Random Neural Network Approximation of Dynamic Barron Functions

Lukas Gonon

based on joint work with Lyudmila Grigoryeva and Juan-Pablo Ortega

University of Munich, Germany

September 26th, 2022 3rd Symposium on MLDS Fields Institute, Toronto

Overview

- Reservoir computing & echo state networks: highly efficient at learning dynamical / chaotic systems (see, e.g., Jaeger & Haas [JH04], Pathak, Hunt, Girvan, Lu & Ott [PHG⁺18], ...).
- Learning theoretical foundations?
 - Universality:
 - Grigoryeva & Ortega, Neural Netw. (2018) [GO18]
 - G. & Ortega, IEEE TNNLS (2020) [GO20]
 - G. & Ortega, Neural Netw. (2021) [GO21]
 - Generalization error: G., Grigoryeva & Ortega JMLR (2020) [GGO20]
 - Approximation error: G., Grigoryeva & Ortega Ann. Appl. Probab. (2022+) [GGO22]
 - RC systems via random projection: Cuchiero et al. *IEEE TNNLS (2021)* [CGG⁺21]
 - ...
- Quantitative bounds: for sufficiently smooth functionals.
- Goal: full learning error bounds for inherently infinite-dimensional, not necessarily smooth functionals.

Overview

- Reservoir computing & echo state networks: highly efficient at learning dynamical / chaotic systems (see, e.g., Jaeger & Haas [JH04], Pathak, Hunt, Girvan, Lu & Ott [PHG⁺18], ...).
- Learning theoretical foundations?
 - Universality:
 - Grigoryeva & Ortega, Neural Netw. (2018) [GO18]
 - G. & Ortega, IEEE TNNLS (2020) [GO20]
 - G. & Ortega, Neural Netw. (2021) [GO21]
 - Generalization error: G., Grigoryeva & Ortega JMLR (2020) [GGO20]
 - Approximation error: G., Grigoryeva & Ortega Ann. Appl. Probab. (2022+) [GGO22]
 - RC systems via random projection: Cuchiero et al. *IEEE TNNLS (2021)* [CGG⁺21]
 - ...
- Quantitative bounds: for sufficiently smooth functionals.
- Goal: full learning error bounds for inherently infinite-dimensional, not necessarily smooth functionals.

Overview

- Reservoir computing & echo state networks: highly efficient at learning dynamical / chaotic systems (see, e.g., Jaeger & Haas [JH04], Pathak, Hunt, Girvan, Lu & Ott [PHG⁺18], ...).
- Learning theoretical foundations?
 - Universality:
 - Grigoryeva & Ortega, Neural Netw. (2018) [GO18]
 - G. & Ortega, IEEE TNNLS (2020) [GO20]
 - G. & Ortega, Neural Netw. (2021) [GO21]
 - Generalization error: G., Grigoryeva & Ortega JMLR (2020) [GGO20]
 - Approximation error: G., Grigoryeva & Ortega Ann. Appl. Probab. (2022+) [GGO22]
 - RC systems via random projection: Cuchiero et al. *IEEE TNNLS (2021)* [CGG⁺21]
 - ...
- Quantitative bounds: for sufficiently smooth functionals.
- Goal: full learning error bounds for inherently infinite-dimensional, not necessarily smooth functionals.

Neural network approximation

Let us look at neural network approximation in the much further developed static case:

Neural networks are able to overcome the curse of dimensionality for classes of

- compositional functions (built from lower-dimensional functions),
- solutions to certain PDEs,
- Barron functions / functions with dimension-dependent regularity.
 - Originally proposed by Barron [Bar92], [Bar93].
 - Extended to the larger class of "generalized Barron functions" in E et al. [EW20], [EMW20], [EMW19].
 - Goal: dynamic analogue
 - Rich class of functionals
 - Approximation and learning bounds.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Neural network approximation

Let us look at neural network approximation in the much further developed static case:

Neural networks are able to overcome the curse of dimensionality for classes of

- compositional functions (built from lower-dimensional functions),
- solutions to certain PDEs,
- Barron functions / functions with dimension-dependent regularity.
 - Originally proposed by Barron [Bar92], [Bar93].
 - Extended to the larger class of "generalized Barron functions" in E et al. [EW20], [EMW20], [EMW19].
 - Goal: dynamic analogue
 - Rich class of functionals
 - Approximation and learning bounds.

Neural network approximation

Let us look at neural network approximation in the much further developed static case:

Neural networks are able to overcome the curse of dimensionality for classes of

- compositional functions (built from lower-dimensional functions),
- solutions to certain PDEs,
- Barron functions / functions with dimension-dependent regularity.
 - Originally proposed by Barron [Bar92], [Bar93].
 - Extended to the larger class of "generalized Barron functions" in E et al. [EW20], [EMW20], [EMW19].
 - Goal: dynamic analogue
 - Rich class of functionals
 - Approximation and learning bounds.

Recurrent generalized Barron functionals

• Let
$$D_d \subset \mathbb{R}^d$$
 bounded, $\mathcal{I}_d \subset (D_d)^{\mathbb{Z}_-}$,

• σ_1 , $\sigma_2 \colon \mathbb{R} \to \mathbb{R}$ activations (applied componentwise),

•
$$p\in [1,\infty]$$
, q such that $rac{1}{p}+rac{1}{q}=1$

Definition

 $H \colon \mathcal{I}_d \to \mathbb{R}$ is called recurrent generalized Barron functional, if there exist

- a probability measure μ on $\mathbb{R}\times\ell^p\times\mathbb{R}^d\times\mathbb{R}$ with finite expectation,
- $B \in \ell^q$ and linear maps $A \colon \ell^q \to \ell^q$, $C \colon \mathbb{R}^d \to \ell^q$

such that for each $\mathbf{z} \in \mathcal{I}_d$ the system

$$\mathbf{x}_t = \sigma_1(A\mathbf{x}_{t-1} + C\mathbf{z}_t + B), \quad t \in \mathbb{Z}_-,$$

admits a unique solution $(\mathbf{x}_t)_{t\in\mathbb{Z}_-}$ with $\mathbf{x}_t = \mathbf{x}_t(\mathbf{z})\in\ell^q$ and

$$H(\mathbf{z}) = \int_{\mathbb{R} \times \ell^p \times \mathbb{R}^d \times \mathbb{R}} w \sigma_2(\mathbf{a} \cdot \mathbf{x}_{-1}(\mathbf{z}) + \mathbf{c} \cdot \mathbf{z}_0 + b) \mu(dw, d\mathbf{a}, d\mathbf{c}, db), \quad \mathbf{z} \in \mathcal{I}_d.$$

Properties

Denote by \mathcal{H} the class of all recurrent generalized Barron functionals. For natural choices of activation functions ($\sigma_1(x) = x$ and either $\sigma_2(x) = \max(x, 0)$ or σ_2 is bounded, continuous and non-constant) we obtain:

- \mathcal{H} is a vector space
- ${\cal H}$ contains
 - sufficiently smooth functionals
 - functionals associated to convolutional filters
- $\mathcal{H} \cap L^{\bar{p}}(\mathcal{I}_d, \gamma)$ is dense in $L^{\bar{p}}(\mathcal{I}_d, \gamma)$ for any $\bar{p} \in [1, \infty)$ and any probability measure γ on $\mathcal{I}_d \subset (D_d)^{\mathbb{Z}_-}$.

Key example

Proposition

Suppose p = 2. Let \mathcal{Y} be a separable Hilbert space, let $\overline{A} \colon \mathcal{Y} \to \mathcal{Y}$, $\overline{C} \colon \mathbb{R}^d \to \mathcal{Y}$ be linear and $\overline{B} \in \mathcal{Y}$ and assume that for each $\mathbf{z} \in \mathcal{I}_d$ the system

$$ar{\mathbf{x}}_t = ar{A}ar{\mathbf{x}}_{t-1} + ar{C}\mathbf{z}_t + ar{B}, \quad t \in \mathbb{Z}_-,$$
 (1)

admits a unique solution $(\bar{\mathbf{x}}_t)_{t\in\mathbb{Z}_-} \in \mathcal{Y}^{\mathbb{Z}_-}$. Let $\bar{\mu}$ be a (Borel) probability measure on $\mathbb{R} \times \mathcal{Y} \times \mathbb{R}^d \times \mathbb{R}$ with $\int_{\mathbb{R} \times \mathcal{Y} \times \mathbb{R}^d \times \mathbb{R}} |w| (||\mathbf{a}||_{\mathcal{Y}} + ||\mathbf{c}|| + |b|) \bar{\mu}(dw, d\mathbf{a}, d\mathbf{c}, db) < \infty$ and consider

$$H(\mathbf{z}) = \int_{\mathbb{R}\times\mathcal{Y}\times\mathbb{R}^d\times\mathbb{R}} w\sigma_2(\langle \mathbf{a}, \bar{\mathbf{x}}_{-1}(\mathbf{z})\rangle_{\mathcal{Y}} + \mathbf{c}\cdot\mathbf{z}_0 + b)\bar{\mu}(dw, d\mathbf{a}, d\mathbf{c}, db), \ \mathbf{z}\in\mathcal{I}_d.$$
(2)

Then $H \in \mathcal{H}$.

Such systems arise, e.g., in quantum reservoir computing.

Learning system

Goal: approximate (unknown) $H \in \mathcal{H}$ using random neural networks:

• Dynamics: captured by a (possibly linear) echo state network mapping an input z to

$$\mathbf{x}_{t}^{\text{ESN}} = \sigma_{1}(\mathbf{A}^{\text{ESN}}\mathbf{x}_{t-1}^{\text{ESN}} + \mathbf{C}^{\text{ESN}}\mathbf{z}_{t} + \mathbf{B}^{\text{ESN}}), \quad t \in \mathbb{Z}_{-},$$
(3)

with given (randomly generated) matrices $\mathbf{B}^{\text{ESN}} \in \mathbb{R}^{N}$, $\mathbf{A}^{\text{ESN}} \in \mathbb{R}^{N \times N}$, $\mathbf{C}^{\text{ESN}} \in \mathbb{R}^{N \times d}$.

• Random feedforward neural network readout: H is approximated by

$$\hat{H}(\mathbf{z}) = \hat{H}_{\mathbf{W}}(\mathbf{z}) = \sum_{i=1}^{N} W_i \sigma_2(\mathbf{a}^{(i)} \cdot \mathbf{x}_{-1}^{\mathrm{ESN}}(\mathbf{z}) + \mathbf{c}^{(i)} \cdot \mathbf{z}_0 + b_i) \quad (4)$$

with randomly generated coefficients $\mathbf{a}^{(i)}$, $\mathbf{c}^{(i)}$, b_i valued in \mathbb{R}^N , \mathbb{R}^d and \mathbb{R} , respectively.

• Only $\mathbf{W} \in \mathbb{R}^N$ is trainable.

5 × 3 × 5 × 5 × 0 0

Approximation result

- Let $T = \lceil \frac{N}{d} \rceil$ and suppose \mathbf{A}^{ESN} , \mathbf{C}^{ESN} are generated so that $\|\mathbf{A}^{\text{ESN}}\| < 1$ and K is invertible, with $\mathcal{K} = \pi_{N \times N} (\mathbf{C}^{\text{ESN}} | \mathbf{A}^{\text{ESN}} \mathbf{C}^{\text{ESN}} | \cdots | (\mathbf{A}^{\text{ESN}})^{T-2} \mathbf{C}^{\text{ESN}} | (\mathbf{A}^{\text{ESN}})^{T-1} \mathbf{C}^{\text{ESN}}).$
- Suppose $H \in \mathcal{H}$ with ||A|| < 1, μ has finite second moments.
- Assume that hidden readout weights are sampled from a generic measure ν satisfying an absolute continuity condition w.r.t. μ .

Theorem (Approximation error bound)

Consider the setting above and let $\sigma_1(x) = x$, $p \in (1, \infty)$, $\lambda \in (||A||, 1)$. Then there exists f such that \hat{H} with readout $\mathbf{W} = f((w^{(i)}, \mathbf{a}^{(i)}, \mathbf{c}^{(i)}, b_i)_{i=1} \dots N)$ satisfies for any $\mathbf{z} \in \mathcal{I}_d$

$$\mathbb{E}[|\mathcal{H}(\mathsf{z}) - \hat{\mathcal{H}}(\mathsf{z})|^2]^{1/2} \leq C_{\mathcal{H},\mathrm{ESN}}[\lambda^{\frac{N}{d}} + \|\mathbf{A}^{\mathrm{ESN}}\|^T + \frac{1}{N^{\frac{1}{2}}}].$$

Approximation result

- Let $\mathcal{T} = \lceil \frac{N}{d} \rceil$ and suppose \mathbf{A}^{ESN} , \mathbf{C}^{ESN} are generated so that $\|\mathbf{A}^{\text{ESN}}\| < 1$ and \mathcal{K} is invertible, with $\mathcal{K} = \pi_{N \times N} (\mathbf{C}^{\text{ESN}} | \mathbf{A}^{\text{ESN}} \mathbf{C}^{\text{ESN}} | \cdots | (\mathbf{A}^{\text{ESN}})^{\mathcal{T}-2} \mathbf{C}^{\text{ESN}} | (\mathbf{A}^{\text{ESN}})^{\mathcal{T}-1} \mathbf{C}^{\text{ESN}}).$
- Suppose $H \in \mathcal{H}$ with $\|A\| < 1$, μ has finite second moments.
- Assume that hidden readout weights are sampled from a generic measure ν satisfying an absolute continuity condition w.r.t. μ .

Theorem (Approximation error bound)

Consider the setting above and let $\sigma_1(x) = x$, $p \in (1, \infty)$, $\lambda \in (||A||, 1)$. Then there exists f such that \hat{H} with readout $\mathbf{W} = f((w^{(i)}, \mathbf{a}^{(i)}, \mathbf{c}^{(i)}, b_i)_{i=1,...,N})$ satisfies for any $\mathbf{z} \in \mathcal{I}_d$

$$\mathbb{E}[|\mathcal{H}(\mathsf{z}) - \hat{\mathcal{H}}(\mathsf{z})|^2]^{1/2} \leq C_{\mathcal{H},\mathrm{ESN}}[\lambda^{\frac{N}{d}} + \|\mathbf{A}^{\mathrm{ESN}}\|^{\mathcal{T}} + \frac{1}{N^{\frac{1}{2}}}].$$

The constant $C_{H,ESN}$ is available explicitly.

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ Ξ • ○ Q ○

- Suppose the dynamic learning part (in particular A^{ESN}, B^{ESN}, C^{ESN}) remains "bounded" in N, i.e.,
 - there exists $\bar{c} > 0$ and $\underline{l}, \bar{l} \in (0, 1), \underline{l} < \bar{l}$ such that for any choice of N the ESN parameters satisfy that

$$\|\mathbf{B}^{\mathrm{ESN}}\| < \bar{c} \|\mathbf{C}^{\mathrm{ESN}}\|$$

•
$$\|\mathcal{K}^{-1}\operatorname{diag}(\mathbb{1}_d,\mathbb{1}_d\underline{l}^{k-1},\ldots,\underline{l}^{T-1})\| \leq \bar{c}$$

 $< \bar{c}$

 \Rightarrow the constant $C_{H, \text{ESN}}$ does not depend on N.

Universality

Let σ_1 , σ_2 as before.

Corollary

Let $H: \mathcal{I}_d \to \mathbb{R}$ be an arbitrary functional and let ν_0 be a given hidden weight distribution with finite first moment.

Then for any $\varepsilon > 0$ and any probability measure γ on $\mathcal{I}_d \subset (D_d)^{\mathbb{Z}_-}$ with $H \in L^2(\mathcal{I}_d, \gamma)$ there exists a probability measure ν with $\mathcal{W}_1(\nu_0, \nu) < \varepsilon$ and a readout \mathbf{W} such that \hat{H} with readout \mathbf{W} and distribution ν for the hidden layer weights satisfies

$$\left(\int_{\mathcal{I}_d} \mathbb{E}[|\mathcal{H}(\mathbf{z}) - \hat{\mathcal{H}}(\mathbf{z})|^2]\gamma(d\mathbf{z})\right)^{1/2} < \varepsilon.$$

⇒ ↓ ≡ ↓ ≡ |= √Q ∩

Special case: static situation

• Let μ_0 be a probability measure on $\mathbb{R} imes \mathbb{R}^d imes \mathbb{R}$ and

$$H(\mathbf{u}) = \int_{\mathbb{R}\times\mathbb{R}^d\times\mathbb{R}} w\sigma_2(\mathbf{c}\cdot\mathbf{u}+b)\mu_0(dw,d\mathbf{c},db), \quad \mathbf{u}\in D_d\subset\mathbb{R}^d.$$

$$\hat{H}(\mathbf{u}) = \sum_{i=1}^{N} W_i \sigma_2 (\mathbf{c}^{(i)} \cdot \mathbf{u} + b_i)$$

is used as learning system with randomly generated $\mathbf{c}^{(i)}$, b_i (distribution ν_0) and $\mathbf{W} \in \mathbb{R}^N$ trainable.

Corollary

٠

Let H as above with $\mu_0 \ll \nu_0$. Then there exists \mathbf{W} s. t. for any $\mathbf{u} \in D_d$ $\mathbb{E}[|H(\mathbf{u}) - \hat{H}(\mathbf{u})|^2]^{\frac{1}{2}} \leq \frac{c}{N^{\frac{1}{2}}} \|\frac{d\mu_0}{d\nu_0}\|_{\infty}^{\frac{1}{2}} \left(\int w^2[\|\mathbf{c}\|^2 + |b|^2 + 1]\mu_0(dw, d\mathbf{c}, db)\right)^{\frac{1}{2}},$

where $c = (2 \max(2L_{\sigma_2}, |\sigma_2(0)|^2) \max(1, \sup_{v \in D_d} ||v||^2))^{\frac{1}{2}}$.

Learning error bounds

How about learning H from a single trajectory of input/output pairs?

- Observations $(\mathbf{Z}_t, \mathbf{Y}_t)_{t=0,-1,...,-n+1}$ are available.
- Let H ∈ H be the unknown functional and assume that the input/output relation between the data is given as H(Z) = E[Y₀|Z]
 - Example: Y_t = H(Z_{t+}) + ε_t for a stationary process (ε_t)_{t∈Z}-independent of Z and with E[ε₀] = 0.

• To learn H from the data we solve

$$\hat{\mathbf{W}} = \arg\min_{\mathbf{W}} \frac{1}{n} \sum_{i=0}^{n-1} \|\hat{H}_{\mathbf{W}}(\mathbf{Z}_{-i}^{-n+1}) - \mathbf{Y}_{-i}\|^2$$
(5)

where we denote $\mathbf{Z}_{-i}^{-n+1} = (\dots, 0, 0, \mathbf{Z}_{-n+1}, \dots, \mathbf{Z}_{-i-1}, \mathbf{Z}_{-i}).$

• Data points are not i.i.d., but only weakly dependent.

Theorem

Consider the setting as above, let $R \geq \frac{c}{\sqrt{N}}$, assume **Y** is bounded and (**Z**, **Y**) has a causal Bernoulli shift structure with geometric decay of rate λ_{dep} and $\log(n) < n \log(\lambda_{max}^{-1})$, where $\lambda_{max} = \max(\|\mathbf{A}^{\mathrm{ESN}}\|, \lambda_{dep})$. Then the trained system $\hat{H}_{\hat{\mathbf{W}}}$ satisfies the learning error bound

$$\mathbb{E}[|H(\bar{\mathbf{Z}}) - \hat{H}_{\hat{\mathbf{W}}}(\bar{\mathbf{Z}})|^{2}]^{1/2} \leq C_{\text{approx}} \left(\lambda^{\frac{N}{d}} + \|\mathbf{A}^{\text{ESN}}\|^{T} + \frac{1}{N^{\frac{1}{2}}}\right) + C_{\text{est}} \left(RN^{\frac{1}{2}} \frac{\sqrt{\log(n)}}{\sqrt{n}}\right)^{\frac{1}{2}}$$
(6)

where $\overline{\mathbf{Z}}$ is an independent copy of \mathbf{Z} and C_{approx} , C_{est} are explicitly given and not depending on N, n.

A ∃ ► ∃ ∃ < < < </p>

Thank you!

	\sim	
 kae -	1-0	$n \cap n$
 nas.	90	поп

・ロト < 団ト < ヨト < ヨト < ヨト < ロト

References

References I

Andrew R Barron.

Neural net approximation. In Yale Workshop on Adaptive and Learning Systems, volume 1, pages 69–72, 1992.

Andrew R. Barron.

Universal approximation bounds for superpositions of a sigmoidal function. *IEEE Trans. Inform. Theory*, 39(3):930–945, 1993.

Christa Cuchiero, Lukas Gonon, Lyudmila Grigoryeva, Juan-Pablo Ortega, and Josef Teichmann.

Discrete-time signatures and randomness in reservoir computing. IEEE Transactions on Neural Networks and Learning Systems, 10.1109/TNNLS.2021.3076777:1–10, 2021.

Weinan E, Chao Ma, and Lei Wu.

A priori estimates of the population risk for two-layer neural networks. *Commun. Math. Sci.*, 17(5):1407–1425, 2019.

Weinan E, Chao Ma, Stephan Wojtowytsch, and Lei Wu.

Towards a mathematical understanding of neural network-based machine learning: what we know and what we don't. Preprint, arXiv 2009.10713, 2020.

Weinan E and Stephan Wojtowytsch.

On the banach spaces associated with multi-layer relu networks: Function representation, approximation theory and gradient descent dynamics.

Preprint, arXiv 2007.15623, 2020.

Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega.

Risk bounds for reservoir computing.

J. Mach. Learn. Res., 21:Paper No. 240, 61, 2020.

ELE SQC

1/6

< ロ > < 同 > < 回 > < 回 > < 回 > <

References II

Lukas Gonon, Lyudmila Grigoryeva, and Juan-Pablo Ortega.

Approximation bounds for random neural networks and reservoir systems. Preprint, arXiv 2002.05933; to appear in The Annals of Applied Probability, 2022+.

Lyudmila Grigoryeva and Juan-Pablo Ortega.

Echo state networks are universal. Neural Networks, 108:495-508, 2018.

Lukas Gonon and Juan-Pablo Ortega.

Reservoir computing universality with stochastic inputs. IEEE Trans. Neural Netw. Learn. Syst., 31(1):100–112, 2020.

Lukas Gonon and Juan-Pablo Ortega.

Fading memory echo state networks are universal. *Neural Networks*, 138:10–13, 2021.

Herbert Jaeger and Harald Haas.

Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication. Science, 304(5667):78–80, 2004.

Jaideep Pathak, Brian Hunt, Michelle Girvan, Zhixin Lu, and Edward Ott.

Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Physical Review Letters, 120(2):24102, 2018.

SIN NOR

Appendix Setup I: Sufficiently regular functionals

Consider an unknown functional $H^*: (\mathbb{R}^d)^{\mathbb{Z}_-} \to \mathbb{R}^m$ and a random input signal \mathbb{Z} (valued in $B_M(0)^{\mathbb{Z}_-}$). The goal is to approximate $H^*(\mathbb{Z})$.

• Key examples:

• $H^*(\mathbf{Z}) = \mathbf{X}_0^*$, where (for a suitable $F^* \colon \mathbb{R}^{N^*} \times \mathbb{R}^d \to \mathbb{R}^{N^*}$)

$$\mathbf{X}_t^* = \mathcal{F}^*(\mathbf{X}_{t-1}^*, \mathbf{Z}_t), \quad t \in \mathbb{Z}_-.$$

•
$$H^*(\mathbf{Z}) = \mathbb{E}[\mathbf{Z}_1 | \mathbf{Z}_0, \mathbf{Z}_{-1}, \ldots].$$

- Assumptions:
 - *H*^{*} is *d_w*-Lipschitz-continuous for some summable weighting sequence *w*, that is, there exists *L* > 0 such that for all **v**, **u** ∈ *B_M*(0)^ℤ-

$$\|H^*(\mathbf{v}) - H^*(\mathbf{u})\| \leq L \left[\sum_{t \in \mathbb{Z}_-} w_t \|\mathbf{v}_t - \mathbf{u}_t\|^2\right]^{1/2}$$

 For all T ∈ N the truncated function(al) H^{*}_T: (ℝ^d)^{T+1} → ℝ^m, H^{*}_T(z₀,..., z_{-T}) = H^{*}(z₀,..., z_{-T}, 0,...) is sufficiently smooth and integrable (e.g. Sobolev-regularity W^{2,2}(ℝ^{d(T+1)})).

Appendix Setup II: Linear reservoir, random neural network readout

Consider learning based on a recurrent neural network with ReLU activation function and randomly generated $\mathbf{A}, \mathbf{S}, \mathbf{c}, \boldsymbol{\zeta}$ (independent of \mathbf{Z}).

• The input signal $\mathbf{Z} \in (\mathbb{R}^d)^{\mathbb{Z}_-}$ is mapped to the output signal $\mathbf{Y} \in (\mathbb{R}^m)^{\mathbb{Z}_-}$ via

$$\begin{aligned} \mathbf{X}_t &= \sigma_1(\mathbf{S}\mathbf{X}_{t-1} + \mathbf{c}\mathbf{Z}_t), \\ \mathbf{Y}_t &= \mathbf{W}\sigma_2(\mathbf{A}\mathbf{X}_t + \boldsymbol{\zeta}), \quad t \in \mathbb{Z}_-. \end{aligned} \tag{7}$$

- $\sigma_1(x) = x, \ \sigma_2(x) = \max(x, 0).$
- Each of the N rows of A is generated (i.i.d.) randomly from uniform distribution in $B_R(0) \subset \mathbb{R}^{d(T+1)}$.
- The entries of ζ are generated i.i.d. uniformly on [-MR, MR].
- **S**, **c** are (random) matrices with $\lim_{k\to\infty} \|\mathbf{S}^k\|_2 = 0$ and such that $\mathbf{K} = [\mathbf{c} \ \mathbf{S} \mathbf{c} \ \cdots \ \mathbf{S}^T \mathbf{c}]$ has full rank.
- R, T, N can be chosen (to make the bound as small as possible).
- $\mathbf{W} \in \mathbb{R}^{m \times N}$ is trained (linear regression!).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの September 26th, 2022

Appendix: Approximation error bound

Theorem (G., Grigoryeva & Ortega [GGO22])

For any sufficiently regular functional there exists a readout **W** (a $\mathbb{R}^{1 \times N}$ -valued random variable) such that for any $\delta \in (0, 1)$, with probability $1 - \delta$ the approximation error satisfies

$$\mathbb{E}[|\mathbf{Y}_0 - H^*(\mathbf{Z})|^2 | \mathbf{A}, \mathbf{S}, \mathbf{c}, \boldsymbol{\zeta}]^{\frac{1}{2}} \le \frac{1}{\delta} \left[\frac{I_1(T, R)^{\frac{1}{2}}}{\sqrt{N}} + I_2(T, R) + I_3(T) \right], \text{ with }$$

$$\begin{split} I_1(T,R) &= C_1(\mathbf{S},\mathbf{c})R\mathrm{Vol}_{d(T+1)}(B_R(0))\int_{B_R}\max(1,\|u\|^3)|\widehat{H_T^*}(\mathbf{K}^*u)|^2\mathrm{d}u,\\ I_2(T,R) &= |\det(\mathbf{K})|\int_{B_R(0)^c}|\widehat{H_T^*}(\mathbf{K}^*u)|\mathrm{d}u,\\ I_3(T) &= LM\left(\sum_{t=T+1}^{\infty}w_{-t}\right)^{1/2} + C_2(\mathbf{S},\mathbf{c})\|\mathbf{S}^T\|. \end{split}$$

Lukas Gonon

Appendix: Weak dependence

Definition

An \mathbb{R}^k -valued random process **U** is said to have a causal Bernoulli shift structure, if there exist $q \in \mathbb{N}$, $G: (\mathbb{R}^q)^{\mathbb{Z}_-} \to \mathbb{R}^k$ measurable and an i.i.d. collection $(\boldsymbol{\xi}_t)_{t\in\mathbb{Z}_-}$ of \mathbb{R}^q -valued random variables such that

$$\mathbf{U}_t = G(\ldots, \boldsymbol{\xi}_{t-1}, \boldsymbol{\xi}_t), \quad t \in \mathbb{Z}_-.$$

It is said to have geometric decay, if there exist $C_{dep} > 0$, $\lambda_{dep} \in (0, 1)$ such that the weak dependence coefficient $\theta(\tau) := \mathbb{E}[\|\mathbf{U}_0 - \tilde{\mathbf{U}}_0^{\tau}\|]$ satisfies $\theta(\tau) \leq C_{dep}\lambda_{dep}^{\tau}$ for all $\tau \in \mathbb{N}$, where $\tilde{\mathbf{U}}_0^{\tau} = G(\dots, \tilde{\boldsymbol{\xi}}_{-\tau-1}, \tilde{\boldsymbol{\xi}}_{-\tau}, \boldsymbol{\xi}_{-\tau+1}, \dots, \boldsymbol{\xi}_0)$ for $\tilde{\boldsymbol{\xi}}$ an independent copy of $\boldsymbol{\xi}$.

A = A = A = E