A stochastic variant of replicator dynamics in zero-sum games and its invariant measures

Maximilian Engel
FU Berlin

Joint work with G. Piliouras (SUTD, DeepMind)

Machine Learning and Dynamical Systems, Fields Institute,

September, 2022

Game Theory and Machine Learning

Al programs are learning to improve themselves in different tasks by competing against human players or other AI programs.

Game Theory and Machine Learning

Al programs are learning to improve themselves in different tasks by competing against human players or other AI programs.

Generative Adversarial Networks for images, music, videos e.t.c. [Gooderliow bt AL 201]]

Game Theory and Machine Learning

Al programs are learning to improve themselves in different tasks by competing against human players or other AI programs.

Generative Adversarial

 Networks for images, music, videos e.t.c. [Gooderulow bt al 2014]DeepMind AlphaGo (2016), AlphaZero (2017)

Game Theory and Machine Learning

Al programs are learning to improve themselves in different tasks by competing against human players or other AI programs.

Generative Adversarial

 Networks for images, music, videos e.t.c. [Goodfaluow be AL 2014]DeepMind AlphaGo (2016), AlphaZero (2017)

- Critical mathematical abstraction is the notion of a zero-sum game [von Neumann 1928, ...] and the concept of Nash equilibria [Nash 1950]

Game Theory and Machine Learning

Al programs are learning to improve themselves in different tasks by competing against human players or other AI programs.

Generative Adversarial

 Networks for images, music, videos e.t.c. [Goodfaluow be AL 2014]DeepMind AlphaGo (2016), AlphaZero (2017)

- Critical mathematical abstraction is the notion of a zero-sum game [von Neumann 1928, ...] and the concept of Nash equilibria [Nash 1950]
- Asymptotic stability around/towards Nash equilbria not clear a priori \rightarrow Hamiltonian structures occur [Hofbauer 1996, Balduzzi et al 2018, ..]

Game Theory and Machine Learning

Al programs are learning to improve themselves in different tasks by competing against human players or other AI programs.

Generative Adversarial

 Networks for images, music, videos e.t.c. [Goodfaliow bt al 2014]DeepMind AlphaGo (2016), AlphaZero (2017)

- Critical mathematical abstraction is the notion of a zero-sum game [von Neumann 1928, ...] and the concept of Nash equilibria [Nash 1950]
- Asymptotic stability around/towards Nash equilbria not clear a priori \rightarrow Hamiltonian structures occur [Hofbauer 1996, Balduzzi et al 2018, ..]
- Role of noise/uncertainty for dynamics around Nash equilibria?

Two agents model

Two-player game with n (resp. m) pure strategies for the first (resp. second) agent and payoff matrices

$$
\mathbf{A}=\left(a_{i j}\right) \text { and } \mathbf{B}=\left(b_{j i}\right) .
$$

Two agents model

Two-player game with n (resp. m) pure strategies for the first (resp. second) agent and payoff matrices

$$
\mathbf{A}=\left(a_{i j}\right) \text { and } \mathbf{B}=\left(b_{j i}\right)
$$

- Domain $\mathcal{D}=\Delta_{n} \times \Delta_{m}$ consisting of mixed strategies $\mathbf{x}($ resp. $\mathbf{y})$:

$$
\begin{aligned}
\Delta_{n} & :=\left\{\mathbf{x} \in(0,1)^{n}: x_{1}+\cdots+x_{n}=1\right\}, \\
\Delta_{m} & :=\left\{\mathbf{y} \in(0,1)^{m}: y_{1}+\cdots+y_{m}=1\right\} .
\end{aligned}
$$

Two agents model

Two-player game with n (resp. m) pure strategies for the first (resp. second) agent and payoff matrices

$$
\mathbf{A}=\left(a_{i j}\right) \text { and } \mathbf{B}=\left(b_{j i}\right)
$$

- Domain $\mathcal{D}=\Delta_{n} \times \Delta_{m}$ consisting of mixed strategies $\mathbf{x}($ resp. $\mathbf{y})$:

$$
\begin{aligned}
\Delta_{n} & :=\left\{\mathbf{x} \in(0,1)^{n}: x_{1}+\cdots+x_{n}=1\right\}, \\
\Delta_{m} & :=\left\{\mathbf{y} \in(0,1)^{m}: y_{1}+\cdots+y_{m}=1\right\} .
\end{aligned}
$$

- We denote by $u_{i}=\{\mathbf{A} \mathbf{y}\}_{i}$ and $v_{j}=\{\mathbf{B} \mathbf{x}\}_{j}$ the utility of the agent for playing strategy i (resp. j) when the opponent chooses \mathbf{y} (resp. \mathbf{x}).

Two agents model

Two-player game with n (resp. m) pure strategies for the first (resp. second) agent and payoff matrices

$$
\mathbf{A}=\left(a_{i j}\right) \text { and } \mathbf{B}=\left(b_{j i}\right) .
$$

- Domain $\mathcal{D}=\Delta_{n} \times \Delta_{m}$ consisting of mixed strategies $\mathbf{x}($ resp. $\mathbf{y})$:

$$
\begin{aligned}
\Delta_{n} & :=\left\{\mathbf{x} \in(0,1)^{n}: x_{1}+\cdots+x_{n}=1\right\}, \\
\Delta_{m} & :=\left\{\mathbf{y} \in(0,1)^{m}: y_{1}+\cdots+y_{m}=1\right\} .
\end{aligned}
$$

- We denote by $u_{i}=\{\mathbf{A} \mathbf{y}\}_{i}$ and $v_{j}=\{\mathbf{B} \mathbf{x}\}_{j}$ the utility of the agent for playing strategy i (resp. j) when the opponent chooses \mathbf{y} (resp. \mathbf{x}).
- A game is called zero-sum if $\mathbf{A}=-\mathbf{B}^{\top}$ such that for all $(\mathbf{x}, \mathbf{y}) \in \overline{\mathcal{D}}$

$$
\mathbf{x}^{\top} \mathbf{A} \mathbf{y}+\mathbf{y}^{\top} \mathbf{B} \mathbf{x}=0 .
$$

Equilibria in zero-sum games

- A strategy profile (\mathbf{p}, \mathbf{q}) is a Nash equilibrium if no unilateral profitable deviations exist:

$$
\forall i \in[n]:\{\mathbf{A q}\}_{i} \leq \mathbf{p}^{\top} \mathbf{A q} \text { and } \forall j \in[m]:\{\mathbf{B p}\}_{j} \leq \mathbf{q}^{\top} \mathbf{B p} .
$$

Equilibria in zero-sum games

- A strategy profile (\mathbf{p}, \mathbf{q}) is a Nash equilibrium if no unilateral profitable deviations exist:

$$
\forall i \in[n]:\{\mathbf{A q}\}_{i} \leq \mathbf{p}^{\top} \mathbf{A q} \text { and } \forall j \in[m]:\{\mathbf{B p}\}_{j} \leq \mathbf{q}^{\top} \mathbf{B p} .
$$

- We define a strategy profile ($\mathbf{p}^{*}, \mathbf{q}^{*}$) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices - \mathbf{A} and -B.

Equilibria in zero-sum games

- A strategy profile (\mathbf{p}, \mathbf{q}) is a Nash equilibrium if no unilateral profitable deviations exist:

$$
\forall i \in[n]:\{\mathbf{A q}\}_{i} \leq \mathbf{p}^{\top} \mathbf{A q} \text { and } \forall j \in[m]:\{\mathbf{B} \mathbf{p}\}_{j} \leq \mathbf{q}^{\top} \mathbf{B p} .
$$

- We define a strategy profile ($\mathbf{p}^{*}, \mathbf{q}^{*}$) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices - \mathbf{A} and -B.
\rightarrow each agent interprets the payoffs as costs to be minimized, i.e.

$$
\forall i \in[n]:\left\{\mathbf{A q}^{*}\right\}_{i} \geq \mathbf{p}^{* \top} \mathbf{A} \mathbf{q}^{*} \text { and } \forall j \in[m]:\left\{\mathbf{B p}^{*}\right\}_{j} \geq \mathbf{q}^{* \top} \mathbf{B} \mathbf{p}^{*} .
$$

Equilibria in zero-sum games

- A strategy profile (\mathbf{p}, \mathbf{q}) is a Nash equilibrium if no unilateral profitable deviations exist:

$$
\forall i \in[n]:\{\mathbf{A q}\}_{i} \leq \mathbf{p}^{\top} \mathbf{A q} \text { and } \forall j \in[m]:\{\mathbf{B} \mathbf{p}\}_{j} \leq \mathbf{q}^{\top} \mathbf{B p} .
$$

- We define a strategy profile ($\mathbf{p}^{*}, \mathbf{q}^{*}$) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices - \mathbf{A} and -B.
\rightarrow each agent interprets the payoffs as costs to be minimized, i.e.

$$
\forall i \in[n]:\left\{\mathbf{A q}^{*}\right\}_{i} \geq \mathbf{p}^{* \top} \mathbf{A} \mathbf{q}^{*} \text { and } \forall j \in[m]:\left\{\mathbf{B p}^{*}\right\}_{j} \geq \mathbf{q}^{* \top} \mathbf{B} \mathbf{p}^{*} .
$$

Support of a mixed strategy \mathbf{p} is given as $\operatorname{supp}(\mathbf{p})=\left\{i \in[n]: p_{i}>0\right\}$.

Equilibria in zero-sum games

- A strategy profile (\mathbf{p}, \mathbf{q}) is a Nash equilibrium if no unilateral profitable deviations exist:

$$
\forall i \in[n]:\{\mathbf{A q}\}_{i} \leq \mathbf{p}^{\top} \mathbf{A q} \text { and } \forall j \in[m]:\{\mathbf{B} \mathbf{p}\}_{j} \leq \mathbf{q}^{\top} \mathbf{B} \mathbf{p} .
$$

- We define a strategy profile ($\mathbf{p}^{*}, \mathbf{q}^{*}$) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices - \mathbf{A} and -B.
\rightarrow each agent interprets the payoffs as costs to be minimized, i.e.

$$
\forall i \in[n]:\left\{\mathbf{A q}^{*}\right\}_{i} \geq \mathbf{p}^{* \top} \mathbf{A} \mathbf{q}^{*} \text { and } \forall j \in[m]:\left\{\mathbf{B p}^{*}\right\}_{j} \geq \mathbf{q}^{* \top} \mathbf{B} \mathbf{p}^{*} .
$$

Support of a mixed strategy \mathbf{p} is given as $\operatorname{supp}(\mathbf{p})=\left\{i \in[n]: p_{i}>0\right\}$.

- A Nash equilbrium (\mathbf{p}, \mathbf{q}) is called interior (or fully mixed) if $p_{i}, q_{j}>0$ for all i, j (in this case, above inequalities are equalities).

Equilibria in zero-sum games

- A strategy profile (\mathbf{p}, \mathbf{q}) is a Nash equilibrium if no unilateral profitable deviations exist:

$$
\forall i \in[n]:\{\mathbf{A q}\}_{i} \leq \mathbf{p}^{\top} \mathbf{A q} \text { and } \forall j \in[m]:\{\mathbf{B p}\}_{j} \leq \mathbf{q}^{\top} \mathbf{B p} .
$$

- We define a strategy profile ($\mathbf{p}^{*}, \mathbf{q}^{*}$) as an anti-equilibrium if it is a Nash equilibrium of the game with payoff matrices - \mathbf{A} and -B.
\rightarrow each agent interprets the payoffs as costs to be minimized, i.e.

$$
\forall i \in[n]:\left\{\mathbf{A q}^{*}\right\}_{i} \geq \mathbf{p}^{* \top} \mathbf{A} \mathbf{q}^{*} \text { and } \forall j \in[m]:\left\{\mathbf{B p}^{*}\right\}_{j} \geq \mathbf{q}^{* \top} \mathbf{B} \mathbf{p}^{*} .
$$

Support of a mixed strategy \mathbf{p} is given as $\operatorname{supp}(\mathbf{p})=\left\{i \in[n]: p_{i}>0\right\}$.

- A Nash equilbrium (\mathbf{p}, \mathbf{q}) is called interior (or fully mixed) if $p_{i}, q_{j}>0$ for all i, j (in this case, above inequalities are equalities).
- Otherwise, there is a unique maximum support of Nash equilibrium (and anti-equilibrium) strategies.

Replicator dynamics for zero-sum games
Updating the strategies towards improving utility gives the replicator equation [Weibull 1995, Arora et al. 2012]

$$
\begin{aligned}
& \dot{x}_{i}=x_{i}\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right), \\
& \dot{y}_{j}=y_{j}\left(\{\mathbf{B} \mathbf{x}\}_{j}-\mathbf{y}^{\top} \mathbf{B x}\right) .
\end{aligned}
$$

Replicator dynamics for zero-sum games

Updating the strategies towards improving utility gives the replicator equation [Weibull 1995, Arora et al. 2012]

$$
\begin{aligned}
\dot{x}_{i} & =x_{i}\left(\{\mathbf{A y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right), \\
\dot{y}_{j} & =y_{j}\left(\{\mathbf{B} \mathbf{x}\}_{j}-\mathbf{y}^{\top} \mathbf{B x}\right) .
\end{aligned}
$$

Lemma ([Piliouras/Shamma 2014])

1. If there is a fully mixed Nash equilibrium (\mathbf{p}, \mathbf{q}), then for any starting point $\left(x_{0}, y_{0}\right) \in \mathcal{D}$ the cross entropy

$$
V((\mathbf{p}, \mathbf{q}) ;(\mathbf{x}(t), \mathbf{y}(t)))=-\sum_{i} p_{i} \ln x_{i}(t)-\sum_{j} q_{i} \ln y_{j}(t)
$$

between (\mathbf{p}, \mathbf{q}) and $(\mathbf{x}(t), \mathbf{y}(t))$ is a constant of motion.

Replicator dynamics for zero-sum games

Updating the strategies towards improving utility gives the replicator equation [Weibull 1995, Arora et al. 2012]

$$
\begin{aligned}
& \dot{x}_{i}=x_{i}\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right), \\
& \dot{y}_{j}=y_{j}\left(\{\mathbf{B} \mathbf{x}\}_{j}-\mathbf{y}^{\top} \mathbf{B x}\right) .
\end{aligned}
$$

Lemma ([Piliouras/Shamma 2014])

1. If there is a fully mixed Nash equilibrium (\mathbf{p}, \mathbf{q}), then for any starting point $\left(x_{0}, y_{0}\right) \in \mathcal{D}$ the cross entropy

$$
V((\mathbf{p}, \mathbf{q}) ;(\mathbf{x}(t), \mathbf{y}(t)))=-\sum_{i} p_{i} \ln x_{i}(t)-\sum_{j} q_{i} \ln y_{j}(t)
$$

between (\mathbf{p}, \mathbf{q}) and $(\mathbf{x}(t), \mathbf{y}(t))$ is a constant of motion.
2. Otherwise, let (\mathbf{p}, \mathbf{q}) be a not fully mixed Nash equilibrium of maximal support; then for all $t^{\prime} \geq 0$

$$
\left.\frac{\mathrm{d} V((\mathbf{p}, \mathbf{q}) ;(\mathbf{x}(t), \mathbf{y}(t)))}{\mathrm{d} t}\right|_{t=t^{\prime}}<0
$$

and reversed for anti-equilibria.

Convergence to maximum support

For index sets I and J, corresponding with the Nash equilibrium of maximum support, we set

$$
\Delta_{1}:=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I^{c}, j \in J^{c}\right\}
$$

where I^{c} and J^{c} denote the complements of I and J respectively.

Convergence to maximum support

For index sets I and J, corresponding with the Nash equilibrium of maximum support, we set

$$
\Delta_{1}:=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I^{c}, j \in J^{c}\right\}
$$

where I^{c} and J^{c} denote the complements of I and J respectively.
Theorem ([Piliouras/Shamma 2014])

1. If the game does not have an interior equilbirum, then given any interior starting point $z \in \mathcal{D}$, the orbit $\Phi(z, \cdot)$ converges to the boundary of the state space.

Convergence to maximum support

For index sets I and J, corresponding with the Nash equilibrium of maximum support, we set

$$
\Delta_{1}:=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I^{c}, j \in J^{c}\right\}
$$

where I^{c} and J^{c} denote the complements of I and J respectively.
Theorem ([Piliouras/Shamma 2014])

1. If the game does not have an interior equilbirum, then given any interior starting point $z \in \mathcal{D}$, the orbit $\Phi(z, \cdot)$ converges to the boundary of the state space.
2. Furthermore, if (\mathbf{p}, \mathbf{q}) is an equilibrium of maximum support on $\Delta_{1} \subset \partial \mathcal{D}$, then the omega-limit set satisfies $\omega(z) \subset \operatorname{int}\left(\Delta_{1}\right)$.

Example (matching pennies)

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right), \quad \mathbf{B}=-\mathbf{A}^{T} .
$$

Orbits around interior equilbrium.

Example (matching pennies)

$\mathbf{A}=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right), \quad \mathbf{B}=-\mathbf{A}^{T}$.
Orbits around interior equilbrium.

A stochastic replicator model with two agents
Our stochastic model (generalizing [Foster/Young 1990]) is the Itô SDE

$$
\begin{aligned}
\mathrm{d} X_{i}(t) & =X_{i}(t)\left(\{\mathbf{A Y}(\mathbf{t})\}_{i}-\mathbf{X}(\mathbf{t})^{\top} \mathbf{A} \mathbf{Y}(\mathbf{t})\right) \mathrm{d} t+X_{i}(t)(R(\mathbf{X}) \mathrm{d} W(t))_{i}, \\
\mathrm{~d} Y_{j}(t) & =Y_{j}(t)\left(\{\mathbf{B X}(\mathbf{t})\}_{j}-\mathbf{Y}(\mathbf{t})^{\top} \mathbf{B X}(\mathbf{t})\right) \mathrm{d} t+Y_{j}(t)(S(\mathbf{Y}) \mathrm{d} \tilde{W}(t))_{j},
\end{aligned}
$$

where

A stochastic replicator model with two agents

Our stochastic model (generalizing [Foster/Young 1990]) is the Itô SDE

$$
\begin{aligned}
\mathrm{d} X_{i}(t) & =X_{i}(t)\left(\{\mathbf{A Y}(\mathbf{t})\}_{i}-\mathbf{X}(\mathbf{t})^{\top} \mathbf{A} \mathbf{Y}(\mathbf{t})\right) \mathrm{d} t+X_{i}(t)(R(\mathbf{X}) \mathrm{d} W(t))_{i}, \\
\mathrm{~d} Y_{j}(t) & =Y_{j}(t)\left(\{\mathbf{B X}(\mathbf{t})\}_{j}-\mathbf{Y}(\mathbf{t})^{\top} \mathbf{B X}(\mathbf{t})\right) \mathrm{d} t+Y_{j}(t)(S(\mathbf{Y}) \mathrm{d} \tilde{W}(t))_{j},
\end{aligned}
$$

where

- $W=\left(W_{1}, \ldots, W_{n}\right)^{\top}$ and $\tilde{W}=\left(\tilde{W}_{1}, \ldots, \tilde{W}_{m}\right)^{\top}$ are independent n-dimensional and m-dimensional Brownian motions,

A stochastic replicator model with two agents

Our stochastic model (generalizing [Foster/Young 1990]) is the Itô SDE

$$
\begin{aligned}
\mathrm{d} X_{i}(t) & =X_{i}(t)\left(\{\mathbf{A Y}(\mathbf{t})\}_{i}-\mathbf{X}(\mathbf{t})^{\top} \mathbf{A} \mathbf{Y}(\mathbf{t})\right) \mathrm{d} t+X_{i}(t)(R(\mathbf{X}) \mathrm{d} W(t))_{i}, \\
\mathrm{~d} Y_{j}(t) & =Y_{j}(t)\left(\{\mathbf{B X}(\mathbf{t})\}_{j}-\mathbf{Y}(\mathbf{t})^{\top} \mathbf{B X}(\mathbf{t})\right) \mathrm{d} t+Y_{j}(t)(S(\mathbf{Y}) \mathrm{d} \tilde{W}(t))_{j},
\end{aligned}
$$

where

- $W=\left(W_{1}, \ldots, W_{n}\right)^{\top}$ and $\tilde{W}=\left(\tilde{W}_{1}, \ldots, \tilde{W}_{m}\right)^{\top}$ are independent n-dimensional and m-dimensional Brownian motions,
- $(\mathbf{X}(0), \mathbf{Y}(0)) \sim \mu_{0}$ in $\overline{\mathcal{D}}$, where μ_{0} is some probability measure on $\overline{\mathcal{D}}$

A stochastic replicator model with two agents

Our stochastic model (generalizing [Foster/Young 1990]) is the Itô SDE

$$
\begin{aligned}
\mathrm{d} X_{i}(t) & =X_{i}(t)\left(\{\mathbf{A Y}(\mathbf{t})\}_{i}-\mathbf{X}(\mathbf{t})^{\top} \mathbf{A} \mathbf{Y}(\mathbf{t})\right) \mathrm{d} t+X_{i}(t)(R(\mathbf{X}) \mathrm{d} W(t))_{i}, \\
\mathrm{~d} Y_{j}(t) & =Y_{j}(t)\left(\{\mathbf{B X}(\mathbf{t})\}_{j}-\mathbf{Y}(\mathbf{t})^{\top} \mathbf{B X}(\mathbf{t})\right) \mathrm{d} t+Y_{j}(t)(S(\mathbf{Y}) \mathrm{d} \tilde{W}(t))_{j},
\end{aligned}
$$

where

- $W=\left(W_{1}, \ldots, W_{n}\right)^{\top}$ and $\tilde{W}=\left(\tilde{W}_{1}, \ldots, \tilde{W}_{m}\right)^{\top}$ are independent n-dimensional and m-dimensional Brownian motions,
- ($\mathbf{X}(0), \mathbf{Y}(0)) \sim \mu_{0}$ in $\overline{\mathcal{D}}$, where μ_{0} is some probability measure on $\overline{\mathcal{D}}$
- $R: \overline{\mathcal{D}} \rightarrow \mathbb{R}^{n \times n}$ and $S: \overline{\mathcal{D}} \rightarrow \mathbb{R}^{m \times m}$ are locally Lipschitz continuous and for all $(\mathbf{X}, \mathbf{Y}) \in \overline{\mathcal{D}}$

$$
\mathbf{X}^{\top} R(\mathbf{X})=0, \quad \mathbf{Y}^{\top} S(\mathbf{Y})=0,
$$

A stochastic replicator model with two agents

Our stochastic model (generalizing [Foster/Young 1990]) is the Itô SDE

$$
\begin{aligned}
\mathrm{d} X_{i}(t) & =X_{i}(t)\left(\{\mathbf{A} \mathbf{Y}(\mathbf{t})\}_{i}-\mathbf{X}(\mathbf{t})^{\top} \mathbf{A Y}(\mathbf{t})\right) \mathrm{d} t+X_{i}(t)(R(\mathbf{X}) \mathrm{d} W(t))_{i}, \\
\mathrm{~d} Y_{j}(t) & =Y_{j}(t)\left(\{\mathbf{B X}(\mathbf{t})\}_{j}-\mathbf{Y}(\mathbf{t})^{\top} \mathbf{B X}(\mathbf{t})\right) \mathrm{d} t+Y_{j}(t)(S(\mathbf{Y}) \mathrm{d} \tilde{W}(t))_{j},
\end{aligned}
$$

where

- $W=\left(W_{1}, \ldots, W_{n}\right)^{\top}$ and $\tilde{W}=\left(\tilde{W}_{1}, \ldots, \tilde{W}_{m}\right)^{\top}$ are independent n-dimensional and m-dimensional Brownian motions,
- ($\mathbf{X}(0), \mathbf{Y}(0)) \sim \mu_{0}$ in $\overline{\mathcal{D}}$, where μ_{0} is some probability measure on $\overline{\mathcal{D}}$
- $R: \overline{\mathcal{D}} \rightarrow \mathbb{R}^{n \times n}$ and $S: \overline{\mathcal{D}} \rightarrow \mathbb{R}^{m \times m}$ are locally Lipschitz continuous and for all $(\mathbf{X}, \mathbf{Y}) \in \overline{\mathcal{D}}$

$$
\mathbf{X}^{\top} R(\mathbf{X})=0, \quad \mathbf{Y}^{\top} S(\mathbf{Y})=0,
$$

giving $\sum_{i} \mathrm{~d} X_{i}(t)=0$ and $\sum_{j} \mathrm{~d} Y_{j}(t)=0$ such that $\overline{\mathcal{D}}$ is invariant.

A stochastic replicator model with two agents

Our stochastic model (generalizing [Foster/Young 1990]) is the Itô SDE

$$
\begin{aligned}
\mathrm{d} X_{i}(t) & =X_{i}(t)\left(\{\mathbf{A Y}(\mathbf{t})\}_{i}-\mathbf{X}(\mathbf{t})^{\top} \mathbf{A} \mathbf{Y}(\mathbf{t})\right) \mathrm{d} t+X_{i}(t)(R(\mathbf{X}) \mathrm{d} W(t))_{i}, \\
\mathrm{~d} Y_{j}(t) & =Y_{j}(t)\left(\{\mathbf{B X}(\mathbf{t})\}_{j}-\mathbf{Y}(\mathbf{t})^{\top} \mathbf{B X}(\mathbf{t})\right) \mathrm{d} t+Y_{j}(t)(S(\mathbf{Y}) \mathrm{d} \tilde{W}(t))_{j},
\end{aligned}
$$

where

- $W=\left(W_{1}, \ldots, W_{n}\right)^{\top}$ and $\tilde{W}=\left(\tilde{W}_{1}, \ldots, \tilde{W}_{m}\right)^{\top}$ are independent n-dimensional and m-dimensional Brownian motions,
- ($\mathbf{X}(0), \mathbf{Y}(0)) \sim \mu_{0}$ in $\overline{\mathcal{D}}$, where μ_{0} is some probability measure on $\overline{\mathcal{D}}$
- $R: \overline{\mathcal{D}} \rightarrow \mathbb{R}^{n \times n}$ and $S: \overline{\mathcal{D}} \rightarrow \mathbb{R}^{m \times m}$ are locally Lipschitz continuous and for all $(\mathbf{X}, \mathbf{Y}) \in \overline{\mathcal{D}}$

$$
\mathbf{X}^{\top} R(\mathbf{X})=0, \quad \mathbf{Y}^{\top} S(\mathbf{Y})=0,
$$

giving $\sum_{i} \mathrm{~d} X_{i}(t)=0$ and $\sum_{j} \mathrm{~d} Y_{j}(t)=0$ such that $\overline{\mathcal{D}}$ is invariant.

- $\exists \xi>0$ s. t. $\forall i \neq j: \sum_{k=1}^{n} R_{i k}^{2}(x)+\sum_{k=1}^{n} R_{j k}^{2}(x) \geq \xi$, and $\sum_{k=1}^{n} R_{i k}^{2}(x)=0$ iff $x_{i}=1$, (and the same for S).

A specific version

Specific choice of R and S such that (in matrix form)

$$
\begin{aligned}
& \mathrm{d} \mathbf{X}(\mathbf{t})=\left(\operatorname{diag}\left(X_{1}(t), \ldots, X_{n}(t)\right)-\mathbf{X}(\mathbf{t}) \mathbf{X}(\mathbf{t})^{\top}\right)\left(\mathbf{A} \mathbf{Y}(\mathbf{t}) \mathrm{d} t+\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \mathrm{d} W_{t}\right), \\
& \mathrm{d} \mathbf{Y}(\mathbf{t})=\left(\operatorname{diag}\left(Y_{1}(t), \ldots, Y_{m}(t)\right)-\mathbf{Y}(\mathbf{t}) \mathbf{Y}(\mathbf{t})^{\top}\right)\left(\mathbf{B X}(\mathbf{t}) \mathrm{d} t+\operatorname{diag}\left(\eta_{1}, \ldots, \eta_{m}\right) \mathrm{d} \tilde{W}_{t}\right),
\end{aligned}
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ and $\eta_{1}, \ldots, \eta_{m}$ indicate noise intensities.

A specific version

Specific choice of R and S such that (in matrix form)

$$
\begin{aligned}
& \mathrm{d} \mathbf{X}(\mathbf{t})=\left(\operatorname{diag}\left(X_{1}(t), \ldots, X_{n}(t)\right)-\mathbf{X}(\mathbf{t}) \mathbf{X}(\mathbf{t})^{\top}\right)\left(\mathbf{A} \mathbf{Y}(\mathbf{t}) \mathrm{d} t+\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \mathrm{d} W_{t}\right), \\
& \mathrm{d} \mathbf{Y}(\mathbf{t})=\left(\operatorname{diag}\left(Y_{1}(t), \ldots, Y_{m}(t)\right)-\mathbf{Y}(\mathbf{t}) \mathbf{Y}(\mathbf{t})^{\top}\right)\left(\mathbf{B X}(\mathbf{t}) \mathrm{d} t+\operatorname{diag}\left(\eta_{1}, \ldots, \eta_{m}\right) \mathrm{d} \tilde{W}_{t}\right),
\end{aligned}
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ and $\eta_{1}, \ldots, \eta_{m}$ indicate noise intensities.

- Model describes uncertainty about outcome of the game via random fluctuations around the utilities given by $\mathbf{A Y}(\mathbf{t})$ and $\mathbf{B X}(\mathbf{t})$.

A specific version

Specific choice of R and S such that (in matrix form)

$$
\begin{aligned}
& \mathrm{d} \mathbf{X}(\mathbf{t})=\left(\operatorname{diag}\left(X_{1}(t), \ldots, X_{n}(t)\right)-\mathbf{X}(\mathbf{t}) \mathbf{X}(\mathbf{t})^{\top}\right)\left(\mathbf{A} \mathbf{Y}(\mathbf{t}) \mathrm{d} t+\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right) \mathrm{d} W_{t}\right), \\
& \mathrm{d} \mathbf{Y}(\mathbf{t})=\left(\operatorname{diag}\left(Y_{1}(t), \ldots, Y_{m}(t)\right)-\mathbf{Y}(\mathbf{t}) \mathbf{Y}(\mathbf{t})^{\top}\right)\left(\mathbf{B X}(\mathbf{t}) \mathrm{d} t+\operatorname{diag}\left(\eta_{1}, \ldots, \eta_{m}\right) \mathrm{d} \tilde{W}_{t}\right),
\end{aligned}
$$

where $\sigma_{1}, \ldots, \sigma_{n}$ and $\eta_{1}, \ldots, \eta_{m}$ indicate noise intensities.

- Model describes uncertainty about outcome of the game via random fluctuations around the utilities given by $\mathbf{A Y}(\mathbf{t})$ and $\mathbf{B X}(\mathbf{t})$.
- Similar to [Hofbauer/Imhof 2009] for monomatrix games, but with crucially different derivation of noise model.

Generator and Lyapunov functions

Generator \mathcal{L} of the associated Markov semigroup P_{t} acts as

$$
\begin{aligned}
\mathcal{L} h(\mathbf{x}, \mathbf{y}) & =\lim _{t \downarrow 0} \frac{1}{t}\left(\mathbb{E}_{(\mathbf{x}, \mathbf{y})}\left[h\left(\mathbf{X}_{\mathbf{t}}, \mathbf{Y}_{\mathbf{t}}\right)\right]-h(\mathbf{x}, \mathbf{y})\right) \\
& =\sum_{i} x_{i}\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right) \partial_{x_{i}} h(\mathbf{x}, \mathbf{y})+\sum_{i} y_{i}\left(\{\mathbf{B} \mathbf{x}\}_{i}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \partial_{y_{i}} h(\mathbf{x}, \mathbf{y}) \\
& +\frac{1}{2} \sum_{i, j} D_{i j}(\mathbf{x}) \partial_{x_{i} x_{j}} h(\mathbf{x}, \mathbf{y})+\frac{1}{2} \sum_{i, j} \tilde{D}_{i j}(\mathbf{y}) \partial_{y_{i} y_{j}} h(\mathbf{x}, \mathbf{y}),
\end{aligned}
$$

Generator and Lyapunov functions

Generator \mathcal{L} of the associated Markov semigroup P_{t} acts as

$$
\begin{aligned}
\mathcal{L} h(\mathbf{x}, \mathbf{y}) & =\lim _{t \downarrow 0} \frac{1}{t}\left(\mathbb{E}_{(\mathbf{x}, \mathbf{y})}\left[h\left(\mathbf{X}_{\mathbf{t}}, \mathbf{Y}_{\mathbf{t}}\right)\right]-h(\mathbf{x}, \mathbf{y})\right) \\
& =\sum_{i} x_{i}\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right) \partial_{x_{i}} h(\mathbf{x}, \mathbf{y})+\sum_{i} y_{i}\left(\{\mathbf{B} \mathbf{x}\}_{i}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \partial_{y_{i}} h(\mathbf{x}, \mathbf{y}) \\
& +\frac{1}{2} \sum_{i, j} D_{i j}(\mathbf{x}) \partial_{x_{i} x_{j}} h(\mathbf{x}, \mathbf{y})+\frac{1}{2} \sum_{i, j} \tilde{D}_{i j}(\mathbf{y}) \partial_{y_{i} y_{j}} h(\mathbf{x}, \mathbf{y}),
\end{aligned}
$$

where the diffusion matrices $D_{i j}, \tilde{D}_{i j}$ are given as

$$
D_{i j}(\mathbf{x})=\sum_{k=1}^{n} x_{i} x_{j} R_{i k}(\mathbf{x}) R_{j k}(\mathbf{x}), \quad \tilde{D}_{i j}(\mathbf{y})=\sum_{k=1}^{m} y_{i} y_{j} S_{i k}(\mathbf{y}) S_{j k}(\mathbf{y})
$$

Generator and Lyapunov functions

Generator \mathcal{L} of the associated Markov semigroup P_{t} acts as

$$
\begin{aligned}
\mathcal{L} h(\mathbf{x}, \mathbf{y}) & =\lim _{t \downarrow 0} \frac{1}{t}\left(\mathbb{E}_{(\mathbf{x}, \mathbf{y})}\left[h\left(\mathbf{X}_{\mathbf{t}}, \mathbf{Y}_{\mathbf{t}}\right)\right]-h(\mathbf{x}, \mathbf{y})\right) \\
& =\sum_{i} x_{i}\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right) \partial_{x_{i}} h(\mathbf{x}, \mathbf{y})+\sum_{i} y_{i}\left(\{\mathbf{B} \mathbf{x}\}_{i}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \partial_{y_{i}} h(\mathbf{x}, \mathbf{y}) \\
& +\frac{1}{2} \sum_{i, j} D_{i j}(\mathbf{x}) \partial_{x_{i} x_{j}} h(\mathbf{x}, \mathbf{y})+\frac{1}{2} \sum_{i, j} \tilde{D}_{i j}(\mathbf{y}) \partial_{y_{i} y_{j}} h(\mathbf{x}, \mathbf{y}),
\end{aligned}
$$

where the diffusion matrices $D_{i j}, \tilde{D}_{i j}$ are given as

$$
D_{i j}(\mathbf{x})=\sum_{k=1}^{n} x_{i} x_{j} R_{i k}(\mathbf{x}) R_{j k}(\mathbf{x}), \quad \tilde{D}_{i j}(\mathbf{y})=\sum_{k=1}^{m} y_{i} y_{j} S_{i k}(\mathbf{y}) S_{j k}(\mathbf{y})
$$

Main idea: Use cross entropy functions

$$
V(\mathbf{x}, \mathbf{y})=-\sum_{i \in I} p_{i} \ln x_{i}-\sum_{j \in J} q_{j} \ln y_{j},
$$

as Lyapunov function for determining invariant measures on $\mathcal{D} \cup \partial \mathcal{D}$.

Main result [E./Piliouras 2022+]

Theorem B (Zero-sum game with noise)
Consider the SDE model with the assumptions as above. Then

Main result [E./Piliouras 2022+]

Theorem B (Zero-sum game with noise)
Consider the SDE model with the assumptions as above. Then
(a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
(i) supported on the boundary $\partial \mathcal{D}$,
(ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i, j}}$, $(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, m\}$, supported on the corners $v_{i, j}$ of $\partial \mathcal{D}$.

Main result [E./Piliouras 2022+]

Theorem B (Zero-sum game with noise)

Consider the SDE model with the assumptions as above. Then
(a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
(i) supported on the boundary $\partial \mathcal{D}$,
(ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i, j}}$, $(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, m\}$, supported on the corners $v_{i, j}$ of $\partial \mathcal{D}$.
(b) If the Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, all $\delta_{v_{i, j}}$ are attracting with respect to the interior.

Main result [E./Piliouras 2022+]

Theorem B (Zero-sum game with noise)

Consider the SDE model with the assumptions as above. Then
(a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
(i) supported on the boundary $\partial \mathcal{D}$,
(ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i, j}}$, $(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, m\}$, supported on the corners $v_{i, j}$ of $\partial \mathcal{D}$.
(b) If the Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, all $\delta_{v_{i, j}}$ are attracting with respect to the interior.
(c) If there is no interior Nash equilibrium but only a Nash equilibrium (\mathbf{p}, \mathbf{q}) with maximal support, then

Main result [E./Piliouras 2022+]

Theorem B (Zero-sum game with noise)

Consider the SDE model with the assumptions as above. Then
(a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
(i) supported on the boundary $\partial \mathcal{D}$,
(ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i, j}}$, $(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, m\}$, supported on the corners $v_{i, j}$ of $\partial \mathcal{D}$.
(b) If the Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, all $\delta_{v_{i, j}}$ are attracting with respect to the interior.
(c) If there is no interior Nash equilibrium but only a Nash equilibrium (\mathbf{p}, \mathbf{q}) with maximal support, then
(i) for "large" noise all $\delta_{v_{i, j}}$ are attracting with respect to the interior.

Main result [E./Piliouras 2022+]

Theorem B (Zero-sum game with noise)

Consider the SDE model with the assumptions as above. Then
(a) any invariant probability measure μ on $\overline{\mathcal{D}}$ is
(i) supported on the boundary $\partial \mathcal{D}$,
(ii) given by a convex combination of the ergodic Dirac measures $\delta_{v_{i, j}}$, $(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, m\}$, supported on the corners $v_{i, j}$ of $\partial \mathcal{D}$.
(b) If the Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, all $\delta_{v_{i, j}}$ are attracting with respect to the interior.
(c) If there is no interior Nash equilibrium but only a Nash equilibrium (\mathbf{p}, \mathbf{q}) with maximal support, then
(i) for "large" noise all $\delta_{v_{i, j}}$ are attracting with respect to the interior.
(ii) otherwise, for sufficiently "small" noise, the only invariant measures which attract the interior are contained in the subset Δ_{1} of $\partial \mathcal{D}$ which contains the Nash equilibrium of maximal support.

Sketch of proof I

With

$$
V(\mathbf{x}, \mathbf{y})=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{i} \ln y_{j}, \quad(\mathbf{x}, \mathbf{y}) \in \mathcal{D},
$$

we have $\lim _{z \rightarrow \partial \mathcal{D}} V(z) \rightarrow \infty$ and

Sketch of proof I

With

$$
V(\mathbf{x}, \mathbf{y})=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{i} \ln y_{j}, \quad(\mathbf{x}, \mathbf{y}) \in \mathcal{D}
$$

we have $\lim _{z \rightarrow \partial \mathcal{D}} V(z) \rightarrow \infty$ and

$$
\begin{aligned}
& H(\mathbf{x}, \mathbf{y}):=\mathcal{L} V(\mathbf{x}, \mathbf{y})=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{i}\left(-q_{i}\right)\left(\{\mathbf{B} \mathbf{x}\}_{i}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \\
& +\sum_{i} p_{i}\left(\sum_{k=1}^{n} R_{i k}^{2}(\mathbf{x})\right)+\sum_{i} q_{i}\left(\sum_{k=1}^{n} S_{i k}^{2}(\mathbf{y})\right)
\end{aligned}
$$

Sketch of proof I

With

$$
V(\mathbf{x}, \mathbf{y})=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{i} \ln y_{j}, \quad(\mathbf{x}, \mathbf{y}) \in \mathcal{D}
$$

we have $\lim _{z \rightarrow \partial \mathcal{D}} V(z) \rightarrow \infty$ and

$$
\begin{aligned}
& H(\mathbf{x}, \mathbf{y}):=\mathcal{L} V(\mathbf{x}, \mathbf{y})=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{i}\left(-q_{i}\right)\left(\{\mathbf{B} \mathbf{x}\}_{i}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \\
& +\sum_{i} p_{i}\left(\sum_{k=1}^{n} R_{i k}^{2}(\mathbf{x})\right)+\sum_{i} q_{i}\left(\sum_{k=1}^{n} S_{i k}^{2}(\mathbf{y})\right) .
\end{aligned}
$$

- Recall that for any strategy profile (\mathbf{x}, \mathbf{y})

$$
L(\mathbf{x}, \mathbf{y}):=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{j}\left(-q_{j}\right)\left(\{\mathbf{B} \mathbf{x}\}_{j}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \leq 0
$$

Sketch of proof I

With

$$
V(\mathbf{x}, \mathbf{y})=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{i} \ln y_{j}, \quad(\mathbf{x}, \mathbf{y}) \in \mathcal{D}
$$

we have $\lim _{z \rightarrow \partial \mathcal{D}} V(z) \rightarrow \infty$ and

$$
\begin{aligned}
& H(\mathbf{x}, \mathbf{y}):=\mathcal{L} V(\mathbf{x}, \mathbf{y})=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{i}\left(-q_{i}\right)\left(\{\mathbf{B} \mathbf{x}\}_{i}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \\
& +\sum_{i} p_{i}\left(\sum_{k=1}^{n} R_{i k}^{2}(\mathbf{x})\right)+\sum_{i} q_{i}\left(\sum_{k=1}^{n} S_{i k}^{2}(\mathbf{y})\right) .
\end{aligned}
$$

- Recall that for any strategy profile (\mathbf{x}, \mathbf{y})

$$
L(\mathbf{x}, \mathbf{y}):=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{j}\left(-q_{j}\right)\left(\{\mathbf{B} \mathbf{x}\}_{j}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \leq 0
$$

1. If Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, then $L(\mathbf{x}, \mathbf{y})=0$:

Sketch of proof I

With

$$
V(\mathbf{x}, \mathbf{y})=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{i} \ln y_{j}, \quad(\mathbf{x}, \mathbf{y}) \in \mathcal{D}
$$

we have $\lim _{z \rightarrow \partial \mathcal{D}} V(z) \rightarrow \infty$ and

$$
\begin{aligned}
& H(\mathbf{x}, \mathbf{y}):=\mathcal{L} V(\mathbf{x}, \mathbf{y})=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{i}\left(-q_{i}\right)\left(\{\mathbf{B} \mathbf{x}\}_{i}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \\
& +\sum_{i} p_{i}\left(\sum_{k=1}^{n} R_{i k}^{2}(\mathbf{x})\right)+\sum_{i} q_{i}\left(\sum_{k=1}^{n} S_{i k}^{2}(\mathbf{y})\right)
\end{aligned}
$$

- Recall that for any strategy profile (\mathbf{x}, \mathbf{y})

$$
L(\mathbf{x}, \mathbf{y}):=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{j}\left(-q_{j}\right)\left(\{\mathbf{B} \mathbf{x}\}_{j}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \leq 0
$$

1. If Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, then $L(\mathbf{x}, \mathbf{y})=0$:

- $H=\mathcal{L} V(\mathbf{x}, \mathbf{y})>0$ on $\mathcal{D} \cup \partial \mathcal{D}$.

Sketch of proof I

With

$$
V(\mathbf{x}, \mathbf{y})=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{i} \ln y_{j}, \quad(\mathbf{x}, \mathbf{y}) \in \mathcal{D}
$$

we have $\lim _{z \rightarrow \partial \mathcal{D}} V(z) \rightarrow \infty$ and

$$
\begin{aligned}
& H(\mathbf{x}, \mathbf{y}):=\mathcal{L} V(\mathbf{x}, \mathbf{y})=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{i}\left(-q_{i}\right)\left(\{\mathbf{B} \mathbf{x}\}_{i}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \\
& +\sum_{i} p_{i}\left(\sum_{k=1}^{n} R_{i k}^{2}(\mathbf{x})\right)+\sum_{i} q_{i}\left(\sum_{k=1}^{n} S_{i k}^{2}(\mathbf{y})\right)
\end{aligned}
$$

- Recall that for any strategy profile (\mathbf{x}, \mathbf{y})

$$
L(\mathbf{x}, \mathbf{y}):=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{j}\left(-q_{j}\right)\left(\{\mathbf{B} \mathbf{x}\}_{j}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \leq 0
$$

1. If Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, then $L(\mathbf{x}, \mathbf{y})=0$:

- $H=\mathcal{L} V(\mathbf{x}, \mathbf{y})>0$ on $\mathcal{D} \cup \partial \mathcal{D}$.
- In particular, on $\partial \mathcal{D}, H=\mathcal{L} V(\mathbf{x}, \mathbf{y})=\xi>0$.

Sketch of proof I

With

$$
V(\mathbf{x}, \mathbf{y})=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{i} \ln y_{j}, \quad(\mathbf{x}, \mathbf{y}) \in \mathcal{D}
$$

we have $\lim _{z \rightarrow \partial \mathcal{D}} V(z) \rightarrow \infty$ and

$$
\begin{aligned}
& H(\mathbf{x}, \mathbf{y}):=\mathcal{L} V(\mathbf{x}, \mathbf{y})=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{i}\left(-q_{i}\right)\left(\{\mathbf{B} \mathbf{x}\}_{i}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \\
& +\sum_{i} p_{i}\left(\sum_{k=1}^{n} R_{i k}^{2}(\mathbf{x})\right)+\sum_{i} q_{i}\left(\sum_{k=1}^{n} S_{i k}^{2}(\mathbf{y})\right) .
\end{aligned}
$$

- Recall that for any strategy profile (\mathbf{x}, \mathbf{y})

$$
L(\mathbf{x}, \mathbf{y}):=\sum_{i}\left(-p_{i}\right)\left(\{\mathbf{A} \mathbf{y}\}_{i}-\mathbf{x}^{\top} \mathbf{A} \mathbf{y}\right)+\sum_{j}\left(-q_{j}\right)\left(\{\mathbf{B} \mathbf{x}\}_{j}-\mathbf{y}^{\top} \mathbf{B} \mathbf{x}\right) \leq 0
$$

1. If Nash equilibrium (\mathbf{p}, \mathbf{q}) is interior, then $L(\mathbf{x}, \mathbf{y})=0$:

- $H=\mathcal{L} V(\mathbf{x}, \mathbf{y})>0$ on $\mathcal{D} \cup \partial \mathcal{D}$.
- In particular, on $\partial \mathcal{D}, H=\mathcal{L} V(\mathbf{x}, \mathbf{y})=\xi>0$.

Hence, almost all trajectories accumulate at $\partial \mathcal{D}$ [Khasminskii 2012,
Benaim/Strickler 2019], where the only invariant measures lie.

Sketch of proof II

2. Otherwise, consider NE (\mathbf{p}, \mathbf{q}) of maximal support with index sets I and J, the anti-NE ($\mathbf{p}^{*}, \mathbf{q}^{*}$) and

$$
\begin{aligned}
& \Delta_{\partial, 1}:=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I^{c}, j \in J^{c}\right\} \\
& \Delta_{\partial, 2}:=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I, j \in J\right\} .
\end{aligned}
$$

Sketch of proof II

2. Otherwise, consider NE (\mathbf{p}, \mathbf{q}) of maximal support with index sets I and J, the anti-NE ($\mathbf{p}^{*}, \mathbf{q}^{*}$) and

$$
\begin{aligned}
\Delta_{\partial, 1} & :=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I^{c}, j \in J^{c}\right\} \\
\Delta_{\partial, 2} & :=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I, j \in J\right\} .
\end{aligned}
$$

Setting

$$
\begin{aligned}
& V_{0}(\mathbf{x}, \mathbf{y}):=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{j} \ln y_{j} \\
& V_{1}(\mathbf{x}, \mathbf{y}):=-\sum_{i} p_{i}^{*} \ln x_{i}-\sum_{j} q_{j}^{*} \ln y_{j},
\end{aligned}
$$

we define $H_{0}(\mathbf{x}, \mathbf{y}):=\mathcal{L} V_{0}(\mathbf{x}, \mathbf{y})$ and $H_{1}(\mathbf{x}, \mathbf{y}):=\mathcal{L} V_{1}(\mathbf{x}, \mathbf{y})$, and find

Sketch of proof II

2. Otherwise, consider NE (\mathbf{p}, \mathbf{q}) of maximal support with index sets I and J, the anti-NE ($\mathbf{p}^{*}, \mathbf{q}^{*}$) and

$$
\begin{aligned}
\Delta_{\partial, 1} & :=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I^{c}, j \in J^{c}\right\} \\
\Delta_{\partial, 2} & :=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I, j \in J\right\} .
\end{aligned}
$$

Setting

$$
\begin{aligned}
& V_{0}(\mathbf{x}, \mathbf{y}):=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{j} \ln y_{j} \\
& V_{1}(\mathbf{x}, \mathbf{y}):=-\sum_{i} p_{i}^{*} \ln x_{i}-\sum_{j} q_{j}^{*} \ln y_{j},
\end{aligned}
$$

we define $H_{0}(\mathbf{x}, \mathbf{y}):=\mathcal{L} V_{0}(\mathbf{x}, \mathbf{y})$ and $H_{1}(\mathbf{x}, \mathbf{y}):=\mathcal{L} V_{1}(\mathbf{x}, \mathbf{y})$, and find
2.1 for "large noise": $H_{0}+H_{1}>0$ on $\partial \mathcal{D} \Rightarrow$ similar to 1 .

Sketch of proof II

2. Otherwise, consider NE (\mathbf{p}, \mathbf{q}) of maximal support with index sets I and J, the anti-NE ($\mathbf{p}^{*}, \mathbf{q}^{*}$) and

$$
\begin{aligned}
& \Delta_{\partial, 1}:=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I^{c}, j \in J^{c}\right\} \\
& \Delta_{\partial, 2}:=\left\{(\mathbf{x}, \mathbf{y}) \in \partial \mathcal{D}: x_{i}=0=y_{j} \text { for all } i \in I, j \in J\right\} .
\end{aligned}
$$

Setting

$$
\begin{aligned}
& V_{0}(\mathbf{x}, \mathbf{y}):=-\sum_{i} p_{i} \ln x_{i}-\sum_{j} q_{j} \ln y_{j} \\
& V_{1}(\mathbf{x}, \mathbf{y}):=-\sum_{i} p_{i}^{*} \ln x_{i}-\sum_{j} q_{j}^{*} \ln y_{j},
\end{aligned}
$$

we define $H_{0}(\mathbf{x}, \mathbf{y}):=\mathcal{L} V_{0}(\mathbf{x}, \mathbf{y})$ and $H_{1}(\mathbf{x}, \mathbf{y}):=\mathcal{L} V_{1}(\mathbf{x}, \mathbf{y})$, and find
2.1 for "large noise": $H_{0}+H_{1}>0$ on $\partial \mathcal{D} \Rightarrow$ similar to 1 .
2.2 for "small" noise: $H_{0}(\mathbf{x}, \mathbf{y})<0$ on $\Delta_{\partial, 2}$ and $H_{1}(\mathbf{x}, \mathbf{y})>0$ on $\Delta_{\partial, 1} \Rightarrow$ convergence to $\Delta_{\partial, 1}$.

Matching pennies I: 2×2 with interior NE

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right), \quad \mathbf{B}=-\mathbf{A}^{T}=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

Matching pennies I: 2×2 with interior NE

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right), \quad \mathbf{B}=-\mathbf{A}^{T}=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)
$$

Support of ergodic measures for deterministic case

Matching pennies I: 2×2 with interior NE

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right), \quad \mathbf{B}=-\mathbf{A}^{T}=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right),
$$

Support of ergodic measures for deterministic case

Ergodic (physical) measure for stochastic case $\left(\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f\left(Z_{s}\right) \mathrm{d} s=\int_{\overline{\mathcal{D}}} f(y) \mathrm{d} \mu(y)\right.$ for $\mu=\frac{1}{4} \sum_{i, j} \delta_{i, j}$, Lebesgue-almost all $z=z_{0}$.)

Matching pennies II: 2×3 with non-interior NE

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1 \\
-2 & -2
\end{array}\right), \quad \mathbf{B}=-\mathbf{A}^{T}=\left(\begin{array}{ccc}
-1 & 1 & 2 \\
1 & -1 & 2
\end{array}\right)
$$

Support of ergodic measures for deterministic case

Matching pennies II: 2×3 with non-interior NE

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1 \\
-2 & -2
\end{array}\right), \quad \mathbf{B}=-\mathbf{A}^{T}=\left(\begin{array}{ccc}
-1 & 1 & 2 \\
1 & -1 & 2
\end{array}\right)
$$

Support of ergodic measures for deterministic case

Support of ergodic measures for stochastic case

Summary

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed

Summary

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles

Summary

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles
- Behavior in contrast both to the Nash equilibrium prediction as well as deterministic replicator equation (recurrence/cycles).

Summary

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles
- Behavior in contrast both to the Nash equilibrium prediction as well as deterministic replicator equation (recurrence/cycles).

Additional directions:

- Similar analysis for randomized discrete-time dynamics such as Multiplicative Weights Update

Summary

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles
- Behavior in contrast both to the Nash equilibrium prediction as well as deterministic replicator equation (recurrence/cycles).

Additional directions:

- Similar analysis for randomized discrete-time dynamics such as Multiplicative Weights Update
- Noise models that help to approximate Nash equilibrium?

Summary

Effects of noise in this replicator model:

- Invariant, ergodic measures concentrated on pure strategy profiles even if the Nash equilibrium is fully mixed
- Attracting, physical measures are convex combinations of pure strategy profiles
- Behavior in contrast both to the Nash equilibrium prediction as well as deterministic replicator equation (recurrence/cycles).

Additional directions:

- Similar analysis for randomized discrete-time dynamics such as Multiplicative Weights Update
- Noise models that help to approximate Nash equilibrium?

Thank you very much for your attention!

