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-
Motivation: Solving PDEs

Seek to solve PDE problems of the form
ur = F(x, t,u, Vu, VZu; A)

Traditional PDE computations using Finite Element Methods use a
computational mesh 7 comprising mesh points and a mesh topology:
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Mesh choice

Accuracy of the computation depends crucially on the choice and shape of

the mesh

Mesh needs to be

e Fine Enough to capture (evolving) small scales/singular behaviour

@ Coarse Enough to allow practical computations

@ Able to resolve local geometry eg. re-entrant corners in non-convex
domains
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PINNS

Physics Informed Neural Networks for solving PDEs: " Mesh free methods”

Use a Deep Neural Net to give a functional approximation to u(x, t) with
inputs x and t.

U(x,t) = DNN(x, t)

pee—e
NN
N

U(x, t) is constructed via a combination of linear transformations and
nonlinear/semi-linear activation functions.
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Example: Shallow neural net

N—1
U(x,t) = ) ci(t)a(ai(t)x + bi(t))
i=0
Can take
o(z) = RelLU(z) = z4,
Then
N—1
U(x,t) = ) ci(t)(ai(t)x + bi(t))+

1

Which is piece-wise linear interpolation with free knots at

X,'(t) = —b,-(t)/a;(t).
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-
|: Operation of a 'traditional’ PINN

o Assume that U(x, t) has strong regularity eg. C?
o Differentiate U(x, t) exactly using the chain rule

@ Evaluate the PDE residual at collocation points Xj, t; :chosen to be
uniformly spaced, or random

@ Train the neural net to minimise a loss function L combining the
PDE residual and boundary and initial conditions
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-
Eg. Solution of two-point BVPs by PINNs

Consider the two-point BVP with Dirichlet boundary conditions:

—uy = f(x,u,uy), x €[0,1] w(0) =a, u(l) = b.

Define output of the PINN by U and residual r(x) := U + f(x, U, Uy).
The PINN is trained by minimising the loss function

=N Z| rU( ) —a® +[U(1) - bP),

where {X,-’},N’ are the collocation points placed in (0,1).
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Numerical results for: —u” = 72

sin(mx).
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Figure: Loss and L2 error for linear interpolant of the PINN solution for N, = 100
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Numerical results: u(x) = sin(mx)

—— PINN solution
rate:

exact
.« PNN
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x N

Figure: Left: PINN with 2 hidden layers and 30 hidden nodes
N, = 100 uniformly distributed

activation function: Tanh | optimizer: Adam with /r = 1e — 3
Right: Convergence rate for 1st order interpolant
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-
Il Operation of a 'variational’ PINN

Assume that U(x, t) has weak regularity eg. H!

Differentiate U(x, t) exactly using the chain rule

Construct an appropriate weak form of the PDE (typically involving
an integral)

Evaluate the weak form by using quadrature at quadrature points
Xi, tj (chosen to be uniformly spaced, or random)

@ Train the neural net to minimise a loss function combining the weak
form and boundary and initial conditions
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Questions for the workshop

© When do and don't PINNS work, and why?

@ Can the performance of the PINN be improved by a 'good’ choice of
collocation/quadrature points

© Can we learn where to place the collocation/quadrature points?
r-adaptivity

@ How well do PINNS and ’traditional’ numerical analysis fit together?
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|
Deep Neural Network for r-adaptivity in 1D

Can’t use a PINN unless you can approxiate a function first

A feed-forward Deep Neural Network (DNN) can be 'in principle’ trained
to approximate a function

f(x):fLofL_lo...ofO
f.—I:U(VVIf;—l—i_bI)’:laaL szg
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Direct Learned Function Approximation

For a learned function f(x) approximate u(x) by minimising the 'usual’

loss function L:

N
min L(z) = D F(Xe) — ()l
k=1
Use the shallow ReLU network:
M
f(x) =Y clax+b)s, z=][ab,c].
j=1
Xy are the quadrature points  x; = —bj/a; are the knot points

r-adaptivity: find the optimal set of knot points

Use an ADAM SGD (over the quadrature points) optimiser
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Approximation of: u(x) = sin(x)

Uniform quadrature points:

Solution for ‘adaptive' regime (knot adaptation)

loss
2

% = 3 3 7 7 3
v 0 500 1000 1500 2000 2500 3000
epoch

Results poor. Depend crucially on the starting values. Even then poor.
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Approximation of: u(x) = x

Uniform quadrature points:

Solution for adapted knots

2/3

Results even worse! Depend crucially on the starting values. Even then

very bad!
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Learned Function Approximation: Using Optimal
Equidistribution

Instead take a new loss function L of the DNN which seeks to minimize the
L? error of the piecewise linear interpolant of the function u(x) given by:

N
5
L= HU_I_IUH%2 S CZ(himH—l/Z) ) m(X):(1+u>2<x)1/5'

** Mimics action of a PINN which minimises the residual error **

Network architecture and training parameters:
@ Input: Computational variable ¢ | Output: Physical variable x
@ Network architecture: 100 hidden nodes in 3 layers
o Optimizer: Adam with learning rate 1073
@ Epochs: 50000
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Numerical Result: u(x) = x%/3 (singularity at x = 0)

103 1072 —— uniform
—— adapted
rate: 2

loss function
e
b3
L2 error
5

10° 10t 10? 10° 10! 10? 10°
iteration N

Figure: Left: Loss function for N = 300 decreases abruptly after 200 iterations.
Right: L2 error of h(x) interpolated at the equidistributed points. The
convergence rate is optimal even when N is greater than the training sample size.
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Numerical Result: u(x) = x%/3 (singularity at x = 0)

10 10
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x x

Figure: Comparison between uniform and adapted mesh for N = 100. Note that
the equidistributed mesh clusters towards x = 0, where the solution exhibits a
singular behaviour.
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Convergence measure-1D

Theorem The optimal knot points x; satisfy an equidistribution condition
Oh .
himi+1/2: N_1 i=1---,N.

Motivates convergence measure for an equidistributed mesh satisfies

N —1)him;
Qeq = ( ) ARV < Kegq;
Oh

where req > 1 is independent of i and N. Here o = 3 himi1/».

Note that when K¢y = 1 the mesh is perfectly equidistributed.
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DNN vs standard approaches - convergence rate

—— DNN

—— MMPDES

May help explain why PINNS can work well in certain cases and how they
can be improved

Simone Appella and Chris Budd (Bath) r-adaptivity and DL Fields Institute, Sept., 2022 20 / 43



-
Solving PDEs with Deep Learning

Now apply these ideas in the context of PINNs
Rezoning method: learned collocation points

Apply alternatively

@ Train PINN to solving PDE on given collocation points
(X,', tj) — U(X, t)
@ Use DNN and U(x, t) to find new points (Xj, t;)

Semi-Lagrangian framework

Train a single PINN to learn simultaneously both U and the collocation
points X; [Pardo, David et. al.] In progress but semi-promising.

Will consider only time independent BVPs for the rest of this talk

Simone Appella and Chris Budd (Bath) r-adaptivity and DL Fields Institute, Sept., 2022 21 /43



-
Rezoning Method for BVPs

7

PINN —_— U m(um(x))

T DNN —_

End DNN epochs
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Good news: Reaction-Diffusion Equation

Solve
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Figure: PINN trained for 20000 epochs, N, = 101, Adam optimizer with

Ir = 1le
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Bad news: Convection-dominated equation

PINNs fail to train when the solution of the BVP exhibits singular
behaviour [Krishnapriyan, Aditi et. al., (2021)]:

€ 1 1
Elyx + (1 2) Uy + 2 <1 45) u=e on[0,1] u(0)=u(1)=0

_1-x _1
u(x) = exp (x _&P - ald E)

1-— exp_é

i
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-
Homotopy method

The homotopy method can be used to train the PINN by reducing
logarithmically € at each iteration.

Given an initial uniform mesh of 2N points, after a fixed time of iterations
N are uniformly relocated on [0,1 — 2¢], while the remaining N are
uniformly distrisbuted on [1 — 2¢, 1].

Figure: Loss function for uniform and iteratively adapted mesh.
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Numerical results: Convection Equation

Convection equation on uniform mesh: eps 0.03 Convection equation on equidistributed mesh: eps 0.0243
— exact solution — exact solution
o7 o7
~ PINN solution| L2 eror: 0.0027 + PINN solution | L2 eror: 00014
05 05
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Figure: PINN trained for 50000 epochs with Adam optimizer (/r = 1e — 3).
Left: uniform N = 300 | Right: equidistributed N = 150
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Better news: Poisson equation in 2D

For higher dimensional BVPs more robust network architectures can be
employed:

Now consider a variational-PINN for this PDE problem.
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-
Deep Galerkin Method for the Poisson equation

The Deep Galerkin Method (DGM) [Sirignano J. and Spiliopoulos K.,

(2018)] mimics the action of a PINN
u=argminZ(v),
veH

where H is the set of admissible functions (trial functions)

I(u) = / (Au(R) + F(R)2dZ+ B [ (u(R) - up)?ds
Q o0
@ DNN based approximation of u which is in C?

@ A numerical quadrature rule for the functional using chosen
quadrature points

@ An algorithm for solving the optimization problem
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Deep Ritz method for the Poisson equation

The Deep Ritz Method (DRM) [Weinan E and Bing Yu, (2017)] seeks
the solution u satisfying

u=argminZ(v),
veH

where H is the set of admissible functions (trial functions) and

I(u) = /Q (;\VU(?)F - f()?)u()?)> d%+ 8 | (u(R) — up)?ds

[2}9]
The Deep Ritz method is based of the following assumptions:
e DNN based approximation of u which is in H?

@ A numerical quadrature rule for the functional using chosen
quadrature points

@ An algorithm for solving the optimization problem

Simone Appella and Chris Budd (Bath) r-adaptivity and DL Fields Institute, Sept., 2022 29 / 43



N
Network Structure: Feed forward NN

fir1(x) = o(Wio o o(W1fi(x) + bi1) + bi2) + fi(x). (1)

The final output is U(x) = fiy1(x) = W fi(x) + by, where W, € R™*d
and b; € R".

For this type of architecture [E] suggests the activation function
ReLU® = max(0, x3) € C2. Other possible choices in C? are:

o SIngId(X) = m
o SWiSh(X) = m
e tanh(x)

® Tgin(x) = (sinx)’

ADAM optimiser.
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Poisson Problem on an L-shaped domain

Problem to solve:

—Au= fin

u=uwuponlp

Vu-ng=gonly.
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Singular solution

@ Solution u(X) has a gradient singularity at the interior corner A;

@ If the interior angle is w and the distance from the corner is r then

u(r,0) ~ ref(0), o=

f
w
where f(0) is a regular function of 4

@ Corner problem
u(r,0) ~r?3, r—o.
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Solution error

The Ly error is computed by evaluating the approximate solution on a
Delaunay mesh.

]

Ay
X R
o

R
A s
>

Figure: Left: exact solution. Right: Delaunay mesh with N = 833 on which the
L, error is computed.
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Numerical results: random quadrature points

Solve Au(x) =0on Q;

u(r,0) = r*/3sin(26/3) on T = 9,

-1.00

~1.00 Attt -
-100 -075 -0.50 -0.25 000

025 050 075 100

Figure: Left: DGM Right: DRM

Can we improve the accuracy by a better choice of quadrature points?
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OT Based r-adaptivity

Can do r-adaptivity to find the optimal collocation points Xj in R” using

Optimal Transport (OT)

Idea Think of interpolation error m as a measure, and minimise
Wasserstein distance

—

mjn/\i—§]2du
X

Such that
m(X, t)|dX| = 6|d¢].
Find X
° eg. Using the Sinkhorn algorithm

e Indirectly eg. Solving a Monge-Ampére equation [B], [PICANNS,

Singh et. al. 21]
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|
OT mesh for the L-shaped domain

Figure: OT Mesh for solving Poisson's eq. in a L-shaped domain u(r, ) ~ r?/3
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|
OT and Deep Galerkin/Ritz

Solutions with OT quadrature points

1.00 1.00
075 075
050 050
025 025
0.00 0.00
-0.25 -0.25
-0.50 ~0.50
-0.75 -0.75
-1.00 + -1.00 +
-1.00 -075 -050 -025 000 025 050 075 100 -1.00 -075 -0.50 -025 000 025 050 075 100

Figure: L2 error - randomly sampled points: 0.468 | OT: 0.0639

Left: Deep Galerkin, Right: Deep Ritz

Good choice of quadrature points makes a big difference
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Loss function
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-
Accuracy | - Relative L2 error (N = 833)

error

error
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Simone Appella and Chris Budd (Bath)

101
102

]

T T 17

S

=g

bl vl 4

103

—
o
S

epoch

DRM: OT-based points

error

101

il

103 10*
epoch

(h) DGM: OT-based
points

r-adaptivity and DL

Fields Institute, Sept., 2022

39 /43



Accuracy Il - relative L? error on OT collocation points

error
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DRM method works well for small DOF, but dG is much better for more
DOF

1072 | -+ —— SIP-dG methoc
— DRM g = 100(

1073

L2 error

1074

1l L 1l [ |
103 10% 10°
dofs
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Summary

PINNS work best when combined with good numerical analysis
methods

The DNN can be trained to learn the equidistribution process, and
outperforms other standard numerical methods

Makes a big difference for elliptic two-point BVPs

Smaller difference for convective problems, which need homotopy
methods to work at all

OT based r-adaptivity is effective for 2D problems using the Deep
Ritz method

Deep Ritz outperforms dG for small DoF, but not for large DoF

Next Goal: Implement the Rezoning approach for adapting the mesh
and solving the PDE, maybe with a learned monitor function

Proper convergence theory and proper test comparisons
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