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Curse-of-dimensionality: Given an error upper bound, the complexity 
increases exponentiallywith the dimension.

╝▀Dataset Size

* Dynamic programming
* Curse of dimensionality
* HJB equation
ΧΧ

Richard Ernest Bellman



Wei Kang

Background and literature

Curse-of-dimensionality: Given an error upper bound, the complexity 
increases exponentiallywith the dimension.

╝▀Dataset Size
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Empirical successes of machine learning
Solving high dimensional problems
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Some examples of dynamical systems

(d=6, 30 ~ 106, 1030)

(d=64)

(d=30)
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Why does deep learning work for so many high 

dimensional problems? 
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Approximation theory -
Rate of convergence, error upper bound, complexity, éé
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Compositional function as a layered DAG
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Layered directed acyclic graph (layered DAG)
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Algebra of compositional functions

Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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EI: A large electrical grid in North 

America. A simplified model has 

more than 25K buses, 28K lines, 

8K transformers, and over 1,000 

generators.
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Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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The swing equation of power systems 
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Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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Linear combination



Wei Kang

Algebra of compositional functions

Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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Observation: It is widely observed in science and engineering that complicated 

and high dimensional input-output information relations can be represented as 

compositions of functions with low input dimensions.
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Neural networks are compositional functions 
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o Iterative computational algorithms are (deep) compositional functions.   

o Kolmogorov-Arnold representation theorem
Every 

continuous function

is a layered DAG
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Approximation theory

Compositional features

Layered DAG
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