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- Control and dynamical systems
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‘ Curseof-dimensionality:Given an error upper bound, the complexity
. increasesxponentiallywith the dimension.
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‘ Curseof-dimensionality:Given an error upper bound, the complexity
. increasesxponentiallywith the dimension.

[ Dataset Size 4™ 1

File size of N¢ data points (N = 50, single precision)
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Empirical successes of machine learning
Solving high dimensional problems

x |. E.Lagaris A. Likas, D. Fotiadis Artificial neural networks for solving ordinary and partial
differential equationsIEEE Trans. Neural Networks, 1998=Q)

x Y. Tassaand T.Erez Least square solutions of the HJB equation with neural network-alue

function approximationdEEE Trans. Neural Networks, 2003=4)

J. Han and W. EDeep learning approximation for stochastic control probleanXiv 2016

X

(d=100
¢ x J.Han, AJentzenW. E, Solving highdimensional PDEs using deep learnjagXiv 2017
) (d=100
x J.Sirignanoand K.Spiliopoulos DGM: A deep learning algorithm for solving PDEsXiv
2018 d=200

x M. Raissj P.Perdikaris G. Karniadakis Physicsinformed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear PDEmput
Phys., 2018d,=2,d =2)

x  T. NakamuraZimmerer Q. Gong, W. KangAdaptive deep learning for higfimensional HIB

W" equationsarXiv 2019 @d=30

it ,‘.‘ x D.lzzo, E.Ozturk and M.Martens Interplanetary transfers via deep representations of the

AL optimal policy and/or of the value functicarXiv 2019 @=7)

x  B.Azmi, D.Kalisg K. Kunisch Optimal feedback law recovery by gradientgmented sparse

polynomial regressiorgrXiv 2020. (=80
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Some examples of dynamical systems

x T. NakamuraZimmerer Q. Gong, W. KangAdaptive deep learning for high
dimensional HIB equationSIAM J. Scientific Computing, 2021 8.

(d=6, 30 ~ 16, 10°) /f\h

x T. NakamuraZimmerer Q. Gong, W. KangQRnet optimal regulator with
LQR-augmented neural networks, IEEE Control Systems Letters, 2021.

We combifle the raw NN prediction (13) with the LQR value
function (8) for the linearized dynamics (7) as

(d=64) YNy = %Iog [1+cVER )]+ W), (14)
with a trainable parameter ¢ > 0. In'tl’l\i'gively, LQR provides a
S % x W.Kang, Q. Gong, T. NakamuzZimmerer F. Fahrog Algorithms of data

generation for deep learning and feedback design: A SLlecaD
Nonlinear Phenomena, 2021

(d=30
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Why does deep learning work for so many high
dimensional problems?
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Approximation theory -
Rate of convergence, error upper b

x A. R. Barron,Universal approximation bounds for superpositions of a sigmoidal
function IEEE Trans. on Information Theory, 1993.

x  W. E, C. Ma, SWojtowytschand L. Wu,Towards a mathematical
understanding of neural netwebdased machine learning: what we know and
what we don;tarXiv 2020.

x P.C.Kainen V.K T r k, MvS&nguinetiApproximating multivariable functions
by feedforward neural netth: Handbook on Neural Information Processing,
Springer, 2013

x T.Poggig H. Mhaskar L. RosascpB. Miranda, Q. LiaoWhy and when can
deep- but not shallow networks avoid the curse of dimensionality: a reyiew
arXiv 2017.

x H. N.Mhaskarand T.Poggiq Deep vs. shallow networks: an approximation
theory perspectivearXiv 2016.

x W. Kang and Q. Gond~eedforwardeural networks and compositional
functions with applications to dynamical syste®I&AM J. Control andptim.,
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Compositional function as a layered DAG

| x W. Kang and Q. GondNeural network approximations of compositional functions
with applications to dynamical systen®8AM J. Control and Optimization, 2022.

x T.Poggioet al, Why and when can de&ppout not shallow networks avoid the
curse of dimensionality: A reviewarXiv 2017

x H. N. Mhaskarand T.Poggiq Deep vs. shallow networks: an approximation theory
perspectivearXiv 2016.

Layered directed acyclic graph (layered DAG)
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Observation: It is widely observed in science and engineering that complicat
and high dimensional inpututput information relations can be represented as
compositions of functions with low input dimensions

Kockia

(1) — LoadBus
& — Generator Bus

El: Alarge electrical grid in North
America. A simplified model has
more than 25K buses, 28K lines,
8K transformers, and over 1,000
generators.
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Algebra of compositional function

Observation: It is widely observed in science and engineering that complicat
and high dimensional inpututput information relations can be represented as
compositions of functions with low input dimensions

The swing equation of power systems

dw; i —
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Observation: It is widely observed in science and engineering that complicat
- 1 and high dimensional inpututput information relations can be represented as
P""'-" compositions of functions with low input dimensions

Linear combination
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Observation: It is widely observed in science and engineering that complicat
- and high dimensional inpututput information relations can be represented as
compositions of functions with low input dimensions
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Observation: It is widely observed in science and engineering that complicat

- and high dimensional inpututput information relations can be represented as
P"* | compositions of functions with low input dimensions
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Algebra of compositional function

Observation: It is widely observed in science and engineering that complicat
| and high dimensional inpututput information relations can be represented as
I compositions of functions with low input dimensions

Neural networks are compositional functions
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o Iterative computational algorithnage (deep) compositional functions.
o KolmogorovArnold representation theorem

2d+1 d °O
f(xla T a$d) — Z ¢q (Z pr(xp)$

Every
continuous function
is a layered DAG)

A
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Compositional features

Layered DAG
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