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Testing
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• Training involves far fewer parameters than neural network.
• Simple linear fit: no stability concerns.
With no need to train internal connections: many constraints in designing 
neural networks no longer apply.
• Node types can vary (not just sigmoid)
• Can be built from analog hardware

R is vector of reservoir variables
A is adjacency matrix: how are nodes connected
W is vector of input coefficients
s is input signal

4
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optical Fluid system

Analog electronics

• Neural tissue
• Field programmable gate arrays
• E. coli gene regulation network

Reservoir computers are built from analog nodes

About 100 to 1000 nodes
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Reservoir computer requirements

Operate near edge of stability
Not always
Maximize memory
Must tune memory for particular task; can have too much
Sigmoid activation function
Other nonlinearities also work
Sparse connection matrix
Yes but must maintain strong interaction between nodes

High dimensional
What is it about high dimensional space that makes a reservoir computer work?

Consideration:
Reservoir computers are not general purpose computers. They are universal 
function approximators
L. Grigoryeva and J.-P. Ortega, "Echo state networks are universal," Neural Networks, vol. 108, pp. 495-508, 2018/12/01/ 
2018.
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Dimension

Correlation dimension n r⎛
⎝⎜

⎞
⎠⎟
= rd

Difficult with data
Low dimensional only

False nearest neighbor (FNN) dimension

1) Embed data in d dimensions
2) Find neighbors
3) Embed in d+1 dimensions
4) How many points are still neighbors?
• If most points still neighbors, increase d

FNN requires an arbitrary threshold
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Covariance Dimension

sc(t) n points d dimensions

Subtract mean, set to unit norm: scn(t) 
Covariance matrix 

C = scn
T scn
n d × d matrix

Embedded signal

Compare to covariance for random process.
• Covariance matrix eigenvalues indicate probability that embedded signal is anisotropic 
in d dimensions- assume this means it can be embedded

T. L. Carroll and J. M. Byers, "Dimension from covariance 
matrices," Chaos, vol. 27, p. 023101, Feb 2017.
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Covariance and FNN dimensions can be adapted for reservoir computers

T. L. Carroll, "Dimension of reservoir computers," Chaos: An Interdisciplinary Journal of 
Nonlinear Science, vol. 30, p. 013102, 2020.

T. L. Carroll, "Low dimensional manifolds in reservoir computers," Chaos: An 
Interdisciplinary Journal of Nonlinear Science, vol. 31, p. 043113, 2021.

Covariance dimension measures geometry: FNN dimension measures predictability 
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Dimension measurements for 
reservoirs with random parameters
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Measuring signal diversity: covariance rank

Put reservoir time series signals into matrix Ω

How many orthogonal directions are there in Ω?
• Use PCA: subtract mean, normalize, find covariance matrix Θ

Eigenvectors of Θ are orthogonal directions: find rank of Θ

⌦ =

2

6664

r1 (1) · · · rM (1)
r1 (2) rM (2)

...
...

r1 (N) · · · rM (N)

3

7775

1

⇥ = ⌦T
norm⌦norm

1

� = rank (⇥)

1

Similar to T. Lymburn et al., Chaos, vol. 29, p. 023118, 2019/02/01 2019.
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Dimension vs. Rank
High rank does not mean high dimension; same for the other way

Create a matrix of signals from Lorenz x signal with different initial conditions

2

6664

x1 (t) x2 (t) · · · x100 (t)
x1 (t+ ⌧) x2 (t+ ⌧) x100 (t+ ⌧)

...
...

...
x1 (t+ (N � 1) ⌧) x2 (t+ (N � 1) ⌧) · · · x100 (t+ (N � 1) ⌧)

3

7775

1

Rank of covariance matrix = 100
Covariance dimension = 5
False nearest neighbor dimension = 8
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dx
dt = Tl (p1 (y � x))
dy
dt = Tl (x (p2 � z)� y)
dy
dt = Tl (xy � p3z)

1

dx
dt = Tr (�y � p1z)
dy
dt = Tr (x+ p2y)
dz
dt = Tr (p3 + z (x� p4))

1

Drive with x signals, train on z signals

Lorenz Rossler

Signals and Reservoirs

R (n+ 1)= g tanh (AR (n) + "s (n) + 1)

1

dri(t)
dt = ↵

"
p1ri (t) + p2r2i (t) + p3r3i (t) +

MP
j=1

Aijrj (t) +Wis (t)

#

1

Tanh map reservoir computer

Polynomial ODE reservoir computer

Laser delay reservoir computer
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Does reservoir computer remember a noise 
signal?
• Drive with noise signal s(n)
• train on s(n-τ) 
• fit is 𝑔 𝑛 =∑! 𝑐!𝑟! 𝑛

Memory capacity is cross correlation between 
s(n-τ) and g(n)

MCk =

NP
n=1

[s(n�k)�s][gk(n)�gk]

NP
n=1

[s(n�k)�s]
NP

n=1

[gk(n)�gk]

1

Memory capacity (Jaeger)

Warning: in use, reservoir is not driven with noise. Results may be incorrect



Distribution Statement A. Approved for public release. Distribution unlimited.

4

6
8

0.1

2

4

6
8

1

161284

Lorenz

2

4
6
80.1

2

4
6
8

161284

Rössler

2x10-1

3

4

5
6
7
8
9

30252015105

Lorenz

4
6
8

0.1

2

4
6
8

302010

Rössler

8
9

0.1

2

3

4
5

15105

Rössler

3x10-1

4

5

6
7
8
9

40302010

Lorenz

MC

〈
Δ
tx
〉

tanh polynomial ODE Opto-electronic

50 nodes
100 nodes

Many different reservoirs: error vs memory



Distribution Statement A. Approved for public release. Distribution unlimited.

Reservoir computer performance depends on rank or memory
• Independent of number of nodes

How to increase rank or memory
• Do we really need many nodes?

Conventional wisdom is that reservoir computers work because of high dimension

Really, they work because of high rank or memory- is high dimension necessary?

Use ideas from E. D. Frate, A. Shirin, and F. Sorrentino, "Reservoir computing with 
random and optimized time-shifts," Chaos: An Interdisciplinary Journal of Nonlinear 
Science, vol. 31, p. 121103, 2021.
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Increasing Rank and Memory

Adapt this for our use:
• Ordered set of time shifts 
• Reservoir has M1 nodes: create M2 ≥ M1 time shifts

M2 delays, but reservoir has only M1 signals: example for M1=3, M2=9

⌦2 =

2

6664

r1
�
1� ⌧max

9

�
r2

�
1� 2⌧max

9

�
r3

�
1� 3⌧max

9

�
r1

�
1� 4⌧max

9

�
· · · r3

�
1� 9⌧max

9

�

r1
�
2� ⌧max

9

�
r3

�
2� 9⌧max

9

�

...
...

r1
�
N � ⌧max

9

�
· · · · · · r3

�
N � 9⌧max

9

�

3

7775

1

Use interpolation for non-integer time shifts
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Laser Delay Reservoir Computer

Simulation and experiment use laser delay system

J. D. Hart et al, Phil Trans R. Soc A. 377 20180123

f (x (t) , s (t)) = 1
TL

(�x (t) + � sin (x (t� ⌧D) + ⇢Wisin))
2

1

Create virtual nodes by time delay: time per node θ, delay loop time τD
• number of nodes M1=τD/θ
• Nodes coupled by low pass time constant TL: one way ring network

⌦1 =

2

66664

⌫ (✓) ⌫ (2✓) . . . ⌫ (M1✓)

⌫ (✓ + ⌧D)
...

...
...

⌫ (✓ +N⌧D) . . . . . . ⌫ (M1✓ +N⌧D)

3

77775

1
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Adding Time Shifts: Simulations

⌦2 (i, j) = ⌫ (k✓ + (i� 1) ⌧D � ⌧j)

1

Time shifted matrix

Input signals

Lorenz

dx
dt = Tl (p1 (y � x))
dy
dt = Tl (x (p2 � z)� y)
dy
dt = Tl (xy � p3z)

1

Rössler

dx
dt = Tr (�y � p1z)
dy
dt = Tr (x+ p2y)
dz
dt = Tr (p3 + z (x� p4))

1

Drive with x signals, train on z signals
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Laser Delay System: Simulations
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M1 is size of original reservoir computer
M2 is size of delay matrix

More delays:
• smaller testing error
• larger rank
• larger memory capacity

Testing error

Covariance rank

Memory capacity
Adding a large delay matrix gives small 
testing error with small reservoir
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Rössler: similar results to Lorenz

Same pattern with reservoir computers using 
tanh or polynomial nodes

Laser Delay System: Simulations
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Laser Delay System: Experiment
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Adding time shifts decreases testing error 

For laser delay system: more nodes means longer time delay:
• Adding time shifts increases speed
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Known from work on nonlinear series approximations that nonlinear part and 
delay part can be separate
• Same is true here
Reservoir computer does not require high dimensions
• delays do not add dimension

This was suggested by measurements of low dimensional manifolds in reservoir 
computers
T. L. Carroll, "Dimension of reservoir computers," Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 30, p. 
013102, 2020.
T. L. Carroll, "Low dimensional manifolds in reservoir computers," Chaos: An Interdisciplinary Journal of Nonlinear 
Science, vol. 31, p. 043113, 2021.

Actual reservoir can be low dimensional: add rank and memory with delays
T. L. Carroll and J. D. Hart, "Time shifts to reduce the size of reservoir computers," Chaos, vol. 32, p. 083122


