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Motivation: Solving PDEs

Seek to solve PDE problems of the form

ut = F (x , t, u,∇u,∇2u;λ)

Traditional PDE computations using Finite Element Methods use a
computational mesh τ comprising mesh points and a mesh topology:

htb!
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Mesh choice

Accuracy of the computation depends crucially on the choice and shape of
the mesh

Mesh needs to be

Fine Enough to capture (evolving) small scales/singular behaviour

Coarse Enough to allow practical computations

Able to resolve local geometry eg. re-entrant corners in non-convex
domains
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PINNS

Physics Informed Neural Networks for solving PDEs: ”Mesh free methods”.
Use a Deep Neural Net to give a functional approximation to u(x , t) with
inputs x and t.

U(x , t) = DNN(x , t)

U(x , t) is constructed via a combination of linear transformations and
nonlinear/semi-linear activation functions.
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Example: Shallow neural net

U(x , t) =
N−1∑
i=0

ci (t)σ(ai (t)x + bi (t))

Can take

σ(z) = ReLU(z) ≡ z+,

Then

U(x , t) =
N−1∑
i=0

ci (t)(ai (t)x + bi (t))+

Which is piece-wise linear interpolation with free knots at
xi (t) = −bi (t)/ai (t).
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I: Operation of a ’traditional’ PINN

Assume that U(x , t) has strong regularity eg. C 2

Differentiate U(x , t) exactly using the chain rule

Evaluate the PDE residual at collocation points Xi , tj :chosen to be
uniformly spaced, or random

Train the neural net to minimise a loss function L combining the
PDE residual and boundary and initial conditions
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Eg. Solution of two-point BVPs by PINNs

Consider the two-point BVP with Dirichlet boundary conditions:

−uxx = f (x , u, ux), x ∈ [0, 1] u(0) = a, u(1) = b.

Define output of the PINN by U and residual r(x) := Uxx + f (x ,U,Ux).
The PINN is trained by minimising the loss function

L =
1

Nr

Nr∑
i

|r(X r
i )|2 +

1

2

(
|U(0)− a|2 + |U(1)− b|2

)
,

where {X r
i }

Nr
i are the collocation points placed in (0, 1).
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Numerical results for: −u′′ = π2sin(πx).

Figure: Loss and L2 error for linear interpolant of the PINN solution for Nr = 100
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Numerical results: u(x) = sin(πx)

Figure: Left: PINN with 2 hidden layers and 30 hidden nodes
Nr = 100 uniformly distributed
activation function: Tanh | optimizer: Adam with lr = 1e − 3
Right: Convergence rate for 1st order interpolant
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II Operation of a ’variational’ PINN

Assume that U(x , t) has weak regularity eg. H1

Differentiate U(x , t) exactly using the chain rule

Construct an appropriate weak form of the PDE (typically involving
an integral)

Evaluate the weak form by using quadrature at quadrature points
Xi , tj (chosen to be uniformly spaced, or random)

Train the neural net to minimise a loss function combining the weak
form and boundary and initial conditions
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Questions for the workshop

1 When do and don’t PINNS work, and why?

2 Can the performance of the PINN be improved by a ’good’ choice of
collocation/quadrature points

3 Can we learn where to place the collocation/quadrature points?
r-adaptivity

4 How well do PINNS and ’traditional’ numerical analysis fit together?
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Deep Neural Network for r-adaptivity in 1D

Can’t use a PINN unless you can approxiate a function first

A feed-forward Deep Neural Network (DNN) can be ’in principle’ trained
to approximate a function

f (x) = fL ◦ fL−1 ◦ · · · ◦ f0
fi = σ(Wi fi−1 + bi ) i = 1, · · · , L f0 = ξ
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Direct Learned Function Approximation

For a learned function f (x) approximate u(x) by minimising the ’usual’
loss function L:

min
z

L(z) ≡
N∑

k=1

|f (Xk)− u(xk)|2

Use the shallow ReLU network:

f (x) =
M∑
j=1

cj(ajx + bj)+, z = [a,b, c].

Xk are the quadrature points xj = −bj/aj are the knot points

r-adaptivity: find the optimal set of knot points

Use an ADAM SGD (over the quadrature points) optimiser
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Approximation of: u(x) = sin(x)

Uniform quadrature points:

Results poor. Depend crucially on the starting values. Even then poor.
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Approximation of: u(x) = x2/3

Uniform quadrature points:

Results even worse! Depend crucially on the starting values. Even then
very bad!
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Learned Function Approximation: Using Optimal
Equidistribution

Instead take a new loss function L of the DNN which seeks to minimize the
L2 error of the piecewise linear interpolant of the function u(x) given by:

L ≡ ||u − Πu||2L2 ≤ C
N∑
i

(
himi+1/2

)5
, m(x) = (1 + u2

xx)1/5.

** Mimics action of a PINN which minimises the residual error **

Network architecture and training parameters:

Input: Computational variable ξ | Output: Physical variable x

Network architecture: 100 hidden nodes in 3 layers

Optimizer: Adam with learning rate 10−3

Epochs: 50000

Simone Appella and Chris Budd (Bath) r-adaptivity and DL Fields Institute, Sept., 2022 16 / 43



Numerical Result: u(x) = x2/3 (singularity at x = 0)

Figure: Left: Loss function for N = 300 decreases abruptly after 200 iterations.
Right: L2 error of h(x) interpolated at the equidistributed points. The
convergence rate is optimal even when N is greater than the training sample size.
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Numerical Result: u(x) = x2/3 (singularity at x = 0)

Figure: Comparison between uniform and adapted mesh for N = 100. Note that
the equidistributed mesh clusters towards x = 0, where the solution exhibits a
singular behaviour.
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Convergence measure-1D

Theorem The optimal knot points xj satisfy an equidistribution condition

himi+1/2 =
σh

N − 1
i = 1, · · · ,N .

Motivates convergence measure for an equidistributed mesh satisfies

Qeq =
(N − 1)himi+1/2

σh
≤ κeq,

where κeq ≥ 1 is independent of i and N. Here σh =
∑

i himi+1/2.

Note that when κeq = 1 the mesh is perfectly equidistributed.
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DNN vs standard approaches - convergence rate

May help explain why PINNS can work well in certain cases and how they
can be improved
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Solving PDEs with Deep Learning

Now apply these ideas in the context of PINNs

Rezoning method: learned collocation points

Apply alternatively

Train PINN to solving PDE on given collocation points
(Xi , tj)→ U(x , t)

Use DNN and U(x , t) to find new points (Xi , tj)

Semi-Lagrangian framework

Train a single PINN to learn simultaneously both U and the collocation
points Xi [Pardo, David et. al.] In progress but semi-promising.

Will consider only time independent BVPs for the rest of this talk
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Rezoning Method for BVPs
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Good news: Reaction-Diffusion Equation

Solve −ε2uxx + u = 1− x on [0, 1] u(0) = u(1) = 0

Figure: PINN trained for 20000 epochs, Nr = 101, Adam optimizer with
lr = 1e − 3.
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Bad news: Convection-dominated equation

PINNs fail to train when the solution of the BVP exhibits singular
behaviour [Krishnapriyan, Aditi et. al., (2021)]:

−εuxx +
(

1− ε

2

)
ux +

1

4

(
1− 1

4
ε

)
u = e−x/4 on [0, 1] u(0) = u(1) = 0

u(x) = exp
−x
4

(
x − exp−

1−x
ε − exp−

1
ε

1− exp−
1
ε

)
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Homotopy method

The homotopy method can be used to train the PINN by reducing
logarithmically ε at each iteration.

Given an initial uniform mesh of 2N points, after a fixed time of iterations
N are uniformly relocated on [0, 1− 2ε], while the remaining N are
uniformly distrisbuted on [1− 2ε, 1].

Figure: Loss function for uniform and iteratively adapted mesh.

Simone Appella and Chris Budd (Bath) r-adaptivity and DL Fields Institute, Sept., 2022 25 / 43



Numerical results: Convection Equation

Figure: PINN trained for 50000 epochs with Adam optimizer (lr = 1e − 3).
Left: uniform N = 300 | Right: equidistributed N = 150
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Better news: Poisson equation in 2D

For higher dimensional BVPs more robust network architectures can be
employed:

Now consider a variational-PINN for this PDE problem.
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Deep Galerkin Method for the Poisson equation

The Deep Galerkin Method (DGM) [Sirignano J. and Spiliopoulos K.,
(2018)] mimics the action of a PINN

u = arg min
v∈H

I(v),

where H is the set of admissible functions (trial functions)

I(u) =

∫
Ω

(∆u(~x) + f (~x))2 d~x + β

∫
∂Ω

(u(~x)− uD)2d~s

DNN based approximation of u which is in C 2

A numerical quadrature rule for the functional using chosen
quadrature points

An algorithm for solving the optimization problem
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Deep Ritz method for the Poisson equation

The Deep Ritz Method (DRM) [Weinan E and Bing Yu, (2017)] seeks
the solution u satisfying

u = arg min
v∈H

I(v),

where H is the set of admissible functions (trial functions) and

I(u) =

∫
Ω

(
1

2
|∇u(~x)|2 − f (~x)u(~x)

)
d~x + β

∫
∂Ω

(u(~x)− uD)2d~s

The Deep Ritz method is based of the following assumptions:

DNN based approximation of u which is in H1

A numerical quadrature rule for the functional using chosen
quadrature points

An algorithm for solving the optimization problem
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Network Structure: Feed forward NN

fi+1(x) = σ(Wi ,2 ◦ σ(Wi ,1fi (x) + bi ,1) + bi ,2) + fi (x). (1)

The final output is U(x) = fL+1(x) = WLfL(x) + bL, where WL ∈ Rn×d

and bL ∈ Rn.

For this type of architecture [E] suggests the activation function
ReLU3 = max(0, x3) ∈ C 2. Other possible choices in C 2 are:

sigmoid(x) = 1
1+exp(−x)

swish(x) = x
1+exp(−x)

tanh(x)

σsin(x) = (sin x)3

ADAM optimiser.
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Poisson Problem on an L-shaped domain
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Singular solution

Solution u(~x) has a gradient singularity at the interior corner Ai

If the interior angle is ω and the distance from the corner is r then

u(r , θ) ∼ rαf (θ), α =
π

ω

where f (θ) is a regular function of θ

Corner problem
u(r , θ) ∼ r2/3, r → 0.
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Solution error

The L2 error is computed by evaluating the approximate solution on a
Delaunay mesh.

Figure: Left: exact solution. Right: Delaunay mesh with N = 833 on which the
L2 error is computed.
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Numerical results: random quadrature points

Solve ∆u(x) = 0 on ΩL u(r , θ) = r2/3sin(2θ/3) on Γ = ∂ΩL

Figure: Left: DGM Right: DRM

Can we improve the accuracy by a better choice of quadrature points?
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OT Based r-adaptivity

Can do r-adaptivity to find the optimal collocation points Xk in Rn using
Optimal Transport (OT)

Idea Think of interpolation error m as a measure, and minimise
Wasserstein distance

min
~X

∫
|~X− ~ξ|2dµ

Such that

m(~X, t)|d~X| = θ|d~ξ|.

Find ~X

Directly eg. Using the Sinkhorn algorithm

Indirectly eg. Solving a Monge-Ampére equation [B], [PICANNS,
Singh et. al. 21]
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OT mesh for the L-shaped domain

Figure: OT Mesh for solving Poisson’s eq. in a L-shaped domain u(r , θ) ∼ r2/3
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OT and Deep Galerkin/Ritz

Solutions with OT quadrature points

Figure: L2 error - randomly sampled points: 0.468 | OT: 0.0639

Left: Deep Galerkin, Right: Deep Ritz

Good choice of quadrature points makes a big difference
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Loss function
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Accuracy I - Relative L2 error (N = 833)
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Accuracy II - relative L2 error on OT collocation points
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DRM method works well for small DOF, but dG is much better for more
DOF
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Summary

PINNS work best when combined with good numerical analysis
methods

The DNN can be trained to learn the equidistribution process, and
outperforms other standard numerical methods

Makes a big difference for elliptic two-point BVPs

Smaller difference for convective problems, which need homotopy
methods to work at all

OT based r-adaptivity is effective for 2D problems using the Deep
Ritz method

Deep Ritz outperforms dG for small DoF, but not for large DoF

Next Goal: Implement the Rezoning approach for adapting the mesh
and solving the PDE, maybe with a learned monitor function

Proper convergence theory and proper test comparisons
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