

A coarse-graining approach to mapping cortical parameter space

Symposium on Machine Learning and Dynamical Systems
Fields Institute, Toronto Sept. 28, 2022

Kevin K Lin
University of Arizona
Zhuo-Cheng Xiao \& Lai-Sang Young
Courant Institute, NYU

Cerebral cortex

- $\sim 1-2 \mathrm{ft}^{2} \times 2 \mathrm{~mm}$
- 6+ layers
- (hyper)columns $\sim 0.5 \times 0.5 \mathrm{~mm}^{2}$

Neurons \& synapses

$\sim 10^{10}$ neurons
$\sim 10^{14}$ synapses
timescales: sub-ms up

Ramon y Cajal

- morphology
- response properties

Cerebral cortex

Neurons \& synapses

Ramon y Cajal
$\sim 10^{10}$ neurons
$\sim 10^{14}$ synapses
timescales: sub-ms up

Diverse

- morphology
- response properties

Models

- summarize data
- dynamical mechanisms

Challenges

- Data: limited modalities
- \#model parameters
- multiscale dynamics • more

This talk: effort to address

1) Constraining parameters from data (anatomy + physiology)?
2) Making sense of parameter space structure

This talk: effort to address

1) Constraining parameters from data (anatomy + physiology)?
2) Making sense of parameter space structure

Setting

- Primary visual cortex (V1)
- Build on recent experimental + modeling advances in V1 neurobiology, esp. realistic but expensive model [Chariker-Hawken-Shapley-Young]
- Coarse grain while preserving biological interpretability

Visual pathway

Wikimedia Commons (Miquel Perello Nieto)

Visual pathway

Wikimedia Commons (Miquel Perello Nieto)

Visual pathway

Wikimedia Commons (Miquel Perello Nieto)
RGC receptive field

Visual pathway

Wikimedia Commons (Miquel Perello Nieto)
RGC receptive field

LGN: "similar"

Visual pathway

Wikimedia Commons (Miquel Perello Nieto)
RGC receptive field

LGN: "similar"
retinotopic map in V1

Kandel, Schwartz, et al

Stimulus

CHSY cortical model

Kirchoff's current law

$$
\tau_{i} \dot{v}_{i}(t)=-g^{L}\left(v(t)-V_{\text {rest }}\right)-\frac{g_{i}^{E}(t)\left(v_{i}(t)-v^{E}\right)}{\mathrm{E} \text { current }}-\frac{g_{i}^{I}(t)\left(v_{i}(t)-v^{I}\right)}{\text { I current }}
$$

$v_{i}(t)=$ membrane voltage of i th cell

CHSY cortical model

Kirchoff's current law

$$
\tau_{i} \dot{v}_{i}(t)=-g^{L}\left(v(t)-V_{r e s t}\right)-\frac{g_{i}^{E}(t)\left(v_{i}(t)-v^{E}\right)}{\text { E current }}-\frac{g_{i}^{I}(t)\left(v_{i}(t)-v^{I}\right)}{\text { । current }}
$$

$$
v_{i}(t)=\text { membrane voltage of } i \text { th cell }
$$

Leaky Integrate-and-Fire (LIF) neuron

$$
v(t)=\text { threshold } \Longrightarrow \text { spike }+ \text { reset }
$$

Chariker, Young, J Neurosci 2018

CHSY cortical model

Kirchoff's current law

$$
\tau_{i} \dot{v}_{i}(t)=-g^{L}\left(v(t)-V_{r e s t}\right)-\frac{g_{i}^{E}(t)\left(v_{i}(t)-v^{E}\right)}{\mathrm{E} \text { current }}-\frac{g_{i}^{I}(t)\left(v_{i}(t)-v^{I}\right)}{\text { I current }}
$$

$$
v_{i}(t)=\text { membrane voltage of } i \text { th cell }
$$

Leaky Integrate-and-Fire (LIF) neuron

$$
v(t)=\text { threshold } \Longrightarrow \text { spike }+ \text { reset }
$$

Chariker, Young, J Neurosci 2018

Membrane conductances $g_{i}^{E, I}(t)$

$$
g_{i}^{\{E, I\}}(t)=\sum_{j} S_{i j} \sum_{t_{i}<t} \gamma^{\{E, I\}}\left(t-t_{i}\right) \quad \gamma^{E}(t), \gamma^{I}(t): \text { given }
$$

$S_{i j}$: network structure

- Connection prob: \downarrow with dist
- $S_{i j}=S^{E E}$ if $i, j \in E$, etc.
- LGN: 5 ON, 5 OFF
- More: L6, ambient

Chariker et al, J Neurosci 2016

$S_{i j}$: network structure

- Connection prob: \downarrow with dist
- $S_{i j}=S^{E E}$ if $i, j \in E$, etc.
- LGN: 5 ON, 5 OFF
- More: L6, ambient

Chariker et al, J Neurosci 2016

Background; E rate $=3.7 \mathrm{sp} / \mathrm{sec}$; I rate $=13 \mathrm{sp} / \mathrm{sec}$

200

200

network structure

- Connection prob: \downarrow with dist
- $S_{i j}=S^{E E}$ if $i, j \in E$, etc.
- LGN: 5 ON, 5 OFF
- More: L6, ambient

B $400 \quad$ Background; E rate $=3.7 \mathrm{sp} / \mathrm{sec} ; \mathrm{I}$ rate $=13 \mathrm{sp} / \mathrm{sec}$

D 400 简
200

"Background" state

- spontaneous fluctuations
- E-I balance
- Wide range of correlated activity

Small patch of layer 4C α

- 3×3 hypercols
- 1 layer
- ~36,000 cells
- Focus on ~ 7 parameters

$$
\begin{aligned}
g_{i}^{E}(t) & =\underbrace{S^{Q \mathrm{lgn}} \sum_{k=1}^{\infty} G_{\mathrm{ampa}}\left(t-t^{i, \mathrm{lgn}}(k)\right)}_{(\mathrm{I}) \mathrm{LGN}}+\underbrace{S^{Q \mathrm{amb}} \sum_{k=1}^{\infty} G_{\mathrm{ampa}}\left(t-t^{i, \mathrm{amb}}(k)\right)}_{(\mathrm{II}) \mathrm{ambient}} \\
& +\underbrace{S^{Q \mathrm{~L} 6} \sum_{k=1}^{\infty}\left[\rho_{\mathrm{ampa}}^{Q} G_{\mathrm{ampa}}\left(t-t^{i, \mathrm{~L} 6}(k)\right)+\rho_{\mathrm{nmda}}^{Q} G_{\mathrm{nmda}}\left(t-t^{i, \mathrm{~L} 6}(k)\right)\right]}_{(\mathrm{III}) \text { Layer } 6} \\
& +\underbrace{S^{Q E} \sum_{j \in N_{4 \mathrm{C}, E}(i)} \sum_{k=1}^{\infty}\left[\rho_{\mathrm{ampa}}^{Q} G_{\mathrm{ampa}}\left(t-t^{j}(k)\right)+\rho_{\mathrm{nmda}}^{Q} G_{\mathrm{nmda}}\left(t-t^{j}(k)\right)\right]}
\end{aligned}
$$

Small patch of layer 4C α

- 3×3 hypercols
- 1 layer
- ~36,000 cells
- Focus on ~ 7 parameters

E-I balance: sensitivity • correlations

$$
\begin{aligned}
g_{i}^{E}(t) & =\underbrace{S^{Q \mathrm{lgn}} \sum_{k=1}^{\infty} G_{\mathrm{ampa}}\left(t-t^{i, \mathrm{lgn}}(k)\right)}_{(\mathrm{I}) \mathrm{LGN}}+\underbrace{S^{Q \mathrm{amb}} \sum_{k=1}^{\infty} G_{\mathrm{ampa}}\left(t-t^{i, \mathrm{amb}}(k)\right)}_{(\mathrm{II}) \mathrm{ambient}} \\
& +\underbrace{S^{Q \mathrm{~L} 6} \sum_{k=1}^{\infty}\left[\rho_{\mathrm{ampa}}^{Q} G_{\mathrm{ampa}}\left(t-t^{i, \mathrm{~L} 6}(k)\right)+\rho_{\mathrm{nmda}}^{Q} G_{\mathrm{nmda}}\left(t-t^{i, \mathrm{~L} 6}(k)\right)\right]}_{(\mathrm{III}) \text { Layer } 6} \\
& +\underbrace{S^{Q E} \sum_{k=1}\left[\rho_{\mathrm{ampa}}^{Q} G_{\mathrm{ampa}}\left(t-t^{j}(k)\right)+\rho_{\mathrm{nmda}}^{Q} G_{\mathrm{nmda}}\left(t-t^{j}(k)\right)\right]}_{j \in N_{4 \mathrm{C}, E}(i)}
\end{aligned}
$$

Small patch of layer 4C α

- 3×3 hypercols
- 1 layer
- ~36,000 cells

- Focus on ~ 7 parameters

E-I balance: sensitivity • correlations

$$
\begin{aligned}
g_{i}^{E}(t) & =\underbrace{S^{Q \operatorname{lgn}} \sum_{k=1}^{\infty} G_{\mathrm{ampa}}\left(t-t^{i, \operatorname{lgn}}(k)\right)}_{(\mathrm{I}) \mathrm{LGN}}+\underbrace{S^{Q \mathrm{amb}} \sum_{k=1}^{\infty} G_{\mathrm{ampa}}\left(t-t^{i, \mathrm{amb}}(k)\right)}_{(\mathrm{II}) \mathrm{ambient}} \\
& +\underbrace{S^{Q \mathrm{~L} 6} \sum_{k=1}^{\infty}\left[\rho_{\mathrm{ampa}}^{Q} G_{\mathrm{ampa}}\left(t-t^{i, \mathrm{~L} 6}(k)\right)+\rho_{\mathrm{nmda}}^{Q} G_{\mathrm{nmda}}\left(t-t^{i, \mathrm{~L} 6}(k)\right)\right]}_{\text {(III) Layer } 6} \\
& +\underbrace{S^{Q E} \sum_{j \in N_{4 \mathrm{C}, E}(i)} \sum_{k=1}^{\infty}\left[\rho_{\mathrm{ampa}}^{Q} G_{\mathrm{ampa}}\left(t-t^{j}(k)\right)+\rho_{\mathrm{nmda}}^{Q} G_{\mathrm{nmda}}\left(t-t^{j}(k)\right)\right]}_{\text {(IV) Layer } 4}
\end{aligned}
$$

Parameters: a conundrum

- Dynamics sensitive: $1-4 \% \Longrightarrow$ unrealistic response

Group	Parameter	Meaning	Value	Bounds
within L4	$S^{E E}$	E-to-E synaptic weight	0.024	$(-3 \%, 1 \%)$
	$S^{I I}$	I-to-I synaptic weight	0.120	$(-4 \%, 1 \%)$
	$S^{E I}$	I-to-E synaptic weight	0.0362	$(-1 \%, 3 \%)$
	$S^{I E}$	E-to-I synaptic weight	0.0176	$(-1 \%, 3 \%)$
LGN to L4	$S^{E l g n}$	lgn-to-E synaptic weight	0.048	$(-5 \%, 3 \%)$
	$S^{I \operatorname{lgn}}$	lgn-to-I synaptic weight	0.096	$(-6 \%, 9 \%)$
	$F^{E l g n}$	total \# lgn spikes/s to E	80 Hz	$(-7 \%, 4 \%)$
	$F^{I \mathrm{lgn}}$	total \# lgn spikes/s to I	80 Hz	$(-9 \%, 11 \%)$
L6 to L4	$S^{E L 6}$	L6-to-E synaptic weight	0.008	$(-16 \%, 11 \%)$
	$S^{I L 6}$	L6-to-I synaptic weight	0.0058	$(-19 \%, 30 \%)$
	$F^{E L 6}$	total \# L6 spikes/s to E	250 Hz	$(-16 \%, 10 \%)$
	$F^{I \text { L6 }}$	total \# L6 spikes/s to I	750 Hz	$(-16 \%, 29 \%)$
amb to L4	$S^{\text {amb }}$	ambient-to-E/I synaptic wt.	0.01	$(-8 \%, 6 \%)$
	$F^{E \text { amb }}$	rate of ambient to E	500 Hz	$(-7 \%, 5 \%)$
	$F^{I \text { amb }}$	rate of ambient to I	500 Hz	$(-10 \%, 27 \%)$

Parameters: a conundrum

- Dynamics sensitive: $1-4 \% \Longrightarrow$
unrealistic response

Group	Parameter	Meaning	Value	Bounds
within L4	$S^{E E}$	E-to-E synaptic weight	0.024	$(-3 \%, 1 \%)$
	$S^{I I}$	I-to-I synaptic weight	0.120	$(-4 \%, 1 \%)$
	$S^{E I}$	I-to-E synaptic weight	0.0362	$(-1 \%, 3 \%)$
	$S^{I E}$	E-to-I synaptic weight	0.0176	$(-1 \%, 3 \%)$
LGN to L4	$S^{E l g n}$	lgn-to-E synaptic weight	0.048	$(-5 \%, 3 \%)$
	$S^{I \operatorname{lgn}}$	lgn-to-I synaptic weight	0.096	$(-6 \%, 9 \%)$
	$F^{E l g n}$	total \# lgn spikes/s to E	80 Hz	$(-7 \%, 4 \%)$
	$F^{I \mathrm{lgn}}$	total \# lgn spikes/s to I	80 Hz	$(-9 \%, 11 \%)$
L6 to L4	$S^{E L 6}$	L6-to-E synaptic weight	0.008	$(-16 \%, 11 \%)$
	$S^{I L 6}$	L6-to-I synaptic weight	0.0058	$(-19 \%, 30 \%)$
	$F^{E L 6}$	total \# L6 spikes/s to E	250 Hz	$(-16 \%, 10 \%)$
	$F^{I \text { L6 }}$	total \# L6 spikes/s to I	750 Hz	$(-16 \%, 29 \%)$
amb to L4	$S^{\text {amb }}$	ambient-to-E/I synaptic wt.	0.01	$(-8 \%, 6 \%)$
	$F^{E \text { amb }}$	rate of ambient to E	500 Hz	$(-7 \%, 5 \%)$
	$F^{I \text { amb }}$	rate of ambient to I	500 Hz	$(-10 \%, 27 \%)$

Yet: biological networks are robust \& CHSY could tune model by hand

Parameters: a conundrum

- Dynamics sensitive: 1-4\% \qquad unrealistic response

Group	Parameter	Meaning	Value	Bounds
within L4	$S^{E E}$	E-to-E synaptic weight	0.024	$(-3 \%, 1 \%)$
	$S^{I I}$	I-to-I synaptic weight	0.120	$(-4 \%, 1 \%)$
	$S^{E I}$	I-to-E synaptic weight	0.0362	$(-1 \%, 3 \%)$
	$S^{I E}$	E-to-I synaptic weight	0.0176	$(-1 \%, 3 \%)$
LGN to L4	$S^{E l g n}$	lgn-to-E synaptic weight	0.048	$(-5 \%, 3 \%)$
	$S^{I \operatorname{lgn}}$	lgn-to-I synaptic weight	0.096	$(-6 \%, 9 \%)$
	$F^{E l g n}$	total \# lgn spikes/s to E	80 Hz	$(-7 \%, 4 \%)$
	$F^{I \operatorname{lgn}}$	total \# lgn spikes/s to I	80 Hz	$(-9 \%, 11 \%)$
L6 to L4	$S^{E L 6}$	L6-to-E synaptic weight	0.008	$(-16 \%, 11 \%)$
	$S^{I \mathrm{~L} 6}$	L6-to-I synaptic weight	0.0058	$(-19 \%, 30 \%)$
	$F^{E L 6}$	total \# L6 spikes/s to E	250 Hz	$(-16 \%, 10 \%)$
	$F^{I \mathrm{~L} 6}$	total \# L6 spikes/s to I	750 Hz	$(-16 \%, 29 \%)$
amb to L4	$S^{\text {amb }}$	ambient-to-E/I synaptic wt.	0.01	$(-8 \%, 6 \%)$
	$F^{E \text { amb }}$	rate of ambient to E	500 Hz	$(-7 \%, 5 \%)$
	$F^{I \mathrm{amb}}$	rate of ambient to I	500 Hz	$(-10 \%, 27 \%)$

Approach

- Mean field reduction of realistic data-driven model
- Eq free [Kevrekidis et al, $H M_{\text {IE, vanden- }}$ Ejinden, ...]
- Coordinates matter
- geometry of cortical space
- Constrain E \& I rates

Yet: biological networks are robust \& CHSY could tune model by hand

MF+v: data-informed mean field

$$
\tau \dot{v}_{i}(t)=-g^{L}\left(v(t)-V_{\text {rest }}\right)-g_{i}^{E}(t)\left(v_{i}(t)-v^{E}\right)-g_{i}^{I}(t)\left(v_{i}(t)-v^{I}\right)
$$

MF+v: data-informed mean field

$$
\tau \dot{v}_{i}(t)=-g^{L}\left(v(t)-V_{\text {rest }}\right)-g_{i}^{E}(t)\left(v_{i}(t)-v^{E}\right)-g_{i}^{I}(t)\left(v_{i}(t)-v^{I}\right)
$$

|Time average [wison-Cowan, Bressloff, ...]
Firing rate $f_{i} \approx\left(1-f_{i} \cdot \tau_{\mathrm{ref}}\right) \times\left[-g_{R} \bar{v}_{i}+\bar{g}_{i}^{E}\left(V^{E}-\bar{v}_{i}\right)+\bar{g}_{i}^{I}\left(V^{I}-\bar{v}_{i}\right)\right] \quad(\star)$

MF+v: data-informed mean field

$$
\tau \dot{v}_{i}(t)=-g^{L}\left(v(t)-V_{\text {rest }}\right)-g_{i}^{E}(t)\left(v_{i}(t)-v^{E}\right)-g_{i}^{I}(t)\left(v_{i}(t)-v^{I}\right)
$$

Time average [Wison-Cowan, Bressloff. ...]

Firing rate $f_{i} \approx\left(1-f_{i} \cdot \tau_{\text {ref }}\right) \times\left[-g_{R} \bar{v}_{i}+\bar{g}_{i}^{E}\left(V^{E}-\bar{v}_{i}\right)+\bar{g}_{i}^{I}\left(V^{I}-\bar{v}_{i}\right)\right] \quad(\star)$

Geometry of cortical space:

slice by "inhibition planes"

Geometry of cortical space:

slice by "inhibition planes"

Geometry of cortical space:

slice by "inhibition planes"

suppression index $:=\frac{S^{E I}}{S^{E E}} \times \frac{S^{I E}}{S^{I I}}$

- (roughly) governs firing rates
- level curves hyperbolic

Geometry of viable manifold

~codim-1 • non-generic • sensitivity + robustness

Increase Excitation

Conclusions

1. MF+v: efficient \& accurate surrogates
2. Inhibition planes - conceptualize cortical viable parameters

Next

- V1 under drive; larger cortical circuits
- Why does MF work?
- Future: multi-fidelity "biology-preserving" data driven models?
References
- Z-C Xiao, KKL, L-S Young, PLoS Comp. Biol. (2022)

Thanks to NSF, organizers...

Research Training Group in Data Driven Discovery

Physics-informed ML, turbulence, power systems, NLP, medical imaging, biological fluid dynamics, model reduction, ...

Faculty, postdocs, graduate \& undergrad students

Seeking 2 postdocs* to start Fall 2023

More info: klin@math.arizona.edu

* US citizenship or permanent residency required

