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Introduction to 

Reservoir Computers (RC)



What can a reservoir computer do? (1)

FAST operation

Lorenz chaotic 

trajectory 

x(t)
z 

y 
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r(t)= (r1,r1,...,rN)

x(t)
y(t)
z(t)

z(t)=

FAST training
Only train output weights

Reservoir is unchanged



What can a reservoir computer do? (2)

• RC can be 
physical systems.
Dynamical Systems

FAST operation

Lorenz chaotic 

trajectory 

x(t)

z 

y 

x 

x(t)
y(t)
z(t)

z(t)=

FAST training

Drive with one signal from  a
Dynamical system and reproduce
The other signals, i.e. the whole
trajectory !

Neuronal Networks



RC embeddings



Takens theorem (1981)

z

y

x

x(t)

v1=[x(t), x(t-τ), x(t-2τ),..., x(t-(d-1)τ)], 

v2=[x(t+τ), x(t), x(t-2τ),..., x(t-(d)τ)],

v3=[x(t+2τ), x(t+3τ), x(t+4τ),..., x(t-(d+1)τ)],

...

pick a time delay (τ) and dimension (d)Original 
attractor 

d

Reconstructed 
attractor 

Dynamical and geometric 
properties of Original attractor 

are also the same in the 
Reconstructed attractor.

What time delay (τ) and dimension (d) to use?
Still not fully worked out.

diffeomorphism
(continuous, differentiable, inverse)

Whitney Embedding Theorem

φ



Develop a mathematical model that will expose the nonlinear dynamics of RC
and the underlying geometric structure.

drive RC

network of 

N linked 

dynamical 

nodes

r(t)= f[u(t-1), r(t-1)]

map

We want the sequence to converge to the same point as n increases since we expect the RC to be

in generalized synchronization.  Using the Cauchy condition on the initial value r0 we need to have 

for a choice of and for k and l large enough.

map

Uniformly convergent. r(t) is unique and inherits properties of {gl}

=> dynamically driven RCs can reconstruct the attractor of the drive system

r(t)= f[u(t-1), r(t-1)]



Lorenz-Poly system 100 polynomial, 1 dimensional nodes

y

x

Lorenz drive 

r3

r1

Poly reservoir

Reconstructing an attractor using RC 

Theorems don't cover many cases of  drive-RC systems. 

And they don't necessarily give quantitative information 

for the system.

How can we gauge the relationship between the drive 

and RC given generated time series or data?

We need statistics to gauge continuity and differentiability

and other mathematical properties from data/time series.



The continuity and 

differentiability statistics 

and other measures of  and 

RCs and embeddings



y

x

Lorenz drive 

r3

r1

Poly reservoir

Reconstructing an attractor using RC 

continuous 

differentiable

invertible

inv. continuous 

inv. differentiable

diffeomorphism

𝜙 ?



A Continuity Statistic

A function f(x) is continuous at a point x0

Not functions, but two simultaneous vector data sets (time series)

{y(t)} and {r(t)} t=1,2,3,... from drive D and from reservoir R
drive reservoir

drive reservoir

drive RC

f



A Continuity Statistic

A function f(x) is continuous at a point x0

Null Hypothesis:  points are 

mapped into ε set with prob. pε

pε=0.5 a coin flip

nε=6 to reject Null at 0.98

εi<     >=  ε* ε*/εmin
ε*/σstdor : continuity statistic

y(ti) r(ti)

D R

tk

tk

δi εi

C 0 ?

These statistics depend on the amount of data.  We cannot let ε➛0.



A Continuity Statistic
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A Differentiability Statistic

A function f(x) is differentiable at a point x0 if local points

are approximated by a linear map from  x0 ,

i.e. there is a tangent space.

Use local points from the continuity statistic to see what dimension the 

the Singular Values of the differences from x0 are.  

y(ti) r(ti)

D R

tk

tk

δi εi

C 0 ?

r(ti)
SVdim

differentiability 

statistic

ε*/εmin
ε*/σstdor SVdimand ~ Diffeomorphism



A Continuity Statistic (remarks)

ε*/εmin
ε*/σstdor

� We assume nothing about the possible functional relations between the data sets.

� The statistic is for one direction only (D  R). It says nothing about the inverse.

� The inverse is a separate independent statistic, (R  D)

� The statistic is inherently local.

� The statistic is dependent on the number of points in the data set.

� ε*/σstd is approximately the relative size of the smallest discontinuity we can detect.

� This is a statistic= evidence (or not) of a continuous function. Not a proof.

� If ε* scales with εmin, then this is further evidence of a continuous function.



The continuity and 

differentiability statistics 

and other measures and 

RCs and embeddings



D R DRκ=1.0
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A Continuity Statistic (simple test)

D

y

x

Lorenz

r3

r1

Poly reservoir

driving term

Rdamping factor

SV dimensions ~ 2.5 Diffeomorphism

Homeomorphism



Training and Testing errors and 
continuity statistic   (40 K points)

x drive

output z κ
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r1

Poly reservoir
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continuity 
statistic
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continuity and dynamics

κ

y

x

Lorenz

r3

r1

Poly reservoir

κ

continuity 
statistic

good continuity

y

x

Lorenz

r3

r1

Poly reservoir

Large dissipation

RC points 

are squeezed

down to small 

region. 

Under-embedding

f

f –1



continuity and dynamics

κ
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Lorenz

r3

r1

Poly reservoir

κ

continuity 
statistic
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Lorenz

r3

r1

Poly reservoir

Small dissipation

nearby Lorenz 

points are spread 

out on the RC 

y

x

Lorenz

r3

r1

Poly reservoir

Inverse= contraction

Over-embedding



Predicting and Postdicting

drive components



Continuity and training error with time shifts

Predicting and Postdicting (predicting into the past)

Fit errors trend matches continuity

Postdiction captures the "fading memory" quantitatively

σ(fit–signal)

σ(signal)

n time shift

fits to Lorenz using LT Reservoir

n time shift

ε*

εmin

Reservoir --> Lorenz continuity

past pastfuture future

κ

10–3

10–2

10–1

100101

training error

κ = 1.0



Detecting Basins of  

Attraction



Bifurcations and Basins of  Attraction

Lorenz   ->   Polynomial (deg.3)  (Lor_Poly)

driving term

training x,y,z

p1: -7.0, -6.0, -5.0, -4.0, -3.0, -2.0, -1.0, -0.5

edge of chaos

p2= +3.0

p3= –1.0

 40000 points in time series 
 training error,  
 testing errors – both time shifted and different ics!
 continuity statistic



Training & Testing errors

Lorenz   ->   Polynomial (deg.3)  (Lor_Poly)

Same weights W used

for training and testing



Reservoir Trajectories (Polynomial degree 3)



Reservoir Trajectories (Polynomial degree 3)
!! for p1=-1.0, appears like attractors are slightly shifted from each other.  

Maybe very long transients?  They are close, but not the same. Or the 
synchronization invoked by the p3 term is not exact since that term 0 
faster than linear leaving the system to wander when close, but not 
forced to get fully "synchronized"  Or, the attractor dimension maybe 
getting much larger given the smaller Lyapunov exponents (check this) 
and a lot of them near the same value so perturbations (numerical) can 
push the trajectory into many directions.

Follow up:  Actually at least two of the coordinates did not match at all 
=> basin statistic is correct.



Continuity Statistic

RD

D R

D R

ε*/σstd

p1

SV dim Statistic

has same trends

Are the training and testing time series 

on the same attractor?

Same continuity 

results for testing

Continuity for 

training



Train (RR time shifted)

Train (R time shiftedR)

S

A B

Attractor Comparison Statistic

Test R  Train R

Train R  Test R

• 100 dimensional systems
• Do NOT de-mean, shift or rescale (std, etc.)

Get nearest neighbor(s) on B to point on A
and calc. distances from B point to A point

Do this for several points (1000) 
and calc. average distance= S

A  B

Do this for B  A

Do this for train and test reservoirs R

same 
attractor 

(including different basins of  attraction-

same dynamics, same parameters, different ics.)

different 
attractors 

Similar to distances between point sets in metric spaces



Attractor Comparison Statistic

r3 vs. r1

training attractor testing attractor 

r37 vs. r44 

training attractor testing attractor 
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Adding to the robustness of  the ACS

A B

Don't forget the dynamics!



Conclusions

Even in simple RC systems nonlinear phenomena are important and nonlinear 

analysis captures the behavior quantitatively.

The computer science/AI communites have taken network dynamics in an 

interesting and potentially useful direction, but the analysis of these systems 

must be informed by nonlinear dynamics.

Reservoir properties cannot all be measured independent of the drive signals. 

Dynamical properties (memory, synchronization, attractor embeddings, stability) 

are all linked to the drive and the RC.

We don't always have accurate models or theorems.  Need statistics that are 

modeled on mathematical concepts (continuity and differentiability) and make 

no more assumptions than necessary.

Paper to the arXiv soon

Questions, comments ?
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