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Overview

@ Reservoir computing & echo state networks: highly efficient at
learning dynamical / chaotic systems (see, e.g., Jaeger & Haas
[JHO4], Pathak, Hunt, Girvan, Lu & Ott [PHG'18], ...).

@ Learning theoretical foundations?
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@ Reservoir computing & echo state networks: highly efficient at
learning dynamical / chaotic systems (see, e.g., Jaeger & Haas
[JHO4], Pathak, Hunt, Girvan, Lu & Ott [PHGT18], ...).

@ Learning theoretical foundations?

o Universality:
o Grigoryeva & Ortega, Neural Netw. (2018) [GO18]
o G. & Ortega, IEEE TNNLS (2020) [GO20]
o G. & Ortega, Neural Netw. (2021) [GO21]

Generalization error: G., Grigoryeva & Ortega JMLR (2020) [GGO20]

Approximation error: G., Grigoryeva & Ortega Ann. Appl. Probab.

(2022+) [GGO22]

o RC systems via random projection: Cuchiero et al. IEEE TNNLS (2021)
[CGGt21]

Infinite-dim. RC learning September 26th, 2022 2/14



Overview

@ Reservoir computing & echo state networks: highly efficient at
learning dynamical / chaotic systems (see, e.g., Jaeger & Haas
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o Universality:
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o G. & Ortega, IEEE TNNLS (2020) [GO20]
o G. & Ortega, Neural Netw. (2021) [GO21]

o Generalization error: G., Grigoryeva & Ortega JMLR (2020) [GGO20]
o Approximation error: G., Grigoryeva & Ortega Ann. Appl. Probab.
(2022+) [GGO22]
o RC systems via random projection: Cuchiero et al. IEEE TNNLS (2021)
[CGG*21]
o ...
@ Quantitative bounds: for sufficiently smooth functionals.
@ Goal: full learning error bounds for inherently infinite-dimensional, not
necessarily smooth functionals.
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Neural network approximation

Let us look at neural network approximation in the much further

developed static case:
Neural networks are able to overcome the curse of dimensionality for

classes of
e compositional functions (built from lower-dimensional functions),

@ solutions to certain PDEs,
@ Barron functions / functions with dimension-dependent regularity.
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@ solutions to certain PDEs,
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o Extended to the larger class of “generalized Barron functions” in E et

al. [EW20], [EMWW20], [EMW19].
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Neural network approximation

Let us look at neural network approximation in the much further
developed static case:
Neural networks are able to overcome the curse of dimensionality for
classes of

e compositional functions (built from lower-dimensional functions),

@ solutions to certain PDEs,
@ Barron functions / functions with dimension-dependent regularity.
o Originally proposed by Barron [Bar92], [Bar93].
o Extended to the larger class of “generalized Barron functions” in E et
al. [EW20], [EMWW20], [EMW19].
e Goal: dynamic analogue

@ Rich class of functionals
@ Approximation and learning bounds.
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Recurrent generalized Barron functionals

o Let Dy C RY bounded, T, C (Dg)%-,
@ 01, 02: R — R activations (applied componentwise),
@ p€[l,00], g such that %+% =1.

Definition

H: T4 — R is called recurrent generalized Barron functional, if there exist
@ a probability measure p on R x P x R x R with finite expectation,
@ B € /9 and linear maps A: 9 — (9, C: RY — ¢9

such that for each z € Z; the system

Xt:O'1(AXt_1+CZt+B), tGZ_,

admits a unique solution (x¢)tez_ with x; = x¢(z) € ¢9 and

H(z) = / wop(a-x_1(z)+c-zg+b)u(dw, da,dc,db), zeZy.
Rx£PxRIxR
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Properties

Denote by # the class of all recurrent generalized Barron functionals.
For natural choices of activation functions (o1(x) = x and either
o2(x) = max(x,0) or o2 is bounded, continuous and non-constant) we

obtain:
@ H is a vector space

@ H contains
e sufficiently smooth functionals
o functionals associated to convolutional filters

e H N LP(Zy,v) is dense in LP(Z4,7) for any p € [1,0) and any
probability measure v on Zy C (Dg)%-.
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Key example

Proposition

Suppose p = 2. Let ) be a separable Hilbert space, let A: Y — Y,
C:RY — Y be linear and B € Y and assume that for each z € T4 the
system

X =A% 1+ Cz;,+B, teZ_, (1)

admits a unique solution (X;)cz_ € Y%~. Let ji be a (Borel) probability
measure on R x ) x RY x R with
Jexyxroxr WI([ally + llel| +[b])ii(dw, da, de, db) < oo and consider

Hz) = / wos((a,%_1(2))y+c-zo+b)fi(dw, da, dc, db), z € T.
RxYxRIxR (2)

Then H € H.

v

Such systems arise, e.g., in quantum reservoir computing.
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Learning system

Goal: approximate (unknown) H € H using random neural networks:
e Dynamics: captured by a (possibly linear) echo state network
mapping an input z to

xItESN = 01(AESN ESN + CPSNZ, + BESN)7 tezZ-, (3)

with given (randomly generated) matrices BESN ¢ RV,
AESN c RNXN CESN c RNXd_

@ Random feedforward neural network readout: H is approximated by

A(z) = Aw( Zwaz al) . xBN) ). 2+ b)) (4)
i=1

with randomly generated coefficients a(), ¢(), b; valued in RV, R?
and R, respectively.

e Only W € RV is trainable.
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-
Approximation result

AESN CESN

o let T = [%} and suppose are generated so that

|AFSN|| < 1 and K is invertible, with
K = WNXN(CESN’AESNCESN| . ’(AESN)T—2CESN’(AESN)T—1CESN).

@ Suppose H € H with ||A|| < 1, p has finite second moments.
@ Assume that hidden readout weights are sampled from a generic
measure v satisfying an absolute continuity condition w.r.t. p.

Theorem (Approximation error bound)

Consider the setting above and let o1(x) = x, p € (1,00), A € (||A|l,1).
Then there exists f such that H with readout
W = £((w),al) c() b;);—y . n) satisfies for any z € Ty

N N 1
E[|H(z) — H(z)]’]"* < Cupsn[A7 + [|AFSN)T + F]'

2
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The constant Cy gsn is available explicitly.
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@ Suppose the dynamic learning part (in particular AFSN BESN  CESN)
remains “bounded” in N, i.e.,
o there exists ¢ > 0 and /,/ € (0,1), / < I such that for any choice of N
the ESN parameters satisfy that
K is invertible
| < ||ABSN| < T
[BESN|| <, [|C®N|| <€
| K tdiag(La, Lol 1. ., 17 Y| < ¢

= the constant Cy psn does not depend on .
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-
Universality

Let o1, 0> as before.

Corollary

Let H: Zy — R be an arbitrary functional and let vy be a given hidden
weight distribution with finite first moment.

Then for any € > 0 and any probability measure v on Ty C (Dg)*~ with
H € L%(Zy4,7) there exists a probability measure v with Wy(vg,v) < € and
a readout W such that H with readout W and distribution v for the
hidden layer weights satisfies

E[|H(z) — A(2)*](d2) - <e.
(U, )
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Special case: static situation
@ Let 19 be a probability measure on R x RY x R and

H(u) = / wop(c - u+ b)up(dw, dc,db), ue Dy C RY.
RxR9I xR

N
A(u) => " Wioa(c - u+ by)
i=1
is used as learning system with randomly generated c(?), b;
(distribution 1) and W € RV trainable.

Corollary

Let H as above with pg < vg. Then there exists W s. t. for any u € Dy
E[|H(u) — A(u)P]? < N*C%HMIIEO (/ w?[llell? + [b]> + 1 po(dw, de, db))*

duvg

where ¢ = (2max(2L,,, |02(0)|?) max(1,sup,¢p, Hsz))%
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Learning error bounds

How about learning H from a single trajectory of input/output pairs?

@ Observations (Z¢,Y¢)¢=0,—1,...,—n+1 are available.
@ Let H € H be the unknown functional and assume that the

input/output relation between the data is given as H(Z) = E[Y|Z]

o Example: Y; = H(Z;,.) + &, for a stationary process (&t)tcz_
independent of Z and with E[gg] = 0.

@ To learn H from the data we solve

n—1

~ 1 ~
W = in = Aw(Z~m) — v _|1?
argn\}\llnn;H w(ZZ) [

where we denote Z:7+1 =(...,0,0,Z_py1,...,Z_j_1,Z_;).
@ Data points are not i.i.d., but only weakly dependent.
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Theorem

Consider the setting as above, let R > ﬁ assume Y is bounded and
(Z,Y) has a causal Bernoulli shift structure with geometric decay of rate
Adep and log(n) < nlog(\,.L,), where Amax = max(||ASSN||) Xgep). Then

the trained system H,;, satisfies the learning error bound

- A= 1
BIH(Z) ~ A (DT < Copro (X 1A T 4 )

2
: (6)

1 y/log(n) \*
Cest | RN2 X——
+ Cest ( 2 Jn >

where Z is an independent copy of Z and C,pprox, Cest are explicitly given
and not depending on N, n.
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Thank you!
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Appendix Setup |: Sufficiently regular functionals

Consider an unknown functional H*: (R9)%- — R™ and a random input
signal Z (valued in Bp(0)2-). The goal is to approximate H*(Z).
o Key examples:
o H*(Z) = X{, where (for a suitable F*: RV x RY — RN")
Xy =F"(X;_1,Z;), teZ_.

o H*(Z) =E[Z:1|Zp,Z_4,.. ].
@ Assumptions:
e H* is d,-Lipschitz-continuous for some summable weighting sequence
w, that is, there exists L > 0 such that for all v,u € By(0)%*-

1/2

IH* () = H (Wl < L | Y wellve — ue|?
teZ_

o For all T € N the truncated function(al) Hx: (RY)™T+1 — R™,
H*(zo,...,z_7) = H*(20,...,2_7,0,...) is sufficiently smooth and
integrable (e.g. Sobolev-regularity W?22(R(T+1)).
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Appendix

Appendix Setup Il: Linear reservoir, random neural network
readout

Consider learning based on a recurrent neural network with RelLU
activation function and randomly generated A, S, c, ¢ (independent of Z).
o The input signal Z € (R9)%- is mapped to the output signal
Y € (R™)%- via
Xt = Ul(sxt_l + th),
Y: =Woy(AX:+¢), teZ_.

e 01(x) = x, 02(x) = max(x,0).

@ Each of the N rows of A is generated (i.i.d.) randomly from uniform
distribution in Bg(0) C RI(T+1),

@ The entries of ¢ are generated i.i.d. uniformly on [-MR, MR].

@ S, c are (random) matrices with limy_,o |S¥|l2 = 0 and such that
K = [c Sc --- ST¢] has full rank.

@ R, T,N can be chosen (to make the bound as small as possible).

o W e R™*N s trained (linear regression!).
Infinite-dim. RC learning September 26th, 2022 4/6

(7)



Appendix

Appendix: Approximation error bound

Theorem (G., Grigoryeva & Ortega [GGO22])

For any sufficiently regular functional there exists a readout W (a
RY*N_valued random variable) such that for any § € (0, 1), with
probability 1 — & the approximation error satisfies

L(T,R)z
VN

E[[Yo — H*(Z)PIA,S,c.qF < 5 [ + (T, R)+ K(T)| , with

h(T,R) = Cl(s’c)RV01d(T+1)(BR(O))/ max(1, ||u]|®)| F5-(K*u) 2du,
Br

b(T, R) = | det(K y/ | (K u)du,

[e.e]

1/2
(T) = LM( > W_t> + G(S,0)|IST.

t=T+1

V.
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Appendix: Weak dependence

Definition

An RK-valued random process U is said to have a causal Bernoulli shift
structure, if there exist g € N, G: (R9)%~ — R¥ measurable and an i.i.d.
collection (&;)tez_ of R9-valued random variables such that

Ut: G("‘7€t—la£t)) tes._.

It is said to have geometric decay, if there exist Cqep, > 0, )\dgp €(0,1)
such that the weak dependence coefficient (1) := E[||Uo — Ug||] satisfies

0(7) < CaepAfep for all 7 € N, where

NE =G(....,6 + 1,€ 1 € 141,..., &) for € an independent copy of &.
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