Nonparametric learning of interaction kernels in interacting particle systems

Fei Lu

Department of Mathematics, Johns Hopkins University

September, 2022. Third Symposium on Machine Learning and Dynamical Systems

Finite many particles

Mean-field equations

Learning with nonlocal dependence

What is the law of interaction ?

Popkin. Nature(2016)

Finite many particles

Mean-field equations

Learning with nonlocal dependence

What is the law of interaction ?

Popkin. Nature(2016)

$$m_i \ddot{x}_i(t) = -\dot{x}_i(t) + \frac{1}{N} \sum_{j=1, j \neq i}^N \kappa_{\phi}(x_i, x_j),$$

$$\mathcal{K}_{\phi}(x,y) =
abla_x[\Phi(|x-y|)] = \phi(|x-y|)rac{x-y}{|x-y|}.$$

- Newton's law of gravity $\phi(r) = G \frac{m_1 m_2}{r^2}$
- Lennard-Jones potential: $\Phi(r) = \frac{c_1}{r^{12}} \frac{c_2}{r^6}$.

Finite many particles

Mean-field equations

Learning with nonlocal dependence

What is the law of interaction ?

Popkin. Nature(2016)

$$m_i \ddot{x}_i(t) = -\dot{x}_i(t) + \frac{1}{N} \sum_{j=1, j \neq i}^N \kappa_{\phi}(x_i, x_j),$$

$$\mathcal{K}_{\phi}(x,y) =
abla_x[\Phi(|x-y|)] = \phi(|x-y|)rac{x-y}{|x-y|}.$$

- Newton's law of gravity $\phi(r) = G \frac{m_1 m_2}{r^2}$
- Lennard-Jones potential: $\Phi(r) = \frac{c_1}{r^{12}} \frac{c_2}{r^6}$.
- flocking birds, bacteria/cells ?
- opinion/voter/multi-agent models, ...? ^a

Infer the interaction kernel from data?

^a(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vicsek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dynamics Enhances Consensus. 2014 ...

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Learn interaction kernel $\mathcal{K}_{\phi}(x, y) = \phi(|x - y|) \frac{x - y}{|x - y|}$

$$dX_t^i = rac{1}{N}\sum_{j=1}^N K_{\phi}(X_t^j,X_t^i) dt + \sqrt{2
u} dB_t^i \quad \Leftrightarrow R_{\phi}(oldsymbol{X}_t) = \dot{oldsymbol{X}}_t - \sqrt{2
u} \dot{oldsymbol{B}}_t$$

Finite N: a

- Data: M trajectories of particles : $\{\boldsymbol{X}_{t_1:t_1}^{(m)}\}_{m=1}^M$
- Statistical learning
- ODE/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Learn interaction kernel $K_{\phi}(x, y) = \phi(|x - y|) \frac{x - y}{|x - y|}$

$$dX_t^i = rac{1}{N}\sum_{j=1}^N K_{\phi}(X_t^j,X_t^i) dt + \sqrt{2
u} dB_t^i \quad \Leftrightarrow R_{\phi}(oldsymbol{X}_t) = \dot{oldsymbol{X}}_t - \sqrt{2
u} \dot{oldsymbol{B}}_t$$

Finite N: a

- Data: M trajectories of particles : $\{\boldsymbol{X}_{t_1:t_2}^{(m)}\}_{m=1}^M$
- Statistical learning

. .

ODE/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order

Large N (>> 1)^b

• Data: concentration density $\{u(x_m, t_l) \approx N^{-1} \sum_i \delta(X_{t_l}^i - x_m)\}_{m,l}$

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)]$$

Inverse problem for PDE

a [Maggioni, Lu, Tang, Zhong, Miller, Li, Zhang: PNAS19, SPA20, FOC22, JMLR21] b [Lang-Lu 20, 21]

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Learning kernels in operators: $R_{\phi} : \mathbb{X} \to \mathbb{Y}$

$$dX_t^i = \frac{1}{N} \sum_{j=1}^N K_{\phi}(X_t^j, X_t^i) dt + \sqrt{2\nu} dB_t^i \quad \Leftrightarrow \mathbf{R}_{\phi}(\mathbf{X}_t) = \dot{\mathbf{X}}_t - \sqrt{2\nu} \dot{\mathbf{B}}_t$$
$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)] \quad \Leftrightarrow \mathbf{R}_{\phi}[u(\cdot, t)] = f(\cdot, t)$$

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Learning kernels in operators: $R_{\phi} : \mathbb{X} \to \mathbb{Y}$

$$dX_t^i = \frac{1}{N} \sum_{j=1}^N K_{\phi}(X_t^j, X_t^j) dt + \sqrt{2\nu} dB_t^i \quad \Leftrightarrow R_{\phi}(\boldsymbol{X}_t) = \dot{\boldsymbol{X}}_t - \sqrt{2\nu} \dot{\boldsymbol{B}}_t$$
$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)] \quad \Leftrightarrow R_{\phi}[u(\cdot, t)] = f(\cdot, t)$$

Nonparametric learning: Loss function? Identifiability? Convergence?

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Finite many particles

$$R_{\phi}(\boldsymbol{X}_{t}) = \dot{\boldsymbol{X}}_{t} - \sqrt{2\nu} \dot{\boldsymbol{B}}_{t}$$
 & Data $\Rightarrow \hat{\phi}_{n,M} = \operatorname*{arg\,min}_{\psi \in \mathcal{H}_{n}} \mathcal{E}_{M}(\psi)$

- Loss function (log-likelihood, or mse for ODE)
- Regression: with $\psi = \sum_{i} c_{i} \phi_{i} \in \mathcal{H}_{n} = \operatorname{span} \{\phi_{i}\}_{i=1}^{n}$:

$$\mathcal{E}(\psi) = \mathbf{c}^{\top} \mathbf{A} \mathbf{c} - 2\mathbf{b}^{\top} \mathbf{c} \Rightarrow \widehat{\phi}_{n,M} = \sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{\mathbf{c}} = \mathbf{A}^{-1} \mathbf{b}$$

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Finite many particles

- Loss function (log-likelihood, or mse for ODE)
- Regression: with $\psi = \sum_{i} c_{i} \phi_{i} \in \mathcal{H}_{n} = \operatorname{span} \{\phi_{i}\}_{i=1}^{n}$:

$$\mathcal{E}(\psi) = c^{\top} A c - 2b^{\top} c \Rightarrow \widehat{\phi}_{n,M} = \sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c} = A^{-1} b$$

- Choice of H_n & function space of learning?
- Well-posed/ identifiability?
- Convergence and rate?

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Classical learning theory

Given: Data{
$$(x_m, y_m)$$
} $_{m=1}^M \sim (X, Y)$
Goal: find f s.t. $Y = f(X)$

 $\mathcal{E}(f) = \mathbb{E}|Y - f(X)|^2 = ||f - f_{true}||^2_{L^2(\alpha_X)}$

Learning kernel

Given: Data $\{\boldsymbol{X}_{[0,T]}^{(m)}\}_{m=1}^{M}$ Goal: find ϕ s.t. $\dot{\boldsymbol{X}}_{t} = \boldsymbol{R}_{\phi}(\boldsymbol{X}_{t})$

$$\mathcal{E}(\phi) = \mathbb{E} |\dot{\mathbf{X}} - \mathbf{R}_{\phi}(\mathbf{X})|^2 \neq \|\phi - \phi_{true}\|^2_{L^2(\rho)}$$

Minimization: $f = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n, \nabla \mathcal{E}_M = 0 \Rightarrow \hat{f}_{n,M} = \sum_i \hat{c}_i \phi_i.$

Finite many particles ○●○○ Mean-field equations

Learning with nonlocal dependence

Classical learning theory

Given: Data{ (x_m, y_m) } $_{m=1}^M \sim (X, Y)$ Goal: find f s.t. Y = f(X)

 $\mathcal{E}(f) = \mathbb{E}|Y - f(X)|^2 = ||f - f_{true}||^2_{L^2(\infty)}$

Learning kernel

Given: Data $\{\boldsymbol{X}_{[0,T]}^{(m)}\}_{m=1}^{M}$ Goal: find ϕ s.t. $\dot{\boldsymbol{X}}_{t} = \boldsymbol{R}_{\phi}(\boldsymbol{X}_{t})$

$$\mathcal{E}(\phi) = \mathbb{E} |\dot{\mathbf{X}} - \mathbf{R}_{\phi}(\mathbf{X})|^2 \neq \|\phi - \phi_{true}\|_{L^2(\rho)}^2$$

Minimization: $f = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n, \nabla \mathcal{E}_M = 0 \Rightarrow \widehat{f}_{n,M} = \sum_i \widehat{c}_i \phi_i.$

- Function space: $L^2(\rho_X)$.
- Identifiability: $\mathbb{E}[Y|X = x] = \underset{f \in L^{2}(\rho_{X})}{\operatorname{arg\,min}} \mathcal{E}(f).$
- $A \approx \mathbb{E}[\phi_i(X)\phi_j(X)] = I_n$ by setting $\{\phi_i\}$ ONB in $L^2(\rho_X)$.
- Error bounds for \hat{f}_{n_M}

- Function space: L²(ρ). measure ρ ~ |Xⁱ - X^j|
- Identifiability: $\underset{\phi \in L^{2}(\rho)}{\operatorname{arg\,min}} \mathcal{E}(\phi)$??
- $A \approx \mathbb{E}[R_{\phi_i}(X)R_{\phi_j}(X)] \approx I_n$?? A Coercivity condition
- Error bounds for $\widehat{\phi}_{n_M}$?

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Assume a coercivity condition on $\ensuremath{\mathcal{H}}$

 $\langle\!\langle \phi, \phi
angle\!
angle = \mathbb{E}[\boldsymbol{R}_{\phi}(\boldsymbol{X})\boldsymbol{R}_{\phi}(\boldsymbol{X})] \geq \boldsymbol{c}_{\mathcal{H}} \|\phi\|_{L^{2}(\rho)}^{2}, \quad orall \phi \in \mathcal{H}$

• $c_{\mathcal{H}} = \frac{1}{N-2}$ for $\mathcal{H} = L^2(\rho)$ for some (LLMTZ21); open

Theorem (LZTM19,LMT22)

Let $\{\mathcal{H}_n\}$ compact convex in L^{∞} with dist $(\phi_{true}, \mathcal{H}_n) \sim n^{-s}$. Assume the coercivity condition $\cup_n \mathcal{H}_n$. Choose $n_* = (M/\log M)^{\frac{1}{2s+1}}$. Then

$$\mathbb{E}_{\mu_0}[\|\widehat{\phi}_{\boldsymbol{M},\mathcal{H}_{n_*}} - \phi_{\textit{true}}\|_{L^2(\rho)}] \leq C\left(\frac{\log M}{M}\right)^{\frac{2}{2s+1}}$$

- Concentration for r.v. or martingale
- $\dim(\mathcal{H}_n)$ adaptive to $s \ (\phi \in C^s)$ and M:

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Lennard-Jones kernel estimators:

Opinion dynamics kernel estimators:

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Inverse problem for Mean-field PDE

Goal: Identify ϕ from discrete data $\{u(x_m, t_l)\}_{m,l=1}^{M,L}$ of

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)], \quad x \in \mathbb{R}^d, t > 0,$$

where $K_{\phi}(x) = \nabla(\Phi(|x|)) = \phi(|x|) \frac{x}{|x|}.$

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Loss functional

$$\partial_t u = \nu \Delta u + \nabla \cdot \left[u(K_{\phi} * u) \right]$$

Candidates:

- Discrepancy: $\mathcal{E}(\psi) = \|\partial_t u \nu \Delta u \nabla (u(K_{\psi} * u))\|^2$
- Free energy: $\mathcal{E}(\psi) = \mathcal{C} + |\int_{\mathbb{R}^d} u[(\Psi \Phi) * u] dx|^2$
- Wasserstein-2: *C*(ψ) = W₂(u^ψ, u) costly: requires many PDE simulations in optimization
- A probabilistic loss functional

Finite many particles

Mean-field equations ○●○○○○○ Learning with nonlocal dependence

A probabilistic loss functional

$$\mathcal{E}(\psi) := \frac{1}{T} \int_0^T \int_{\mathbb{R}^d} \left[\left| K_{\psi} * u \right|^2 u - 2\nu u (\nabla \cdot K_{\psi} * u) + 2\partial_t u (\Psi * u) \right] dx dt$$

 $\bullet \ = -\mathbb{E}[\text{ log-likelihood }] \text{ of the process}$

$$\left\{egin{array}{l} d\overline{X}_t = - \ {\cal K}_{\phi_{true}} st u(\overline{X}_t,t) dt + \sqrt{2
u} d{\cal B}_t, \ {\cal L}(\overline{X}_t) = u(\cdot,t), \end{array}
ight.$$

- Derivative free
- Suitable for high dimension

$$K_{\psi} * u(\overline{X}_t) = \mathbb{E}[K_{\psi}(\overline{X}_t - \overline{X}'_t)|\overline{X}_t]$$

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Nonparametric regression

$$\mathcal{E}(\psi) = \langle\!\langle \psi, \psi \rangle\!\rangle - 2 \langle\!\langle \psi, \phi \rangle\!\rangle,$$

LS-regression $\psi = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n$:

$$\mathcal{E}(\psi) = \mathbf{c}^{\top} \mathbf{A} \mathbf{c} - 2\mathbf{b}^{\top} \mathbf{c} \implies \widehat{\phi}_{n,M} = \sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{\mathbf{c}} = \mathbf{A}^{-1} \mathbf{b}$$

- Choice of \mathcal{H}_n & function space of learning?
- Inverse problem well-posed/ identifiability?
- Convergence and rate? $\Delta x = M^{-1/d} \rightarrow 0$

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Identifiability

$$\begin{aligned} \mathbf{A}_{ij} &= \langle\!\!\langle \phi_i, \phi_j \rangle\!\!\rangle = \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} \phi_i(\mathbf{r}) \psi_j(\mathbf{s}) \overline{\mathbf{G}}_T(\mathbf{r}, \mathbf{s}) \rho_T(\mathbf{dr}) \rho_T(\mathbf{ds}) \\ &= \langle \mathbf{L}_{\overline{\mathbf{G}}_T} \phi_i, \phi_j \rangle_{L^2(\rho_T)} \end{aligned}$$

- Exploration measure $\rho_T \leftarrow |\overline{X}_t \overline{X}_t'|$
- Positive compact operator $L_{\overline{G}_{\tau}}$
 - normal matrix $A \sim L_{\overline{G}_{T}} \mid_{\mathcal{H}} \text{ in } L^{2}(\rho_{T})$

$$c_{\mathcal{H},\mathcal{T}} = \inf_{\psi \in \mathcal{H}, \|\psi\|_{L^{2}(\rho_{\mathcal{T}})} = 1} \langle\!\!\langle \psi, \psi \rangle\!\!\rangle > 0 \quad \text{(Coercivity condition)}$$

- Identifiability: $A^{-1}b \leftrightarrow L^{-1}_{\overline{G}_{\tau}}\phi^D$
 - RKHS $H_{\overline{G}} \subset L^2(\rho_T)$ [LangLu21]
 - DARTR: Data Adaptive RKHS Tikhonov Regularization

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Convergence rate

 $\mathbb{H} = L^2(\rho_T)$

Theorem (Numerical error bound [Lang-Lu20])

Let $\mathcal{H} = \operatorname{span}\{\phi_i\}_{i=1}^n \text{ s.t. } \|\widehat{\phi}_n - \phi\|_{\mathbb{H}} \lesssim n^{-s}$. Assume the coercivity condition on $\cup \mathcal{H}_n$. Then, with dimension $n \approx (\Delta x)^{-\alpha/(s+1)}$, we have:

$$\|\widehat{\phi}_{n,M,\infty} - \phi\|_{\mathbb{H}} \lessapprox (\Delta x)^{\alpha s/(s+1)}$$

- Δx^α comes from numerical integrator (e.g.,Riemann sum)
- Trade-off: numerical error v.s. approximation error

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Example 1: granular media $\phi(r) = 3r^2$

• near optimal rate ($\phi \in W^{1,\infty}$)

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Example 2: Opinion dynamics $\phi(r)$ piecewise linear

• sub-optimal rate ($\phi \notin W^{1,\infty}$)

Finite many particles

Mean-field equations

Learning with nonlocal dependence

low rate: theory does not apply

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Learning kernels in operators: regularization

Learn the kernel
$$\phi$$
: $R_{\phi}[u] = f$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \hspace{1em} (u_k, f_k) \in \mathbb{X} imes \mathbb{Y}$$

• R_{ϕ} linear in ϕ , but linear/nonlinear in u:

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = \partial_t u - \nu \Delta u$$

integral/nonlocal operators,... linear inverse problems

learning/inverse	problems

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Regularization

$$\begin{aligned} \mathcal{E}(\psi) &= \|\boldsymbol{R}_{\psi}[\boldsymbol{u}] - f\|_{\mathbb{Y}}^2 = \langle L_G \psi, \psi \rangle_{L^2(\rho)} - 2\langle \phi^f, \psi \rangle_{L^2(\rho)} \\ \nabla \mathcal{E}(\psi) &= L_G \psi - \phi^f = \mathbf{0} \quad \rightarrow \widehat{\phi} = L_G^{-1} \phi^f \end{aligned}$$

Regularization norm $\|\cdot\|_*$?

$$\mathcal{E}_{\lambda}(\psi) = \mathcal{E}(\psi) + \lambda \|\psi\|_{*}^{2}$$

learning/inverse	problems

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Regularization

$$\mathcal{E}(\psi) = \|\boldsymbol{R}_{\psi}[\boldsymbol{u}] - f\|_{\mathbb{Y}}^{2} = \langle L_{G}\psi, \psi \rangle_{L^{2}(\rho)} - 2\langle \phi^{f}, \psi \rangle_{L^{2}(\rho)}$$
$$\nabla \mathcal{E}(\psi) = L_{G}\psi - \phi^{f} = \mathbf{0} \quad \rightarrow \widehat{\phi} = L_{G}^{-1}\phi^{f}$$

Regularization norm $\|\cdot\|_*$?

$$\mathcal{E}_{\lambda}(\psi) = \mathcal{E}(\psi) + \lambda \|\psi\|_{*}^{2}$$

ANSWER: norm of the RKHS $H_G = L_G^{1/2} L^2(\rho)$ [Lu+Lang+An22]:

- search in the correct fun.space
- Data Adaptive RKHS Tikhonov Regularization

Finite many particles

Mean-field equations

Learning with nonlocal dependence

DARTR: Data Adaptive RKHS Tikhonov Regularization

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = f$$

- Recover kernel from discrete noisy data
- Consistent convergence as mesh refines

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Summary and future directions

Nonparametric learning of interaction kernels

- Finite N: ode/sde
- Mean-field equation
- Learning kernel in operators via regression:
 - probabilistic loss functionals
 - Identifiability
 - Convergence

DARTR: regularization for ill-posed linear inverse problems

Finite many particles

Mean-field equations

Learning with nonlocal dependence

Future directions/open questions

- Coercivity condition
- General IPS settings:
 - Aggression equations (inviscid MFE)
 - High-D, non-radial kernels (Monte Carlo)
 - Learning from stationary distributions
 - Multiple MFE solutions
 - Systems on graph
- kernels in operator
 - Convergence and Minimax rate?
 - DARTR in Bayesian inverse p
 - Applications: deconvolution, homogenization,...

Finite many particles

Mean-field equations

Learning with nonlocal dependence

References (@ http://www.math.jhu.edu/~feilu)

- Q. Lang and F. Lu. Learning interaction kernels in mean-field equations of 1st-order systems of interacting particles. SISC22

- Q. Lang and F. Lu. Identifiability of interaction kernels in mean-field equations of interacting particles. arXiv2106.

- F.Lu, Q .An and Y. Yu. Nonparametric learning of kernels in nonlocal operators. 2201

- F.Lu, Q .Lang and Q. An. Data adaptive RKHS Tikhonov regularization for learning kernels in operators. arXiv2203

- F. Lu, M. Maggioni and S. Tang. Learning interaction kernels in stochastic systems of interacting particles from multiple trajectories. FoCM21.

 - F. Lu, M. Maggioni and S. Tang: Learning interaction kernels in heterogeneous systems of agents from multiple trajectories. JMLR21

- Z. Li, F. Lu, M. Maggioni, S. Tang and C. Zhang: On the identifiability of interaction functions in systems of interacting particles. SPA21

- F. Lu, M Zhong, S Tang and M Maggioni. Nonparametric inference of interaction laws in systems of agents from trajectory data. PNAS19