ym = 1}.

I We denote by ui = {Ay}i and vj = {Bx}j the utility of the agent for
playing strategy i (resp. j) when the opponent chooses y (resp. x).

I A game is called zero-sum if A = −B> such that for all (x, y) ∈ D

x>Ay + y>Bx = 0.

2 / 15



Two agents model

Two-player game with n (resp. m) pure strategies for the first
(resp. second) agent and payoff matrices

A = (aij) and B = (bji ).

I Domain D = ∆n ×∆m consisting of mixed strategies x (resp. y):

∆n := {x ∈ (0, 1)n : x1 + · · ·+ xn = 1},
∆m := {y ∈ (0, 1)m : y1 + · · ·+ ym = 1}.

I We denote by ui = {Ay}i and vj = {Bx}j the utility of the agent for
playing strategy i (resp. j) when the opponent chooses y (resp. x).

I A game is called zero-sum if A = −B> such that for all (x, y) ∈ D

x>Ay + y>Bx = 0.

2 / 15



Two agents model

Two-player game with n (resp. m) pure strategies for the first
(resp. second) agent and payoff matrices

A = (aij) and B = (bji ).

I Domain D = ∆n ×∆m consisting of mixed strategies x (resp. y):

∆n := {x ∈ (0, 1)n : x1 + · · ·+ xn = 1},
∆m := {y ∈ (0, 1)m : y1 + · · ·+ ym = 1}.

I We denote by ui = {Ay}i and vj = {Bx}j the utility of the agent for
playing strategy i (resp. j) when the opponent chooses y (resp. x).

I A game is called zero-sum if A = −B> such that for all (x, y) ∈ D

x>Ay + y>Bx = 0.

2 / 15



Two agents model

Two-player game with n (resp. m) pure strategies for the first
(resp. second) agent and payoff matrices

A = (aij) and B = (bji ).

I Domain D = ∆n ×∆m consisting of mixed strategies x (resp. y):

∆n := {x ∈ (0, 1)n : x1 + · · ·+ xn = 1},
∆m := {y ∈ (0, 1)m : y1 + · · ·+ ym = 1}.

I We denote by ui = {Ay}i and vj = {Bx}j the utility of the agent for
playing strategy i (resp. j) when the opponent chooses y (resp. x).

I A game is called zero-sum if A = −B> such that for all (x, y) ∈ D

x>Ay + y>Bx = 0.

2 / 15



Equilibria in zero-sum games

I A strategy profile (p,q) is a Nash equilibrium if no unilateral
profitable deviations exist:

∀i ∈ [n] : {Aq}i ≤ p>Aq and ∀j ∈ [m] : {Bp}j ≤ q>Bp.

I We define a strategy profile (p∗,q∗) as an anti-equilibrium if it is a
Nash equilibrium of the game with payoff matrices −A and −B.

→ each agent interprets the payoffs as costs to be minimized, i.e.

∀i ∈ [n] : {Aq∗}i ≥ p∗>Aq∗ and ∀j ∈ [m] : {Bp∗}j ≥ q∗>Bp∗.

Support of a mixed strategy p is given as supp(p) = {i ∈ [n] : pi > 0}.

I A Nash equilbrium (p,q) is called interior (or fully mixed) if
pi , qj > 0 for all i , j (in this case, above inequalities are equalities).

I Otherwise, there is a unique maximum support of Nash
equilibrium (and anti-equilibrium) strategies.
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Replicator dynamics for zero-sum games
Updating the strategies towards improving utility gives the replicator
equation [Weibull 1995, Arora et al. 2012]

ẋi = xi
(
{Ay}i − x>Ay

)
,

ẏj = yj
(
{Bx}j − y>Bx

)
.

Lemma ([Piliouras/Shamma 2014])

1. If there is a fully mixed Nash equilibrium (p,q), then for any starting
point (x0, y0) ∈ D the cross entropy

V
(
(p,q); (x(t), y(t))

)
= −

∑
i

pi ln xi (t)−
∑
j

qi ln yj(t)

between (p,q) and (x(t), y(t)) is a constant of motion.

2. Otherwise, let (p,q) be a not fully mixed Nash equilibrium of
maximal support; then for all t ′ ≥ 0

dV
(
(p,q); (x(t), y(t))

)
dt

|t=t′ < 0,

and reversed for anti-equilibria.
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ẋi = xi
(
{Ay}i − x>Ay

)
,
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Convergence to maximum support

For index sets I and J, corresponding with the Nash equilibrium of
maximum support, we set

∆1 := {(x, y) ∈ ∂D : xi = 0 = yj for all i ∈ I c , j ∈ Jc},

where I c and Jc denote the complements of I and J respectively.

Theorem ([Piliouras/Shamma 2014])

1. If the game does not have an interior equilbirum, then given any
interior starting point z ∈ D, the orbit Φ(z , ·) converges to the
boundary of the state space.

2. Furthermore, if (p,q) is an equilibrium of maximum support on
∆1 ⊂ ∂D, then the omega-limit set satisfies ω(z) ⊂ int(∆1).

5 / 15



Convergence to maximum support

For index sets I and J, corresponding with the Nash equilibrium of
maximum support, we set

∆1 := {(x, y) ∈ ∂D : xi = 0 = yj for all i ∈ I c , j ∈ Jc},

where I c and Jc denote the complements of I and J respectively.

Theorem ([Piliouras/Shamma 2014])

1. If the game does not have an interior equilbirum, then given any
interior starting point z ∈ D, the orbit Φ(z , ·) converges to the
boundary of the state space.

2. Furthermore, if (p,q) is an equilibrium of maximum support on
∆1 ⊂ ∂D, then the omega-limit set satisfies ω(z) ⊂ int(∆1).

5 / 15



Convergence to maximum support

For index sets I and J, corresponding with the Nash equilibrium of
maximum support, we set

∆1 := {(x, y) ∈ ∂D : xi = 0 = yj for all i ∈ I c , j ∈ Jc},

where I c and Jc denote the complements of I and J respectively.

Theorem ([Piliouras/Shamma 2014])

1. If the game does not have an interior equilbirum, then given any
interior starting point z ∈ D, the orbit Φ(z , ·) converges to the
boundary of the state space.

2. Furthermore, if (p,q) is an equilibrium of maximum support on
∆1 ⊂ ∂D, then the omega-limit set satisfies ω(z) ⊂ int(∆1).

5 / 15



Example (matching pennies)

A =

(
1 −1
−1 1

)
, B = −AT .

Orbits around interior equil-
brium.

x1

y1

A =

 1 −1
−1 1
−2 −2

 , B = −AT .

Orbits towards maximum
support.

x3

y1

x1
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A stochastic replicator model with two agents
Our stochastic model (generalizing [Foster/Young 1990]) is the Itô SDE

dXi (t) = Xi (t)
(
{AY(t)}i − X(t)>AY(t)

)
dt + Xi (t)(R(X)dW (t))i ,

dYj(t) = Yj(t)
(
{BX(t)}j − Y(t)>BX(t)

)
dt + Yj(t)(S(Y)dW̃ (t))j ,

where

I W = (W1, . . . ,Wn)> and W̃ = (W̃1, . . . , W̃m)> are independent
n-dimensional and m-dimensional Brownian motions,

I (X(0),Y(0)) ∼ µ0 in D, where µ0 is some probability measure on D

I R : D → Rn×n and S : D → Rm×m are locally Lipschitz continuous
and for all (X,Y) ∈ D

X>R(X) = 0, Y>S(Y) = 0,

giving
∑

i dXi (t) = 0 and
∑

j dYj(t) = 0 such that D is invariant.

I ∃ξ > 0 s. t. ∀i 6= j :
∑n

k=1 R
2
ik(x) +

∑n
k=1 R

2
jk(x) ≥ ξ, and∑n

k=1 R
2
ik(x) = 0 iff xi = 1, (and the same for S).
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A specific version

Specific choice of R and S such that (in matrix form)

dX(t) =
(

diag(X1(t), . . . ,Xn(t))− X(t)X(t)>
) (

AY(t) dt + diag(σ1, . . . , σn)dWt

)
,

dY(t) =
(

diag(Y1(t), . . . ,Ym(t))− Y(t)Y(t)>
) (

BX(t)dt + diag(η1, . . . , ηm) dW̃t

)
,

where σ1, . . . , σn and η1, . . . , ηm indicate noise intensities.

I Model describes uncertainty about outcome of the game via random
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Generator and Lyapunov functions

Generator L of the associated Markov semigroup Pt acts as

Lh(x, y) = lim
t↓0

1

t

(
E(x,y)[h(Xt,Yt)]− h(x, y)

)
=
∑
i

xi
(
{Ay}i − x>Ay

)
∂xih(x, y) +

∑
i

yi
(
{Bx}i − y>Bx

)
∂yih(x, y)

+
1

2

∑
i,j

Dij(x)∂xixjh(x, y) +
1

2

∑
i,j

D̃ij(y)∂yiyjh(x, y),

where the diffusion matrices Dij , D̃ij are given as

Dij(x) =
n∑

k=1

xixjRik(x)Rjk(x) , D̃ij(y) =
m∑

k=1

yiyjSik(y)Sjk(y) .

Main idea: Use cross entropy functions

V (x, y) = −
∑
i∈I

pi ln xi −
∑
j∈J

qj ln yj ,

as Lyapunov function for determining invariant measures on D ∪ ∂D.
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Main result [E./Piliouras 2022+]

Theorem B (Zero-sum game with noise)
Consider the SDE model with the assumptions as above. Then

(a) any invariant probability measure µ on D is

(i) supported on the boundary ∂D,

(ii) given by a convex combination of the ergodic Dirac measures δvi,j ,
(i , j) ∈ {1, . . . , n} × {1, . . . ,m}, supported on the corners vi,j of ∂D.

(b) If the Nash equilibrium (p,q) is interior, all δvi,j are attracting with
respect to the interior.

(c) If there is no interior Nash equilibrium but only a Nash equilibrium
(p,q) with maximal support, then

(i) for “large” noise all δvi,j are attracting with respect to the interior.

(ii) otherwise, for sufficiently “small” noise, the only invariant measures
which attract the interior are contained in the subset ∆1 of ∂D
which contains the Nash equilibrium of maximal support.
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Sketch of proof I
With

V (x, y) = −
∑
i

pi ln xi −
∑
j

qi ln yj , (x, y) ∈ D,

we have limz→∂D V (z)→∞ and

H(x, y) := LV (x, y) =
∑
i

(−pi )
(
{Ay}i − x>Ay

)
+
∑
i

(−qi )
(
{Bx}i − y>Bx

)
+
∑
i

pi

(
n∑

k=1

R2
ik(x)

)
+
∑
i

qi

(
n∑

k=1

S2
ik(y)

)
.

I Recall that for any strategy profile (x, y)

L(x, y) :=
∑
i

(−pi )
(
{Ay}i − x>Ay

)
+
∑
j

(−qj)
(
{Bx}j − y>Bx

)
≤ 0.

1. If Nash equilibrium (p, q) is interior, then L(x, y) = 0:

I H = LV (x, y) > 0 on D ∪ ∂D.

I In particular, on ∂D, H = LV (x, y) = ξ > 0.

Hence, almost all trajectories accumulate at ∂D [Khasminskii 2012,

Benaim/Strickler 2019], where the only invariant measures lie.
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Sketch of proof II

2. Otherwise, consider NE (p, q) of maximal support with index sets I and J,
the anti-NE (p∗, q∗) and

∆∂,1 := {(x, y) ∈ ∂D : xi = 0 = yj for all i ∈ I c , j ∈ Jc}
∆∂,2 := {(x, y) ∈ ∂D : xi = 0 = yj for all i ∈ I , j ∈ J}.

Setting

V0(x, y) := −
∑
i

pi ln xi −
∑
j

qj ln yj ,

V1(x, y) := −
∑
i

p∗i ln xi −
∑
j

q∗j ln yj ,

we define H0(x, y) := LV0(x, y) and H1(x, y) := LV1(x, y), and find

2.1 for “large noise”: H0 + H1 > 0 on ∂D ⇒ similar to 1.

2.2 for “small” noise: H0(x, y) < 0 on ∆∂,2 and H1(x, y) > 0 on ∆∂,1 ⇒
convergence to ∆∂,1.
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Matching pennies I: 2× 2 with interior NE

A =

(
1 −1
−1 1

)
, B = −AT =

(
−1 1
1 −1

)
,

I Support of ergodic meas-
ures for deterministic case

x1

y1

I

Ergodic (physical) meas-
ure for stochastic case
(limt→∞ 1

t

∫ t
0 f (Zs )ds =

∫
D f (y) dµ(y) for

µ = 1
4

∑
i,j δi,j , Lebesgue-almost all z = Z0.)

x1

y1
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Matching pennies II: 2× 3 with non-interior NE

A =

 1 −1
−1 1
−2 −2

 , B = −AT =

(
−1 1 2
1 −1 2

)
,

I Support of ergodic measures for
deterministic case

x3

y1

x1

I Support of ergodic measures for
stochastic case

x3

y1

x1

14 / 15



Matching pennies II: 2× 3 with non-interior NE

A =

 1 −1
−1 1
−2 −2

 , B = −AT =

(
−1 1 2
1 −1 2

)
,

I Support of ergodic measures for
deterministic case

x3

y1

x1

I Support of ergodic measures for
stochastic case

x3

y1

x1

14 / 15



Summary

Effects of noise in this replicator model:

I Invariant, ergodic measures concentrated on pure strategy profiles
even if the Nash equilibrium is fully mixed

I Attracting, physical measures are convex combinations of pure
strategy profiles

I Behavior in contrast both to the Nash equilibrium prediction as well
as deterministic replicator equation (recurrence/cycles).

Additional directions:

I Similar analysis for randomized discrete-time dynamics such as
Multiplicative Weights Update

I Noise models that help to approximate Nash equilibrium?

Thank you very much for your attention!
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