

Ramon y Cajal

A coarse-graining approach to mapping cortical parameter space

Symposium on Machine Learning and Dynamical Systems
Fields Institute, Toronto
Sept. 28, 2022

Kevin K Lin
University of Arizona

Zhuo-Cheng Xiao & Lai-Sang Young Courant Institute, NYU

Cerebral cortex

- \sim 1-2 ft² \times 2mm
- 6+ layers
- (hyper)columns $\sim 0.5 \times 0.5 \text{mm}^2$

Neurons & synapses

Ramon y Cajal

- $\sim 10^{10} \, \mathrm{neurons}$
- $\sim 10^{14} \, \mathrm{synapses}$

timescales: sub-ms up

Diverse

- morphology
- response properties

Cerebral cortex

- \sim 1-2 ft² \times 2mm
- 6+ layers
- (hyper)columns $\sim 0.5 \times 0.5 \text{mm}^2$

Neurons & synapses

Ramon y Cajal

- $\sim 10^{10} \, \mathrm{neurons}$
- $\sim 10^{14}$ synapses

timescales: sub-ms up

Diverse

- morphology
- response properties

Models

- summarize data
- dynamical mechanisms

Challenges

- Data: limited modalities
- #model parameters
- multiscale dynamics more

This talk: effort to address

- 1) Constraining parameters from data (anatomy + physiology)?
- 2) Making sense of parameter space structure

This talk: effort to address

- 1) Constraining parameters from data (anatomy + physiology)?
- 2) Making sense of parameter space structure

Setting

- Primary visual cortex (V1)
- Build on recent experimental + modeling advances in
 V1 neurobiology, esp. realistic but expensive model
 [Chariker-Hawken-Shapley-Young]
- Coarse grain while preserving biological interpretability

Wikimedia Commons (Miquel Perello Nieto)

ON center

OFF center

ON center

OFF center

Wikimedia Commons (Miquel Perello Nieto)

RGC receptive field

Wikimedia Commons (Miquel Perello Nieto)

RGC receptive field

LGN: "similar"

Wikimedia Commons (Miquel Perello Nieto)

RGC receptive field

LGN: "similar"

retinotopic map in V1

Cell's response Stimulus Hubel, Eye, Brain, Vision

CHSY cortical model

Kirchoff's current law

$$\tau_i \dot{v}_i(t) = -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^L(v(t) - v^I)$$

 $v_i(t)$ = membrane voltage of ith cell

CHSY cortical model

Kirchoff's current law

$$\tau_i \dot{v}_i(t) = -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^L(v(t) - v^I)$$

 $v_i(t)$ = membrane voltage of ith cell

Leaky Integrate-and-Fire (LIF) neuron

$$v(t) = \text{threshold} \implies \text{spike} + \text{reset}$$

CHSY cortical model

Kirchoff's current law

$$\tau_i \dot{v}_i(t) = -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^L(v(t) - v^I)$$

$$= -g^L(v(t) - V_{rest}) - g^L(v(t) - v^I)$$

 $v_i(t)$ = membrane voltage of ith cell

Leaky Integrate-and-Fire (LIF) neuron

$$v(t) = \text{threshold} \implies \text{spike} + \text{reset}$$

Chariker, Young, J Neurosci 2018

1 Voltage
0.5

Membrane conductances $g_i^{E,I}(t)$

$$g_i^{\{E,I\}}(t) = \sum_{j} S_{ij} \sum_{t_i < t} \gamma^{\{E,I\}}(t - t_i)$$

$$\gamma^{E}(t), \gamma^{I}(t)$$
: given

S_{ii} : network structure

- Connection prob: ↓ with dist
- $S_{ij} = S^{EE}$ if $i, j \in E$, etc.
- LGN: 5 ON, 5 OFF
- More: L6, ambient

Chariker et al, J Neurosci 2016

S_{ij} : network structure

- Connection prob: ↓ with dist
- $S_{ij} = S^{EE}$ if $i, j \in E$, etc.
- LGN: 5 ON, 5 OFF
- More: L6, ambient

Chariker et al, J Neurosci 2016

S_{ij} : network structure

- Connection prob: ↓ with dist
- $S_{ij} = S^{EE}$ if $i, j \in E$, etc.
- LGN: 5 ON, 5 OFF
- More: L6, ambient

Chariker et al, J Neurosci 2016

 $E \rightarrow E$

 $I \rightarrow E, I$

"Background" state

- spontaneous fluctuations
- E-I balance
- Wide range of correlated activity

Small patch of layer $4C\alpha$

- -3×3 hypercols
- 1 layer
- ~36,000 cells
- Focus on ~7 parameters

$$g_i^E(t) = \underbrace{S^{Q \text{lgn}} \sum_{k=1}^{\infty} G_{\text{ampa}}(t - t^{i, \text{lgn}}(k))}_{\text{(I) LGN}} + \underbrace{S^{Q \text{amb}} \sum_{k=1}^{\infty} G_{\text{ampa}}(t - t^{i, \text{amb}}(k))}_{\text{(II) ambient}}$$

$$+ \underbrace{S^{Q \text{L6}} \sum_{k=1}^{\infty} \left[\rho_{\text{ampa}}^Q G_{\text{ampa}}(t - t^{i, \text{L6}}(k)) + \rho_{\text{nmda}}^Q G_{\text{nmda}}(t - t^{i, \text{L6}}(k)) \right]}_{\text{(III) Layer 6}}$$

$$+ \underbrace{S^{Q E} \sum_{j \in N_{4\text{C}, E}(i)} \sum_{k=1}^{\infty} \left[\rho_{\text{ampa}}^Q G_{\text{ampa}}(t - t^j(k)) + \rho_{\text{nmda}}^Q G_{\text{nmda}}(t - t^j(k)) \right]}_{\text{(IV) Layer 4}}$$

Small patch of layer $4C\alpha$

- -3×3 hypercols
- 1 layer
- ~36,000 cells
- Focus on ~7 parameters

$$g_{i}^{E}(t) = \underbrace{S^{Q \text{lgn}} \sum_{k=1}^{\infty} G_{\text{ampa}}(t - t^{i, \text{lgn}}(k))}_{\text{(I) LGN}} + \underbrace{S^{Q \text{amb}} \sum_{k=1}^{\infty} G_{\text{ampa}}(t - t^{i, \text{amb}}(k))}_{\text{(II) ambient}}$$

$$+ \underbrace{S^{Q \text{L6}} \sum_{k=1}^{\infty} \left[\rho_{\text{ampa}}^{Q} G_{\text{ampa}}(t - t^{i, \text{L6}}(k)) + \rho_{\text{nmda}}^{Q} G_{\text{nmda}}(t - t^{i, \text{L6}}(k)) \right]}_{\text{(III) Layer 6}}$$

$$+ \underbrace{S^{Q E} \sum_{j \in N_{4\text{C}, E}(i)} \sum_{k=1}^{\infty} \left[\rho_{\text{ampa}}^{Q} G_{\text{ampa}}(t - t^{j}(k)) + \rho_{\text{nmda}}^{Q} G_{\text{nmda}}(t - t^{j}(k)) \right]}_{\text{(IV) Layer 4}}$$

Chariker, Young, J Neurosci 2018

E-I balance: sensitivity • correlations

Small patch of layer $4C\alpha$

- -3×3 hypercols
- 1 layer
- ~36,000 cells
- Focus on ~7 parameters

$$g_{i}^{E}(t) = \underbrace{S^{Q \text{lgn}} \sum_{k=1}^{\infty} G_{\text{ampa}}(t - t^{i, \text{lgn}}(k))}_{(\text{II}) \text{ LGN}} + \underbrace{S^{Q \text{amb}} \sum_{k=1}^{\infty} G_{\text{ampa}}(t - t^{i, \text{amb}}(k))}_{(\text{III}) \text{ ambient}}$$

$$+ \underbrace{S^{Q \text{L6}} \sum_{k=1}^{\infty} \left[\rho_{\text{ampa}}^{Q} G_{\text{ampa}}(t - t^{i, \text{L6}}(k)) + \rho_{\text{nmda}}^{Q} G_{\text{nmda}}(t - t^{i, \text{L6}}(k)) \right]}_{(\text{III}) \text{ Layer } 6}$$

$$+ \underbrace{S^{Q E} \sum_{j \in N_{4\text{C}, E}(i)} \sum_{k=1}^{\infty} \left[\rho_{\text{ampa}}^{Q} G_{\text{ampa}}(t - t^{j}(k)) + \rho_{\text{nmda}}^{Q} G_{\text{nmda}}(t - t^{j}(k)) \right]}_{(\text{IV}) \text{ Layer } 4}$$

E-I balance: sensitivity • correlations

Parameters: a conundrum

- Dynamics sensitive: 1-4% ⇒ unrealistic response

Group	Parameter	Meaning	Value	Bounds
within L4	S^{EE}	E-to-E synaptic weight	0.024	(-3%, 1%)
	S^{II}	I-to-I synaptic weight	0.120	(-4%, 1%)
	S^{EI}	I-to-E synaptic weight	0.0362	(-1%, 3%)
	S^{IE}	E-to-I synaptic weight	0.0176	(-1%, 3%)
LGN to L4	$S^{E ext{lgn}}$	lgn-to-E synaptic weight	0.048	(-5%, 3%)
	$S^{I m lgn}$	lgn-to-I synaptic weight	0.096	(-6%, 9%)
	$F^{E m lgn}$	total # lgn spikes/s to E	80 Hz	(-7%, 4%)
	$F^{I m lgn}$	total # lgn spikes/s to I	80 Hz	(-9%, 11%)
L6 to L4	S^{EL6}	L6-to-E synaptic weight	0.008	(-16%, 11%)
	S^{IL6}	L6-to-I synaptic weight	0.0058	(-19%, 30%)
	F^{EL6}	total # L6 spikes/s to E	$250~\mathrm{Hz}$	(-16%, 10%)
	F^{IL6}	total # L6 spikes/s to I	750 Hz	$\left (-16\%, 29\%) \right $
amb to L4	$S^{ m amb}$	ambient-to-E/I synaptic wt.	0.01	(-8%, 6%)
	$F^{E{ m amb}}$	rate of ambient to E	500 Hz	(-7%, 5%)
	$F^{I{ m amb}}$	rate of ambient to I	500 Hz	(-10%, 27%)

Parameters: a conundrum

Dynamics sensitive: 1-4% ⇒
 unrealistic response

Group	Parameter	Meaning	Value	Bounds
within L4	S^{EE}	E-to-E synaptic weight	0.024	(-3%, 1%)
	S^{II}	I-to-I synaptic weight	0.120	(-4%, 1%)
	S^{EI}	I-to-E synaptic weight	0.0362	(-1%, 3%)
	S^{IE}	E-to-I synaptic weight	0.0176	(-1%, 3%)
LGN to L4	$S^{E m lgn}$	lgn-to-E synaptic weight	0.048	(-5%, 3%)
	$S^{I m lgn}$	lgn-to-I synaptic weight	0.096	(-6%, 9%)
	$F^{E m lgn}$	total # lgn spikes/s to E	80 Hz	(-7%, 4%)
	$F^{I m lgn}$	total # lgn spikes/s to I	80 Hz	(-9%, 11%)
L6 to L4	S^{EL6}	L6-to-E synaptic weight	0.008	(-16%, 11%)
	S^{IL6}	L6-to-I synaptic weight	0.0058	(-19%, 30%)
	F^{EL6}	total # L6 spikes/s to E	$250~\mathrm{Hz}$	(-16%, 10%)
	F^{IL6}	total # L6 spikes/s to I	750 Hz	$\left (-16\%, 29\%) \right $
amb to L4	S^{amb}	ambient-to-E/I synaptic wt.	0.01	(-8%, 6%)
	$F^{E{ m amb}}$	rate of ambient to E	500 Hz	(-7%, 5%)
	$F^{I\mathrm{amb}}$	rate of ambient to I	500 Hz	(-10%, 27%)

Yet: biological networks are robust & CHSY could tune model by hand

Parameters: a conundrum

Dynamics sensitive: 1-4% ⇒
 unrealistic response

Group	Parameter	Meaning	Value	Bounds
within L4	S^{EE}	E-to-E synaptic weight	0.024	(-3%, 1%)
	S^{II}	I-to-I synaptic weight	0.120	(-4%, 1%)
	S^{EI}	I-to-E synaptic weight	0.0362	(-1%, 3%)
	S^{IE}	E-to-I synaptic weight	0.0176	(-1%, 3%)
LGN to L4	$S^{E m lgn}$	lgn-to-E synaptic weight	0.048	(-5%, 3%)
	$S^{I m lgn}$	lgn-to-I synaptic weight	0.096	(-6%, 9%)
	$F^{E m lgn}$	total # lgn spikes/s to E	80 Hz	(-7%, 4%)
	$F^{I m lgn}$	total # lgn spikes/s to I	80 Hz	(-9%, 11%)
L6 to L4	S^{EL6}	L6-to-E synaptic weight	0.008	(-16%, 11%)
	S^{IL6}	L6-to-I synaptic weight	0.0058	(-19%, 30%)
	F^{EL6}	total # L6 spikes/s to E	$250~\mathrm{Hz}$	(-16%, 10%)
	F^{IL6}	total # L6 spikes/s to I	750 Hz	(-16%, 29%)
amb to L4	S^{amb}	ambient-to-E/I synaptic wt.	0.01	(-8%, 6%)
	$F^{E{ m amb}}$	rate of ambient to E	500 Hz	(-7%, 5%)
	$F^{I\mathrm{amb}}$	rate of ambient to I	500 Hz	(-10%, 27%)

Yet: biological networks are robust & CHSY could tune model by hand

Approach

- Mean field reduction of realistic data-driven model
 - Eq free [Kevrekidis et al], HMM [E, Vanden-Eijnden, ...]
- Coordinates matter
 - geometry of cortical space
- Constrain E & I rates

MF+v: data-informed mean field

$$\tau \dot{v}_i(t) = -g^L(v(t) - V_{rest}) - g_i^E(t)(v_i(t) - v^E) - g_i^I(t)(v_i(t) - v^I)$$

MF+v: data-informed mean field

$$\tau \dot{v}_i(t) = -g^L(v(t) - V_{rest}) - g^E_i(t)(v_i(t) - v^E) - g^I_i(t)(v_i(t) - v^I)$$

MF+v: data-informed mean field

$$\tau \dot{v}_i(t) = -g^L(v(t) - V_{rest}) - g_i^E(t)(v_i(t) - v^E) - g_i^I(t)(v_i(t) - v^I)$$

Geometry of cortical space:

slice by "inhibition planes"

Geometry of cortical space:

slice by "inhibition planes"

Geometry of cortical space:

slice by "inhibition planes"

suppression index :=
$$\frac{S^{EI}}{S^{EE}} \times \frac{S^{IE}}{S^{II}}$$

- (roughly) governs firing rates
- level curves hyperbolic

Geometry of viable manifold

Xiao, KL, Young, *PLoS Computat Biol 2022*

~codim-1 • non-generic • sensitivity + robustness

Increase Excitation

Xiao, KL, Young, PLoS Computat Biol 2022

Conclusions

- 1. MF+v: efficient & accurate surrogates
- 2. Inhibition planes conceptualize cortical viable parameters

Next

- V1 under drive; larger cortical circuits
- Why does MF work?
- Future: multi-fidelity "biology-preserving" data driven models?

References

- Z-C Xiao, KKL, L-S Young, PLoS Comp. Biol. (2022)

Thanks to NSF, organizers...

Research Training Group in Data Driven Discovery

Physics-informed ML, turbulence, power systems, NLP, medical imaging, biological fluid dynamics, model reduction, ...

Faculty, postdocs, graduate & undergrad students

Seeking 2 postdocs* to start Fall 2023

More info: klin@math.arizona.edu

* US citizenship or permanent residency required

