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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

What is the law of interaction ?

mi ẍi (t) = −ẋi (t) +
1
N

N∑

j=1,j 6=i

Kφ(xi , xj ),

Kφ(x , y) = ∇x [Φ(|x − y |)] = φ(|x − y |) x−y
|x−y| .

Newton’s law of gravity φ(r) = G m1m2
r2

Lennard-Jones potential: Φ(r) = c1
r12 − c2

r6 .

flocking birds, bacteria/cells ?

opinion/voter/multi-agent models, ...? a

Infer the interaction kernel from data?
a(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-

sek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...
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Learn interaction kernel Kφ(x , y) = φ(|x − y |) x−y
|x−y |

dX i
t =

1
N

N∑

j=1

Kφ(X j
t ,X

i
t )dt +

√
2νdBi

t ⇔ Rφ(X t ) = Ẋ t −
√

2νḂt

Finite N: a

Data: M trajectories of particles : {X (m)
t1:tL}M

m=1

Statistical learning

ODE/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order

Large N (>> 1)b

Data: concentration density {u(xm, tl ) ≈ N−1∑
i δ(X i

tl − xm)}m,l

∂tu = ν∆u +∇ · [u(Kφ ∗ u)]

Inverse problem for PDE

a [Maggioni, Lu, Tang, Zhong, Miller, Li, Zhang: PNAS19, SPA20,FOC22,JMLR21] b [Lang-Lu 20,21]
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Learning kernels in operators: Rφ : X→ Y

dX i
t =

1
N

N∑

j=1

Kφ(X j
t ,X

i
t )dt +

√
2νdBi

t ⇔ Rφ(X t ) = Ẋ t −
√

2νḂt

∂tu = ν∆u +∇ · [u(Kφ ∗ u)] ⇔ Rφ[u(·, t)] = f (·, t)

Nonlocal dependence of data on kernels

r

ϕ(r)

r

ϕ(r)

Classical regression Learning kernel

values are
undetermined 

from data

Local dependence

{(ri, ϕ(ri) + ϵi)} {(uk, Rϕ[uk] + ηk)}
Nonlocal dependence

To learn kernel  in operator 
from discrete noisy data 

ϕ Rϕ[u] + η = f
{(uk, fk)}

x

ϕ(x)

x

ϕ(x)

Classical learning Learning kernel

Values are
undetermined 

from data

Local dependence

{(xi, ϕ(xi) + ϵi)} {(uk, Rϕ[uk] + ηk)}
Nonlocal dependence

u

R[u]

Operator learning

Local dependence

{(uk, R[uk] + ηk)}

Nonparametric learning:
Loss function? Identifiability? Convergence?

7 / 30



learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

Learning kernels in operators: Rφ : X→ Y

dX i
t =

1
N

N∑

j=1

Kφ(X j
t ,X

i
t )dt +

√
2νdBi

t ⇔ Rφ(X t ) = Ẋ t −
√

2νḂt
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Finite many particles

Rφ(X t ) = Ẋ t −
√

2νḂt & Data ⇒ φ̂n,M = arg min
ψ∈Hn

EM(ψ)
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observations in [0,T ]) =M ⇥L, each in RdN . We will consider
several regimes:
Many short time trajectories. T is small, L is small (e.g., L= 1),
and M is large (many ICs sampled from µ0);
Single large time trajectory. T is large (even comparable to the
relaxation time of the system if applicable), L is large, and M = 1
(or very small);
Intermediate time scale. T , L and M are all not small, but
none is very large, corresponding to multiple “medium”-length
trajectories, with several different ICs.

Randomness is injected via the ICs, and in our main results in
Section 3, the sample size will be M . If the system is ergodic, the
regimes above are partially related to each other, at least when
the ICs are sampled from the ergodic distribution µerg. Indeed,
at times much larger than the mixing time Tmix, the state of
the system becomes indistinguishable from a random sample of
µerg, and we may interpret the subsequent part of the trajectory
as a new trajectory with that IC. The M observed trajectories
of length T �Tmix are then equivalent to M ⇥T/Tmix tra-
jectories of length Tmix, to which our results apply. In regimes
when M is very small or µ0 is very concentrated, there is little
randomness: The problem is close to a fixed-design inverse prob-
lem, which is solvable if the dynamics produces different-enough
pairwise distances.

B. Example: Interacting Particles with the Lennard–Jones Poten-
tial. We illustrate the learning procedure on a particle system
with N = 7 particles in R2, interacting according to Eq. 1 with
�(r) =�0

LJ (r)/r , where �LJ (r) := 4✏
�
(�/r)12 � (�/r)6

�
is the

Lennard–Jones potential, consisting of a strong near-field repul-
sion and a long-range attraction. The system converges quickly
to equilibrium configurations, which often consist of ordered,
crystal-like structures. This example is challenging for various
reasons: the Interaction kernel is unbounded, has unbounded
support, and equilibrium is reached quickly, reducing the amount
of information in trajectories. SI Appendix, section 3B contains
a detailed description of the experiments. Fig. 1 demonstrates
that the estimators approximate the true kernel well in differ-
ent sampling regimes and that the trajectories of the true system
are well-approximated by those of the learned system both in
the “training” interval ([t0,T ]) and in the “prediction” inter-
val ([T , 50T ] and [T , 2T ] respectively for the two regimes). We
also show, as a simple example of transfer learning, that we
can use the interaction kernel learned on the system with N
particles to accurately predict trajectories of a system with 4N
particles.

The rate of decay of the estimation error is close to the
optimal rate in Thm. 3.3 (Fig. 2); this is a consequence of
two factors: the use of an empirical approximation to ⇢L

T and
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Fig. 1. Interaction kernel estimation and trajectory prediction for the Lennard–Jones system. (A and B) Estimators �̂ (in blue) of the true interaction kernel
� (in black) in two sampling regimes: many short-time trajectories (A) and a few large-time trajectories (B). The proposed nonparametric estimators perform
extremely well—the means and SDs of the relative L

2(⇢L

T
) errors are 6.6 · 10�2 ± 5.0 · 10�3 and 7.2 · 10�2 ± 1.0 · 10�2, respectively, over 10 independent

learning runs. The SD (dashed) lines on the estimated kernel are so small to be barely visible. In both cases, we superimpose histograms of ⇢L

T
(estimated

from a large number of trajectories, outside of training data) and ⇢L,M
T

(estimated from the M training data trajectories; SI Appendix, Eq. 5). The estimators
belong to a hypothesis space Hn of piecewise linear functions with equidistant knots and yield accurate estimators in L

2(⇢L

T
). Note that we observe the

dynamics starting from a suitable t0 > 0, due to the singularity of Lennard–Jones kernel at r = 0. See SI Appendix, section 3B for details about the setup and
results. (C and D) The true and predicted trajectories for the N-particle system (Upper) and a 4N-particle system (Lower) with interaction kernels learned
on the N-particle system, for randomly sampled ICs. C and D show true and predicted trajectories for systems with interaction kernels learned in A and B,
respectively. The blue-to-green color gradient indicates the movement of particles in time (see color scales on the side). We achieve small errors in predicting
the trajectories in all cases, even when we transfer the interaction kernel learned on an N-particle system to predict trajectories of a system with 4N particles.
Coord., coordinates.
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(a) � = 0.05, M = 128 (b) � = 0.25, M = 128

(c) � = 0.05, M = 1024 (d) � = 0.25, M = 1024

Fig. 7: (Stochastic Lennard Jones Dynamics) In each panel: true trajectory Xt (Left column) and learned tra-
jectory cXt (Right column) obtained with the true kernel � and the estimated kernel b� from M = 128 and 1024
trajectories, for an initial condition in the training data (Top row) and an initial condition randomly chosen (bottom
row). The black dot at t = 0.5 divides the “training” interval [0, 0.5] from the “prediction” interval [0.5,20]. The
trajectory prediction errors are small in all cases. The statistics of the errors are presented in Table 7.

[0, 0.5] [0.5, 20]

M = 128,� = 0.05, meantraj: Training ICs 3.1 · 10�2 ± 8.3 · 10�3 3.0 · 10�1 ± 3.9 · 10�1

M = 128,� = 0.05, meantraj: Random ICs 3.1 · 10�2 ± 9.3 · 10�3 3.1 · 10�1 ± 4.2 · 10�1

M = 128,� = 0.25, meantraj: Training ICs 5.5 · 10�1 ± 2.4 · 10�2 1.3 · 100 ± 7.5 · 10�1

M = 128,� = 0.25, meantraj: Random ICs 5.8 · 10�2 ± 2.3 · 10�2 1.3 · 100 ± 7.3 · 10�1

M = 1024,� = 0.05, meantraj: Training ICs 1.2 · 10�2 ± 3.4 · 10�3 1.7 · 10�1 ± 2.7 · 10�1

M = 1024,� = 0.05, meantraj: Random ICs 1.2 · 10�2 ± 3.6 · 10�3 1.5 · 10�1 ± 2.5 · 10�1

M = 1024,� = 0.25, meantraj: Training ICs 2.2 · 10�2 ± 6.2 · 10�3 3.2 · 10�1 ± 3.7 · 10�1

M = 1024,� = 0.25, meantraj: Random ICs 2.2 · 10�2 ± 6.4 · 10�3 3.2 · 10�1 ± 3.5 · 10�1

Table 7: (Stochastic Lennard Jones Dynamics) Trajectory Errors: ICs used in the training set (first two rows), new
ICs randomly drawn from µ0 (second set of two rows). Means are taken over the same number of trajectories as
in the training data set.

1, the right plot of Figure 8 shows that the absolute error of the estimator is of order close to the theoretical order
�O((�t)1/2).

5.3 Conclusions from the numerical experiments

Numerical results show that in case of continuous-time observations, the algorithm effectively estimates the inter-
action kernel, achieves the near-optimal learning rate in M , is robust to different magnitudes of the random noise,
and the system with the estimated kernels accurately predicts trajectories. In case of discrete-time observations,
the estimator has an estimation error of order �t1/2, due to the discretization error in the approximation of the
likelihood ratio. These numerical results are in full agreement with the learning theory in Section 3–4:

32

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

coercivity condition holds true with cL,N ,H = (N�1)(N�2)

N2 cH +
N�1
N2 , where cH is independent of N , is positive for any compact

H⇢L2(⇢L
T ), and is zero for H =L2(⇢L

T ).

In this setting, the analysis of the coercivity constant cL,N ,H
is based on the exchangeability of the initial distribution of the
agents and relates coercivity to a positive integral kernel:

Lemma 3.2. Let X ,Y ,Z be exchangeable Gaussian random

vectors in Rd
with cov(X )� cov(X ,Y ) =�Id for a constant

�> 0. Suppose L= 1. Then, there is a positive definite integral

kernel K(r , s) : R+ ⇥R+ !R such that for any g 2L2(⇢L
T )

E [g(|X �Y |)g(|X �Z |)hX �Y ,X �Z i]

=

ZZ
g(r)rg(s)sK(r , s)drds,

where ⇢L
T (r)/ rd�1e�r2/3

, since L= 1. Therefore, there exists

cH � 0, depending only on H⇢L2(⇢L
T ), such that for g 2H

ZZ
g(r)rg(s)sK(r , s)drds � cHkg(·) · k2

L2(⇢L
T ),

and cH > 0 if H is compact in L2(⇢L
T ).

We conclude that under the assumptions of Thm. 3.1, if H is
compact, then cL,N ,H is bounded below uniformly in N .

C. Optimal Rates of Convergence. The classical bias–variance
trade-off in statistical estimation guides the selection of a hypoth-
esis space H, whose dimension will depend on M , the number
of observed trajectories. On the one hand, H should be large
so that the bias (distance between the true kernel � and H) is
small; on the other hand, H should be small so that variance
of the estimator is small. In the extreme case where H = KR,S ,
the bias is 0, the variance of the estimator dominates, and we
obtain the bound E[kb�L,M ,H(·) ·��(·) · kL2(⇢L

T )]CM�1/4 (SI

Appendix, Prop. 1.5). In fact, significantly better rates may be
achieved for regular �’s:

Theorem 3.3. Assume that �2KR,S . Let {Hn}n be a

sequence of subspaces of L1([0,R]), with dim(Hn) c0n and

inf'2Hn k'��kL1([0,R])  c1n
�s , for some constants c0, c1, s >

0. Assume that the coercivity condition holds on H : =[1
n=1Hn .

Such a sequence exists, for example, if � is s-Hölder regu-

lar, and can be chosen so that H is compact in L2(⇢L
T ).

Choose n⇤ = (M /log M )1/(2s+1)
. Then, there exists a constant

C =C (c0, c1,R,S) such that

E
h
kb�L,M ,Hn⇤ (·) ·��(·) · k

L2(⇢L
T )

i
 C

cL,N ,H

✓
log M

M

◆ s
2s+1

. [7]

The rate [i.e., the exponent s/(2s + 1)] we achieve is opti-

mal: It coincides with the minimax rate in the classical regres-
sion setting, where one can observe directly noisy values of
an s-Hölder regression function at the sample points. We
obtain this optimal rate, even if we do not observe the val-
ues {�(rm

ii0(tl))}l,i,i0,m , but a “mixture” of them in the observed
trajectory data. Many choices of {Hn} are consistent with the
requirements in the theorem, e.g., splines on increasingly finer
grids, or band-limited functions with increasing frequency limits.
These choices affect the constants in Eq. 7, the computational
complexity of computing b�L,M ,Hn⇤ , but not the rate in M .
While the rate is independent of the dimension dN of the state
space, the constant may depend on d and N via cL,N ,H. How-
ever, we expect that under rather general conditions, beyond
those in Thm. 3.1, cL,N ,H is, in fact, lower-bounded indepen-
dently of N for any compact subset H of L2(⇢L

T ) and is a
fundamental property of the mean field limit (N !1) of the
system.

One shortcoming of our result is that the rate is not a func-
tion of the total number of observations, which is O(LN 2M )
(we have LN 2/2 pairwise distances for each of the M tra-
jectories), but only of M , the number of random samples.
Numerical experiments (see Fig. 3 and similar experiments for
the other systems, reported in SI Appendix) suggest that the
estimator improves as L increases, at least to a point, lim-
ited by the “information” in a single trajectory. Comparing to
ref. 17, where the mean field limit N !1, M = 1, is studied,
we see the rates in ref. 17 seem no better than N�1/d , i.e.,
they are cursed by dimension. So are sparsity-based inference
techniques such as those in refs. 6–8, 11, and 18, which also
require a good dictionary of template functions, are not non-
parametric (at least in the form therein presented), and lack
performance guarantees, except in some cases under stringent
assumptions.

Our work here may be compared with the classical parame-
ter estimation problem for the ODE models (19–22), where one
is interested in estimating the vector parameter ✓ in the ODE
model Ẋ = f (X(t), t ,✓) from the observation of a single noisy
trajectory. Our error functional, in spirit, is the same with the
gradient-matching method (also called the two-stage method)
used in the parameter-estimation problems (23–27). A chal-
lenging problem is the identifiability of ✓. We refer the reader
(28) for the statistical analysis and (29) (and references therein)
for a comprehensive survey of this topic. However, the prob-
lem and approach we considered here are different from the
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Fig. 4. Opinion dynamics. (Upper) Comparison between true and estimated
interaction kernel, together with histograms for ⇢L

T
and ⇢L,M

T
. The mean and

SD of the relative error for the interaction kernel are 1.6 · 10�1 ± 2.3 · 10�3

over 10 independent learning runs. The SD lines (in dashed lines) on the esti-
mated kernel are so small to be barely visible. (Lower) Trajectories X(t) and
bX(t) obtained with � and �̂, respectively, for an IC in the training data (top
row) and an IC randomly chosen (bottom row). The black dashed vertical line
at t = T divides the “training” interval [0, T] from the “prediction” interval
[T , Tf ] (which in this case, Tf = 2T). We achieve small errors in all cases, in
particular predicting number and location of clusters for large time.
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(a) M = 32,� = 0.1 (b) M = 32,� = 0.5

(c) M = 4096,� = 0.1 (d) M = 4096,� = 0.5

Fig. 3: Stochastic opinion dynamics: trajectory prediction. In each panel: Xt (left column) and cXt (right column)
obtained with the true kernel � and the estimated interaction kernel b�T,M,H from M = 32 (top panel) and 4096
(bottom panel) trajectories, for an initial condition in the training data (top row in each panel) and a (new) initial
condition randomly chosen from µ0 (bottom row in each panel). The black dashed vertical line at t = T = 5
divides the “training” interval [0, T ] from the “prediction” interval [5,50]. As M increases, our estimators achieve
better approximation of the true kernel overall, and at regions near 0 (see Figure 2). As a result, they produced
more faithful prediction of the number and location of clusters for large time. Statistics of trajectory prediction
errors are reported in Table 4.

the level of noise. We believe that the reason for this phenomenon is that due to the structure of the equations, we
have terms of the form �(0)0 = 0 at, and near, 0, with subsequent loss of information about the interaction kernel
about 0.

We then use the learned interaction kernels b� in Figure 2 to predict the dynamics, and summarize the results
in Figure 3 and Table 4. Even with M = 32, our estimator produces very accurate approximations of the true
trajectories both in the training time interval [0, 5] and the future time interval [5, 50], including number and
location of clusters, and the time of their formation. As M increases to 4096, we have more accurate predictions
on the locations of clusters. We impute this improvement to the better reconstruction of estimators at locations
near 0.

Next we investigate the convergence rate of estimators. It is well-known in approximation theory (see Theorem
6.1 in [50]) that inf'2Hn k' � �k1  Lip[�]n�1. With the dimension n being proportional to ( M

log M )
1
3 , Figure

4 shows that the learning rate in terms of M is around M�0.34, which matches the optimal min-max rate M� 1
3

stated in Theorem 3.2 with s = 1.
We also study the convergence of the estimator as the length of the trajectory T increases, for the estimator

b�T,M,H from continuous-time trajectories (i.e. without gaps between observations). The auto-correlation time
for this system is estimated to be about ⌧ = 10 time units. Therefore, we use relatively long trajectories up to
T = 1500 time units to test the convergence, contributing up to about 150 effective samples. We set the dimension
of the hypothesis space to be n = 4( MT/dt

log(MT/dt) )
1
3 for each pair (M, T ), where dt is the time step size of the Euler-

Maruyama scheme. The convergence rate of the estimators in terms of MT is about 0.33, showing the equivalence
of learning from a single long trajectory with multiple short trajectories when the underlying process is ergodic.

28

Loss function (log-likelihood, or mse for ODE)
Regression: with ψ =

∑
i ciφi ∈ Hn = span{φi}n

i=1:

E(ψ) = c>Ac − 2b>c ⇒ φ̂n,M =
n∑

i=1

ĉiφi , ĉ = A−1b

I Choice of Hn & function space of learning?
I Well-posed/ identifiability?
I Convergence and rate?
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Intermediate time scale. T , L and M are all not small, but
none is very large, corresponding to multiple “medium”-length
trajectories, with several different ICs.

Randomness is injected via the ICs, and in our main results in
Section 3, the sample size will be M . If the system is ergodic, the
regimes above are partially related to each other, at least when
the ICs are sampled from the ergodic distribution µerg. Indeed,
at times much larger than the mixing time Tmix, the state of
the system becomes indistinguishable from a random sample of
µerg, and we may interpret the subsequent part of the trajectory
as a new trajectory with that IC. The M observed trajectories
of length T �Tmix are then equivalent to M ⇥T/Tmix tra-
jectories of length Tmix, to which our results apply. In regimes
when M is very small or µ0 is very concentrated, there is little
randomness: The problem is close to a fixed-design inverse prob-
lem, which is solvable if the dynamics produces different-enough
pairwise distances.

B. Example: Interacting Particles with the Lennard–Jones Poten-
tial. We illustrate the learning procedure on a particle system
with N = 7 particles in R2, interacting according to Eq. 1 with
�(r) =�0

LJ (r)/r , where �LJ (r) := 4✏
�
(�/r)12 � (�/r)6

�
is the

Lennard–Jones potential, consisting of a strong near-field repul-
sion and a long-range attraction. The system converges quickly
to equilibrium configurations, which often consist of ordered,
crystal-like structures. This example is challenging for various
reasons: the Interaction kernel is unbounded, has unbounded
support, and equilibrium is reached quickly, reducing the amount
of information in trajectories. SI Appendix, section 3B contains
a detailed description of the experiments. Fig. 1 demonstrates
that the estimators approximate the true kernel well in differ-
ent sampling regimes and that the trajectories of the true system
are well-approximated by those of the learned system both in
the “training” interval ([t0,T ]) and in the “prediction” inter-
val ([T , 50T ] and [T , 2T ] respectively for the two regimes). We
also show, as a simple example of transfer learning, that we
can use the interaction kernel learned on the system with N
particles to accurately predict trajectories of a system with 4N
particles.

The rate of decay of the estimation error is close to the
optimal rate in Thm. 3.3 (Fig. 2); this is a consequence of
two factors: the use of an empirical approximation to ⇢L

T and
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Fig. 1. Interaction kernel estimation and trajectory prediction for the Lennard–Jones system. (A and B) Estimators �̂ (in blue) of the true interaction kernel
� (in black) in two sampling regimes: many short-time trajectories (A) and a few large-time trajectories (B). The proposed nonparametric estimators perform
extremely well—the means and SDs of the relative L

2(⇢L

T
) errors are 6.6 · 10�2 ± 5.0 · 10�3 and 7.2 · 10�2 ± 1.0 · 10�2, respectively, over 10 independent

learning runs. The SD (dashed) lines on the estimated kernel are so small to be barely visible. In both cases, we superimpose histograms of ⇢L

T
(estimated

from a large number of trajectories, outside of training data) and ⇢L,M
T

(estimated from the M training data trajectories; SI Appendix, Eq. 5). The estimators
belong to a hypothesis space Hn of piecewise linear functions with equidistant knots and yield accurate estimators in L

2(⇢L

T
). Note that we observe the

dynamics starting from a suitable t0 > 0, due to the singularity of Lennard–Jones kernel at r = 0. See SI Appendix, section 3B for details about the setup and
results. (C and D) The true and predicted trajectories for the N-particle system (Upper) and a 4N-particle system (Lower) with interaction kernels learned
on the N-particle system, for randomly sampled ICs. C and D show true and predicted trajectories for systems with interaction kernels learned in A and B,
respectively. The blue-to-green color gradient indicates the movement of particles in time (see color scales on the side). We achieve small errors in predicting
the trajectories in all cases, even when we transfer the interaction kernel learned on an N-particle system to predict trajectories of a system with 4N particles.
Coord., coordinates.
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(a) � = 0.05, M = 128 (b) � = 0.25, M = 128

(c) � = 0.05, M = 1024 (d) � = 0.25, M = 1024

Fig. 7: (Stochastic Lennard Jones Dynamics) In each panel: true trajectory Xt (Left column) and learned tra-
jectory cXt (Right column) obtained with the true kernel � and the estimated kernel b� from M = 128 and 1024
trajectories, for an initial condition in the training data (Top row) and an initial condition randomly chosen (bottom
row). The black dot at t = 0.5 divides the “training” interval [0, 0.5] from the “prediction” interval [0.5,20]. The
trajectory prediction errors are small in all cases. The statistics of the errors are presented in Table 7.

[0, 0.5] [0.5, 20]

M = 128,� = 0.05, meantraj: Training ICs 3.1 · 10�2 ± 8.3 · 10�3 3.0 · 10�1 ± 3.9 · 10�1

M = 128,� = 0.05, meantraj: Random ICs 3.1 · 10�2 ± 9.3 · 10�3 3.1 · 10�1 ± 4.2 · 10�1

M = 128,� = 0.25, meantraj: Training ICs 5.5 · 10�1 ± 2.4 · 10�2 1.3 · 100 ± 7.5 · 10�1

M = 128,� = 0.25, meantraj: Random ICs 5.8 · 10�2 ± 2.3 · 10�2 1.3 · 100 ± 7.3 · 10�1

M = 1024,� = 0.05, meantraj: Training ICs 1.2 · 10�2 ± 3.4 · 10�3 1.7 · 10�1 ± 2.7 · 10�1

M = 1024,� = 0.05, meantraj: Random ICs 1.2 · 10�2 ± 3.6 · 10�3 1.5 · 10�1 ± 2.5 · 10�1

M = 1024,� = 0.25, meantraj: Training ICs 2.2 · 10�2 ± 6.2 · 10�3 3.2 · 10�1 ± 3.7 · 10�1

M = 1024,� = 0.25, meantraj: Random ICs 2.2 · 10�2 ± 6.4 · 10�3 3.2 · 10�1 ± 3.5 · 10�1

Table 7: (Stochastic Lennard Jones Dynamics) Trajectory Errors: ICs used in the training set (first two rows), new
ICs randomly drawn from µ0 (second set of two rows). Means are taken over the same number of trajectories as
in the training data set.

1, the right plot of Figure 8 shows that the absolute error of the estimator is of order close to the theoretical order
�O((�t)1/2).

5.3 Conclusions from the numerical experiments

Numerical results show that in case of continuous-time observations, the algorithm effectively estimates the inter-
action kernel, achieves the near-optimal learning rate in M , is robust to different magnitudes of the random noise,
and the system with the estimated kernels accurately predicts trajectories. In case of discrete-time observations,
the estimator has an estimation error of order �t1/2, due to the discretization error in the approximation of the
likelihood ratio. These numerical results are in full agreement with the learning theory in Section 3–4:
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coercivity condition holds true with cL,N ,H = (N�1)(N�2)

N2 cH +
N�1
N2 , where cH is independent of N , is positive for any compact

H⇢L2(⇢L
T ), and is zero for H =L2(⇢L

T ).

In this setting, the analysis of the coercivity constant cL,N ,H
is based on the exchangeability of the initial distribution of the
agents and relates coercivity to a positive integral kernel:

Lemma 3.2. Let X ,Y ,Z be exchangeable Gaussian random

vectors in Rd
with cov(X )� cov(X ,Y ) =�Id for a constant

�> 0. Suppose L= 1. Then, there is a positive definite integral

kernel K(r , s) : R+ ⇥R+ !R such that for any g 2L2(⇢L
T )

E [g(|X �Y |)g(|X �Z |)hX �Y ,X �Z i]

=

ZZ
g(r)rg(s)sK(r , s)drds,

where ⇢L
T (r)/ rd�1e�r2/3

, since L= 1. Therefore, there exists

cH � 0, depending only on H⇢L2(⇢L
T ), such that for g 2H

ZZ
g(r)rg(s)sK(r , s)drds � cHkg(·) · k2

L2(⇢L
T ),

and cH > 0 if H is compact in L2(⇢L
T ).

We conclude that under the assumptions of Thm. 3.1, if H is
compact, then cL,N ,H is bounded below uniformly in N .

C. Optimal Rates of Convergence. The classical bias–variance
trade-off in statistical estimation guides the selection of a hypoth-
esis space H, whose dimension will depend on M , the number
of observed trajectories. On the one hand, H should be large
so that the bias (distance between the true kernel � and H) is
small; on the other hand, H should be small so that variance
of the estimator is small. In the extreme case where H = KR,S ,
the bias is 0, the variance of the estimator dominates, and we
obtain the bound E[kb�L,M ,H(·) ·��(·) · kL2(⇢L

T )]CM�1/4 (SI

Appendix, Prop. 1.5). In fact, significantly better rates may be
achieved for regular �’s:

Theorem 3.3. Assume that �2KR,S . Let {Hn}n be a

sequence of subspaces of L1([0,R]), with dim(Hn) c0n and

inf'2Hn k'��kL1([0,R])  c1n
�s , for some constants c0, c1, s >

0. Assume that the coercivity condition holds on H : =[1
n=1Hn .

Such a sequence exists, for example, if � is s-Hölder regu-

lar, and can be chosen so that H is compact in L2(⇢L
T ).

Choose n⇤ = (M /log M )1/(2s+1)
. Then, there exists a constant

C =C (c0, c1,R,S) such that

E
h
kb�L,M ,Hn⇤ (·) ·��(·) · k

L2(⇢L
T )

i
 C

cL,N ,H

✓
log M

M

◆ s
2s+1

. [7]

The rate [i.e., the exponent s/(2s + 1)] we achieve is opti-

mal: It coincides with the minimax rate in the classical regres-
sion setting, where one can observe directly noisy values of
an s-Hölder regression function at the sample points. We
obtain this optimal rate, even if we do not observe the val-
ues {�(rm

ii0(tl))}l,i,i0,m , but a “mixture” of them in the observed
trajectory data. Many choices of {Hn} are consistent with the
requirements in the theorem, e.g., splines on increasingly finer
grids, or band-limited functions with increasing frequency limits.
These choices affect the constants in Eq. 7, the computational
complexity of computing b�L,M ,Hn⇤ , but not the rate in M .
While the rate is independent of the dimension dN of the state
space, the constant may depend on d and N via cL,N ,H. How-
ever, we expect that under rather general conditions, beyond
those in Thm. 3.1, cL,N ,H is, in fact, lower-bounded indepen-
dently of N for any compact subset H of L2(⇢L

T ) and is a
fundamental property of the mean field limit (N !1) of the
system.

One shortcoming of our result is that the rate is not a func-
tion of the total number of observations, which is O(LN 2M )
(we have LN 2/2 pairwise distances for each of the M tra-
jectories), but only of M , the number of random samples.
Numerical experiments (see Fig. 3 and similar experiments for
the other systems, reported in SI Appendix) suggest that the
estimator improves as L increases, at least to a point, lim-
ited by the “information” in a single trajectory. Comparing to
ref. 17, where the mean field limit N !1, M = 1, is studied,
we see the rates in ref. 17 seem no better than N�1/d , i.e.,
they are cursed by dimension. So are sparsity-based inference
techniques such as those in refs. 6–8, 11, and 18, which also
require a good dictionary of template functions, are not non-
parametric (at least in the form therein presented), and lack
performance guarantees, except in some cases under stringent
assumptions.

Our work here may be compared with the classical parame-
ter estimation problem for the ODE models (19–22), where one
is interested in estimating the vector parameter ✓ in the ODE
model Ẋ = f (X(t), t ,✓) from the observation of a single noisy
trajectory. Our error functional, in spirit, is the same with the
gradient-matching method (also called the two-stage method)
used in the parameter-estimation problems (23–27). A chal-
lenging problem is the identifiability of ✓. We refer the reader
(28) for the statistical analysis and (29) (and references therein)
for a comprehensive survey of this topic. However, the prob-
lem and approach we considered here are different from the
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Fig. 4. Opinion dynamics. (Upper) Comparison between true and estimated
interaction kernel, together with histograms for ⇢L

T
and ⇢L,M

T
. The mean and

SD of the relative error for the interaction kernel are 1.6 · 10�1 ± 2.3 · 10�3

over 10 independent learning runs. The SD lines (in dashed lines) on the esti-
mated kernel are so small to be barely visible. (Lower) Trajectories X(t) and
bX(t) obtained with � and �̂, respectively, for an IC in the training data (top
row) and an IC randomly chosen (bottom row). The black dashed vertical line
at t = T divides the “training” interval [0, T] from the “prediction” interval
[T , Tf ] (which in this case, Tf = 2T). We achieve small errors in all cases, in
particular predicting number and location of clusters for large time.
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(a) M = 32,� = 0.1 (b) M = 32,� = 0.5

(c) M = 4096,� = 0.1 (d) M = 4096,� = 0.5

Fig. 3: Stochastic opinion dynamics: trajectory prediction. In each panel: Xt (left column) and cXt (right column)
obtained with the true kernel � and the estimated interaction kernel b�T,M,H from M = 32 (top panel) and 4096
(bottom panel) trajectories, for an initial condition in the training data (top row in each panel) and a (new) initial
condition randomly chosen from µ0 (bottom row in each panel). The black dashed vertical line at t = T = 5
divides the “training” interval [0, T ] from the “prediction” interval [5,50]. As M increases, our estimators achieve
better approximation of the true kernel overall, and at regions near 0 (see Figure 2). As a result, they produced
more faithful prediction of the number and location of clusters for large time. Statistics of trajectory prediction
errors are reported in Table 4.

the level of noise. We believe that the reason for this phenomenon is that due to the structure of the equations, we
have terms of the form �(0)0 = 0 at, and near, 0, with subsequent loss of information about the interaction kernel
about 0.

We then use the learned interaction kernels b� in Figure 2 to predict the dynamics, and summarize the results
in Figure 3 and Table 4. Even with M = 32, our estimator produces very accurate approximations of the true
trajectories both in the training time interval [0, 5] and the future time interval [5, 50], including number and
location of clusters, and the time of their formation. As M increases to 4096, we have more accurate predictions
on the locations of clusters. We impute this improvement to the better reconstruction of estimators at locations
near 0.

Next we investigate the convergence rate of estimators. It is well-known in approximation theory (see Theorem
6.1 in [50]) that inf'2Hn k' � �k1  Lip[�]n�1. With the dimension n being proportional to ( M

log M )
1
3 , Figure

4 shows that the learning rate in terms of M is around M�0.34, which matches the optimal min-max rate M� 1
3

stated in Theorem 3.2 with s = 1.
We also study the convergence of the estimator as the length of the trajectory T increases, for the estimator

b�T,M,H from continuous-time trajectories (i.e. without gaps between observations). The auto-correlation time
for this system is estimated to be about ⌧ = 10 time units. Therefore, we use relatively long trajectories up to
T = 1500 time units to test the convergence, contributing up to about 150 effective samples. We set the dimension
of the hypothesis space to be n = 4( MT/dt

log(MT/dt) )
1
3 for each pair (M, T ), where dt is the time step size of the Euler-

Maruyama scheme. The convergence rate of the estimators in terms of MT is about 0.33, showing the equivalence
of learning from a single long trajectory with multiple short trajectories when the underlying process is ergodic.

28

Loss function (log-likelihood, or mse for ODE)
Regression: with ψ =

∑
i ciφi ∈ Hn = span{φi}n

i=1:

E(ψ) = c>Ac − 2b>c ⇒ φ̂n,M =
n∑

i=1

ĉiφi , ĉ = A−1b

I Choice of Hn & function space of learning?
I Well-posed/ identifiability?
I Convergence and rate?
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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

Classical learning theory

Given: Data{(xm, ym)}M
m=1 ∼ (X ,Y )

Goal: find f s.t. Y = f (X )

E(f ) = E|Y − f (X )|2 = ‖f − ftrue‖2
L2(ρX )

Learning kernel

Given: Data{X (m)
[0,T ]}M

m=1

Goal: find φ s.t. Ẋ t = Rφ(X t )

E(φ) = E|Ẋ − Rφ(X )|2 6=‖φ− φtrue‖2
L2(ρ)

Minimization: f =
∑n

i=1 ciφi ∈ Hn, ∇EM = 0⇒ f̂n,M =
∑

i ĉiφi .

Function space: L2(ρX ).

Identifiability:
E[Y |X = x ] = arg min

f∈L2(ρX )

E(f ).

A ≈ E[φi (X )φj (X )] = In by
setting {φi} ONB in L2(ρX ).

Error bounds for f̂nM

Function space: L2(ρ).
measure ρ ∼ |X i − X j |
Identifiability: arg min

φ∈L2(ρ)

E(φ)??

A ≈ E[Rφi (X )Rφj (X )]≈In ??
A Coercivity condition

Error bounds for φ̂nM ?
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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

Assume a coercivity condition on H
〈〈φ, φ〉〉 = E[Rφ(X )Rφ(X )] ≥ cH‖φ‖2

L2(ρ), ∀φ ∈ H

cH = 1
N−2 for H = L2(ρ) for some (LLMTZ21); open

Theorem (LZTM19,LMT22)
Let {Hn} compact convex in L∞ with dist(φtrue,Hn) ∼ n−s. Assume
the coercivity condition ∪nHn. Choose n∗ = (M/log M)

1
2s+1 . Then

Eµ0 [‖φ̂M,Hn∗ − φtrue‖L2(ρ)] ≤ C
(

log M
M

) s
2s+1

.

Concentration for r.v. or martingale

dim(Hn) adaptive to s (φ ∈ Cs ) and M:

Colloquium, Virginia Tech

Approximation Theory
Suppose � is s- Hölder.

{Hn}n ⇢ L1[0, R]

dim(Hn)  c0n

inf
'2Hn

k'� �k1  c1n
�s

Question
Given Xtraj,M , how to pick up Hn⇤ ?

Sui Tang — Learning dynamics in high dimensional dynamical systems 22/34
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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

Lennard-Jones kernel estimators:
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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

Inverse problem for Mean-field PDE

Goal: Identify φ from discrete data {u(xm, tl)}M,Lm,l=1 of

∂tu = ν∆u +∇ · [u(Kφ ∗ u)], x ∈ Rd , t > 0,

where Kφ(x) = ∇(Φ(|x |)) = φ(|x |) x
|x | .
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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

Loss functional

∂tu = ν∆u +∇ · [u(Kφ ∗ u)]

Candidates:

Discrepancy: E(ψ) = ‖∂tu − ν∆u −∇.(u(Kψ ∗ u))‖2

Free energy: E(ψ) = C + |
∫
Rd u[(Ψ− Φ) ∗ u]dx |2

Wasserstein-2: E(ψ) = W2(uψ,u)
costly: requires many PDE simulations in optimization

A probabilistic loss functional
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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

A probabilistic loss functional

E(ψ) :=
1
T

∫ T

0

∫

Rd

[∣∣Kψ ∗ u
∣∣2u − 2νu(∇ · Kψ ∗ u) + 2∂tu(Ψ ∗ u)

]
dx dt

= −E[ log-likelihood ] of the process
{

dX t =− Kφtrue ∗ u(X t , t)dt +
√

2νdBt ,

L(X t ) = u(·, t),

Derivative free

Suitable for high dimension

Kψ ∗ u(X t ) = E[Kψ(X t − X
′
t )|X t ]
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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

Nonparametric regression
E(ψ) = 〈〈ψ,ψ〉〉 − 2 〈〈ψ, φ〉〉 ,

LS-regression ψ =
∑n

i=1 ciφi ∈ Hn:

E(ψ) = c>Ac − 2b>c ⇒ φ̂n,M =
n∑

i=1

ĉiφi , ĉ = A−1b

Choice of Hn & function space of learning?

Inverse problem well-posed/ identifiability?

Convergence and rate? ∆x = M−1/d → 0
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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

Identifiability

Aij = 〈〈φi , φj〉〉 =

∫

R+

∫

R+

φi (r)ψj (s)GT (r , s)ρT (dr)ρT (ds)

= 〈LGT
φi , φj〉L2(ρT )

Exploration measure ρT ← |X t − X
′
t |

Positive compact operator LGT

I normal matrix A ∼ LGT
|H in L2(ρT )

cH,T = inf
ψ∈H,‖ψ‖L2(ρT )

=1
〈〈ψ,ψ〉〉 > 0 (Coercivity condition)

Identifiability: A−1b ↔ L−1
GT
φD

I RKHS HG ⊂ L2(ρT ) [LangLu21]

I DARTR: Data Adaptive RKHS Tikhonov Regularization
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learning/inverse problems Finite many particles Mean-field equations Learning with nonlocal dependence

Convergence rate
H = L2(ρT )

Theorem (Numerical error bound [Lang-Lu20])

Let H = span{φi}n
i=1 s.t. ‖φ̂n − φ‖H / n−s . Assume the coercivity

condition on ∪Hn. Then, with dimension n ≈ (∆x)−α/(s+1), we have:

‖φ̂n,M,∞ − φ‖H / (∆x)αs/(s+1)

∆xα comes from numerical integrator (e.g.,Riemann sum)

Trade-off: numerical error v.s. approximation error
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Example 1: granular media φ(r) = 3r2
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Example 2: Opinion dynamics φ(r) piecewise linear
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Example 3: repulsion-attraction φ(r) = r − r−1.5 (singular)
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Learning kernels in operators: regularization

Learn the kernel φ: Rφ[u] = f

from data: D = {(uk , fk )}Nk=1, (uk , fk ) ∈ X× Y

Rφ linear in φ, but linear/nonlinear in u:

Rφ[u] = ∇ · [u(Kφ ∗ u)] = ∂tu − ν∆u

integral/nonlocal operators,... linear inverse problems
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Regularization

E(ψ) = ‖Rψ[u]− f‖2Y = 〈LGψ,ψ〉L2(ρ) − 2〈φf , ψ〉L2(ρ)

∇E(ψ) = LGψ − φf = 0 → φ̂ = L−1
G φf

Regularization norm ‖ · ‖∗?

Eλ(ψ) = E(ψ) + λ‖ψ‖2∗

ANSWER: norm of the RKHS HG = L1/2
G L2(ρ) [Lu+Lang+An22]:

search in the correct fun.space
Data Adaptive RKHS Tikhonov Regularization
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DARTR: Data Adaptive RKHS Tikhonov Regularization

Rφ[u] = ∇ · [u(Kφ ∗ u)] = f

Recover kernel from discrete noisy data
Consistent convergence as mesh refines

Convergence of Estimators, nsr = 0.1 & 1  Convergence Rates

MF Operator

Typical estimators,   Δx = 0.05
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Summary and future directions

Nonparametric learning of interaction kernels
Finite N: ode/sde
Mean-field equation

Learning kernel in operators via regression:
probabilistic loss functionals
Identifiability
Convergence

DARTR: regularization for ill-posed linear inverse problems
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Future directions/open questions

Coercivity condition

General IPS settings:
I Aggression equations (inviscid MFE)
I High-D, non-radial kernels (Monte Carlo)
I Learning from stationary distributions
I Multiple MFE solutions
I Systems on graph

kernels in operator
I Convergence and Minimax rate?
I DARTR in Bayesian inverse p
I Applications: deconvolution, homogenization,...
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