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Learning Dynamical Systems



Parameter Identification

Parameter identification for (chaotic) dynamical systems is important in many
applied areas. For example, finding σ, ρ, β for the Lorenz-63 System.

ẋ = σ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz,

(1)

given time trajectory data {x(t0), x(t1), x(t2), . . . , x(tN)}.



Similar Extensions

The unknown parameters do not have to be physical. A general parameterized
dynamical system may take the form

ẋ =

ẋẏ
ż

 = v(x, y, z;σ, ρ, β︸ ︷︷ ︸
θ

) ≈ v(x, θ)

where the mathematical approximation v ≈ v(·, θ) is given by

• polynomials, e.g., SINDy [Brunton et al., 2016], [Schae�er-Tran-Ward,2018]
• other basis functions, e.g., piecewise polynomials, RBFs, Fourier, etc.
• neural networks [many references], and so on,

where θ corresponds to expansion coe�cients, neural network weights, etc.



Forward and Inverse Problems

The modeling step: given the parameter m and the forward dynamical system,
compute the time trajectories.

The inversion step: given the time trajectories and the dynamical system,
reconstruct the model parameter m.



Unique Challenges for Chaotic Systems

Challenge One: The initial condition of the system is unknown.
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Unique Challenges for Chaotic Systems

Challenge Two: The time trajectories contain noise.

No noise

ẋ = f (x).

Extrinsic noise

xγ = x + γ, ẋ = f (x).

Intrinsic noise

ẋ = f (x) + ω.
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Unique Challenges for Chaotic Systems

Challenge Three: Cannot measure the Lagrangian particle velocity flow

Measurements {xi} are not good
enough to estimate the particle
velocity ẋ evaluated at {xi}

v̂ ≈
xi+1 − xi
ti+1 − ti
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The Eulerian Approach — Data

Often, chaotic systems admit well-defined statistical properties:

µx,T(B) =
1
T

∫ T

0
1B(x(s))ds =

∫ T
0 1B(x(s))ds∫ T

0 1Rd(x(s))ds
,

where x(t) is a time trajectory with t ∈ [0, T], starting with x(0) = x, and µx,T is
called the occupation measure. A special observable f (x) = 1B(x).

We call µ∗ a physical measure, related to Sinai-Ruelle-Bowen (SRB) measures, if

lim
T→∞

µx,T = µ∗

for x ∈ U, and Ld(U) > 0 [Young, 2002].

The idea: take µ∗ as observation data instead of the trajectory x(t).
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The Stable Invariant Measures
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The Eulerian Approach — Model

By the definition of the physical measures µ∗ [Lai-Sang Young, 2002], we have

lim
T→∞

1
T

∫ T

0
f (x(t))dt =

∫
Rd
f (x)dµ∗(x), f ∈ C∞c (Rd),

and x(0) ∈ S for some S of positive Lebesgue measure.

Thus, by choosing f (x) = ∇φ(x) · v(x) for some φ ∈ C∞c (Rd) (assuming v ∈ C∞), we obtain∫
Rd
∇φ(x) · v(x)dµ∗(x) = lim

T→∞

1
T

∫ T

0
∇φ(x(t)) · v(x(t))dt = lim

T→∞

1
T

∫ T

0
∇φ(x(t)) · ẋ(t)dt

= lim
T→∞

1
T (φ(x(T))− φ(x(0))) = 0.

This shows that µ∗ is the stationary distributional solution to

∂ρ(x, t)
∂t +∇ · (v(x, θ)ρ(x, t)) = 0.
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From Lagrangian to Eulerian

ẋ = f (x) := v(x),

⇓

Occupation measure

µx,T(B) =
1
T

∫ T

0
1B(x(s))ds

=

∫ T
0 1B(x(s))ds∫ T

0 1Rd(x(s))ds

⇓

physical measure µ∗

⇓

Stationary distributional solutions of
∂ρ(x, t)
∂t +∇ ·

(
v(x, θ)ρ(x, t)

)
= 0. X axis
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Instead of

The nonlinear modeling step: given the parameter and the forward dynamical
system (an ODE model), compute the time trajectories.

The inversion step: given the time trajectories and the dynamical system,
reconstruct the model parameter.



We Now Regard the Problem As

The nonlinear modeling step: given the parameter and Continuity Equation (a
PDE model), compute steady-state distribution.

The inversion step: given the observed occupation measure and the Continuity
Equation, reconstruct the parameter.



The Method — A PDE-Constrained Optimization Problem

We treat the parameter identification problem for the dynamical system as a
PDE-constrained optimization problem:

θ = argmin
θ

d(ρ∗, ρ(θ)),

s.t. ∂ρ

∂t
= −∇ ·

(
v(x, θ)ρ(x, t)

)
+ 1

2
∂2Dijρ
∂xi∂xj

= 0.

ρ∗ : the observed occupation measure converted from time trajectories
ρ(θ) : the distributional steady-state solution of the PDE
d : an appropriate metric that captures the essential di�erences, e.g., W2 metric

Data and forward problem are changed, but parameters remain the same.
The gain is to work with a much More Stable inverse problem!
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Highlights in Solving the Forward Problem

• Introduce a new PDE forward model for physical measures

∇ ·
(
v(x, θ)ρ(x, t)

)
= 0

• Build a CFD discretization (finite-volume method) of the forward model via
first-order upwind scheme that preserves positivity and mass conservation.

M(θ)ρ = ρ, ρ · 1 = 1 .

We thus created a Perron–Frobenius operator M discretized in space.
• Apply teleportation regularization from Google’s PageRank [Gleich, 2015]

Mε(θ) = (1− ε)M(θ) +
ε

n
1 1> .

Note that Mε is now column-stochastic matrix with strictly positive entries,
where the Perron–Frobenius theorem applies.

• Find the solution ρ(θ) to M(θ)ρ = ρ based on sparse linear solvers.
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Optimal Transport for Data Fitting



Optimal Transport

Proposed by Monge in 1781

• Monge (1781)
• Kantorovich (1975)
• Brenier, Ca�arelli, Gangbo, McCann,

Benamou, Otto, Villani, Figalli, etc. (1990s -
present)

• Image Processing
• Machine Learning (GAN)
• Inverse Problems
• Model Reduction (Hyperbolic)
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Optimal Transport

Monge-Ampère Equation and Di�erential Geometry
The optimal map for W2 is T(x) = ∇u(x), where u solves the Monge-Ampère equation [Brenier,
1991]: 

det(D2u(x)) = f (x)/g(∇u(x)), x ∈ X,
∇u : X → Y,
u is convex.

— Studied in the Weyl (1916) and Minkowski (1897) problems in di�erential geometry of surfaces.

Wasserstein Gradient Flow & Kinetic Descriptions [JKO, 1998]
Energy Functional Gradient Flow Well-known PDE
E(ρ) =

∫
ρ log(ρ) ρt = ∆ρ Heat Equation

E(ρ) =
∫
ρ log(ρ) +

∫
ρV ρt = ∆ρ+∇ · (ρ∇V) Linear Fokker-Planck

E(ρ) = 1
m−1

∫
ρm ρt = ∆ρm Porous Medium Equation

E(ρ) = 1
2
∫
ρ(x)ρ(y)W(x − y) ρt = ∇ · ρ(∇(ρ ∗W)) McKean-Vlasov Equation



Optimal Transport

Synthetic data f (left) and observed data g (right)[Monge, 1781]
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Optimal Transport
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The Wasserstein Distance

Definition of the Wasserstein Distance
For f ,g ∈ P(Ω) (f ,g ≥ 0 and

∫
f =

∫
g = 1), the Wasserstein distance is

formulated as

Wp(f ,g) =

(
inf
T∈M

∫
|x − T(x)|p f (x)dx

) 1
p

(2)

M: the set of all maps that rearrange the distribution f into g.

The commonly used cases include p = 1 and p = 2.

• Provide better optimization landscape for Nonlinear Inverse Problems:

θ∗ = argmin
θ

W2
2(ρ(θ), ρ∗)

• Robust in Inversion with Noisy Data (equivalent to Ḣ−1 norm)
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The Algorithm Based on the Adjoint-State Method

From iteration l to iteration l+ 1, update θ ∈ Rm.

Mε(θl)ρl = ρl, ρl · 1 = 1, (Solve the forward problem)

(φl, ψl) ∈ argmax
φi+ψj≤c(xi,xj)

[φ · ρl + ψ · ρ∗], (Compute the W2 distance)

(Mε(θl)> − I)λl = −φl + φl · ρl 1, (Solve the adjoint equation)

θl+1
k = θlk − τ

l λl · ∂θkMε(θl)ρl, 1 ≤ k ≤ m. (Gradient descent)

Only two PDE solves are needed, independent of the dimensionality of θ.
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Example One: Reconstructing σ, ρ and β in Lorenz-63

The reference PDF is the histogram from a long time trajectory with intrinsic noise.

Red: initial; Green: truth; Blue: reconstructed.
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Initial: (5, 20, 1); Truth: (10, 28, 8/3). Left: (10.58, 27.83, 2.97), with intrinsic noise; Right: (10.63, 28.82, 3.04), with extrinsic noise.



Variable Coe�cients

This is an on-going work with Jonah Botvinick-Greenhouse (Cornell CAM).

Consider an artificial model where the Lorenz-63 model has variable coe�cients
ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

=⇒


ẋ = V1(x, y, z; θ)

ẏ = V2(x, y, z; θ)

ż = V3(x, y, z; θ)

How to parametrize V(x, y, z; θ)?

1. Piecewise polynomial based on the mesh of the finite-volume discretization
2. Neural network parameterization
3. Many others (RBF, Fourier basis, etc.)

Parameter size increases to tens of thousands.



Example Two: Variable Coe�cients—Real Weather Data

Normalized temperature time series from Ithaca, NY (upper left), the time delay embedding (upper right), occupation measure of the time delay
embedding (lower left), and the smoothed occupation measure (lower right).



Example Two: Variable Coe�cients—Real Weather Data

Objective function decay (upper left), velocity learned by the NN (upper middle), the density obtained by solving the forward PDE with this velocity
(upper right), evolving both the PDE and twenty SDE sample paths forward in time 225 days in time-delay coordinates (lower left), time-series

projections of the probability flow, sample paths, and true data (lower middle), and prediction of the next 981 days vs the ground truth (lower right).



Example Three: Hall-e�ect thruster (HET)



Example Four: Nonuniqueness and ill-posedness — Van der Pol Oscillator

Neural Network Parameterization



Example Four: Nonuniqueness and ill-posedness — Van der Pol Oscillator



Lagrangian vs Eulerian

Summaries
• From Lagrangian to Eulerian to tackle chaotic behaviors

• Propose an e�cient algorithm based on CFD discretization of the forward model.

• The optimal transport-based metric as the objective function

• Adjoint-state method to calculate the gradient (independent of θ dimension)

• Use coordinate gradient descent to tackle multi-parameter inversion

Future Work
• Improve the finite volume solver for the continuity equation

• Seek other surrogate models for approximating the invariant measure

• Reduce the model discrepancy (noise from both data & solver)

• Dynamical systems with multiple attractors

• Investigate the connections and di�erences between these two inverse problems
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