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Background and literature 

Control and dynamical systems

𝑓: ℝ𝑑 ⟶ℝ

𝑓𝑁𝑁 ≈ 𝑓 ?

Regression

What’s the big deal?

𝜺

𝒅 𝒏
Complexity

Dimension

Error

Modeling:
Feedback Control

Stability
......... ………



Wei Kang

Background and literature

3

Curse-of-dimensionality: Given an error upper bound, the complexity 
increases exponentially with the dimension.

= 𝑵𝒅Dataset Size

* Dynamic programming
* Curse of dimensionality
* HJB equation
……

Richard Ernest Bellman
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Curse-of-dimensionality: Given an error upper bound, the complexity 
increases exponentially with the dimension.

= 𝑵𝒅Dataset Size
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Empirical successes of machine learning
Solving high dimensional problems
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Why does deep learning work for so many high 

dimensional problems? 
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Approximation theory -
Rate of convergence, error upper bound, complexity, ……
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Compositional function as a layered DAG
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Algebra of compositional functions

Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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EI: A large electrical grid in North 

America. A simplified model has 

more than 25K buses, 28K lines, 

8K transformers, and over 1,000 

generators.
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Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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The swing equation of power systems 
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Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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o Iterative computational algorithms are (deep) compositional functions.   

o Kolmogorov-Arnold representation theorem
Every 

continuous function

is a layered DAG

𝜓𝑝𝑞

𝑥𝑝

𝜑𝑞 𝑓~
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Approximation theory

Compositional features

Layered DAG

17



Wei Kang

Examples

Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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The swing equation of power systems 
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Compositional features 
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and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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The Lorenz-96 model
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The Lorenz-96 model
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Discretization of PDEs
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Discretization of PDEs
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Approximation theory

Error propagation - substitution
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Error propagation - composition
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Approximation theory

Trajectory

ODE

Trajectory of ODE
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Approximation theory

Zero-order hold control

Trajectory and terminal state

Cost function

The problem of optimal control

Optimal control
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A model-based data-driven approach

Control System Model

Algorithms for Data 
Generation & Data 

Processing

NN TrainingError Estimation

Training DataValidation Data

Adaptive 
Sampling 
Algorithm

Convergence 
Test

No

Optimal Feedback Control Design

Yes

Optimal feedback 
Control

 T. Nakamura-Zimmerer, Q. Gong, W. Kang, Adaptive deep learning for 

high-dimensional HJB equations, SIAM J. Scientific Computing, 2021.
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Example - rigid body optimal control

Problem formulation
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Example – rigid body optimal control

HJB equation and feedback law
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Data generation

where

Time-marching

Pontryagin’s maximum principle
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Data generation

where

Neural network warm start

Rigid body optimal attitude control
33
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Example - rigid body optimal control

Neural network approximation of value function

 Gradient loss weight            ; tolerance             

 Training data set updated adaptively 

 The final adaptive data set has 2110 points

 T. Nakamura-Zimmerer, Q. Gong, W. Kang, Adaptive deep learning for high-

dimensional HJB equations, SIAM J. Scientific Computing, 2021.
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Power system stability

Power system electric air-gap torque
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Power system stability

Power system domain of attraction
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Power system stability

New England 10-generator 39-bus power system

Activation: hyperbolic tangent

Depth: 16

Width: 40

Error:

Characterization of the domain of attraction

--Neural network approximation of Zubov’s equation
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Next step research

Future work

A lot more questions than answers

 The compositional features of nonsmooth problems, ReLU activation?

 How does compositional structure help to improve NN design and 

training?

 How does compositional structure help to validate a result, empirical 

risk vs population risk, L2-norm vs infinity norm?

 Applications to dynamical systems (space dimension >5)

• Deep filter and data assimilation (observability in unobservable 

systems)

• Output regulation and FBI equation

• Control Lyapunov function

• Optimal control and viscosity solutions

• Reachable set of control systems

• The boundary of domain of attraction
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Problems appropriate for ML
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THANK YOU
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Problems appropriate for ML

What makes a good problem for machine learning?

 The overall problem does not have tractable solution.

And

 You have access to lots of data.

And

 The problem does not require highly accurate numerical 

solution (such as machine precision).

Give machine learning a try.
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Deep learning for dynamics and control

 HJB equation – optimal control

 HJI equation – differential game

 FBI equation – output regulation

 Zakai equation – optimal estimation

 Zubov’s equation – the boundary of domain of attraction

Performance associated with PDEs

Quantitative 

performance 

High dimension
(not in normal form)

Real-time+ +

Curse-of-dimensionality
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