Data-driven reduced order models using invariant foliations, manifolds and autoencoders

Robert Szalai
Department of Engineering Mathematics
University of Bristol

28 September, 2022

Contents

－What is a reduced order model？
－The four candidates
－Foliations in detail
－Examples

The assumptions

We have the data

$$
\left(\boldsymbol{x}_{k}, \boldsymbol{y}_{k}\right), k=1,2, \ldots, N \quad \boldsymbol{x}_{k}, \boldsymbol{y}_{k} \in \mathbb{R}^{n}
$$

The data is approximately on the graph of function \boldsymbol{F}, i.e.,

$$
\boldsymbol{y}_{k}=\boldsymbol{F}\left(\boldsymbol{x}_{k}\right)+\boldsymbol{\xi}_{k},
$$

where $\boldsymbol{\xi}_{k}$ is a small random error with zero mean.
Diagram from: S. Preidikman \& D. Mook, JVC, 2000

Find a low-dimensional description of the data Create an abstraction, capture an invariant, etc. . .

Requirements

1. Lower dimensional than the manifold that the data covers

2. The data has a connection to the model
3. The model is unique, describes the data, predicts the future, explains phenomena, informs experimental design, etc

Connections to data

Two kinds of connections

- Encoder (submersion)
- Decoder (immersion)

Four possibilies

$$
\begin{aligned}
& \text { Invariant foliation } \\
& \boldsymbol{S}(\boldsymbol{U}(\boldsymbol{x}))=\boldsymbol{U}(\boldsymbol{F}(\boldsymbol{x})) \\
& \boldsymbol{S}\left(\boldsymbol{U}\left(\boldsymbol{x}_{k}\right)\right)=\boldsymbol{U}\left(\boldsymbol{y}_{k}\right) \\
& \text { Autoencoder } \\
& \boldsymbol{W}(\boldsymbol{S}(\boldsymbol{U}(\boldsymbol{x})))=\boldsymbol{F}(\boldsymbol{x}) \\
& \boldsymbol{W}\left(\boldsymbol{S}\left(\boldsymbol{U}\left(\boldsymbol{x}_{k}\right)\right)\right)=\boldsymbol{y}_{k}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Invariant manifold } \\
& X \rightarrow \stackrel{F}{F}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{W}(\boldsymbol{S}(\boldsymbol{z}))=\boldsymbol{F}(\boldsymbol{W}(\boldsymbol{z})) \\
& \text { Reverse autoencoder } \\
& \boldsymbol{S}(\boldsymbol{z})=\boldsymbol{U}(\boldsymbol{F}(\boldsymbol{W}(\boldsymbol{z})))
\end{aligned}
$$

A weak definition of ROM: invariance

Definition

Assume two maps $\boldsymbol{F}: X \rightarrow X, \boldsymbol{S}: Z \rightarrow Z$ and a encoder $\boldsymbol{U}: X \rightarrow Z$ or a decoder $\boldsymbol{W}: Z \rightarrow X$.

1. The encoder-map pair $(\boldsymbol{U}, \boldsymbol{S})$ is a reduced order model (ROM) of \boldsymbol{F} if for all initial conditions $\boldsymbol{x}_{0} \in G \subset X$ the trajectory $\boldsymbol{x}_{k+1}=\boldsymbol{F}\left(\boldsymbol{x}_{k}\right)$ and for initial condition $\boldsymbol{z}_{0}=\boldsymbol{U}\left(\boldsymbol{x}_{0}\right)$ the second trajectory $\boldsymbol{z}_{k+1}=\boldsymbol{S}\left(\boldsymbol{z}_{k}\right)$ are connected such that $z_{k}=\boldsymbol{U}\left(x_{k}\right)$ for all $k>0$.
2. The decoder-map pair $(\boldsymbol{W}, \boldsymbol{S})$ is a reduced order model of \boldsymbol{F} if for all initial conditions $\boldsymbol{z}_{0} \in H=\{\boldsymbol{z} \in Z: \boldsymbol{W}(z) \in G\}$ the trajectory $\boldsymbol{z}_{k+1}=\boldsymbol{S}\left(\boldsymbol{z}_{k}\right)$ and for initial condition $\boldsymbol{x}_{0}=\boldsymbol{W}\left(\boldsymbol{z}_{0}\right)$ the second trajectory $\boldsymbol{x}_{k+1}=\boldsymbol{F}\left(\boldsymbol{x}_{k}\right)$ are connected such that $x_{k}=W\left(z_{k}\right)$ for all $k>0$.

Invariant foliations and manifolds

(b)

A leaf is

$$
\mathcal{L}_{z}=\{x \in G \subset X: U(x)=z\}
$$

Invariance is pointwise
Invariance $\boldsymbol{F}\left(\mathcal{L}_{\boldsymbol{z}}\right) \subset \mathcal{L}_{\boldsymbol{S}(z)}$ means

$$
W(S(z))=F(W(z))
$$

$$
\boldsymbol{S}(\boldsymbol{U}(\boldsymbol{x}))=\boldsymbol{U}(\boldsymbol{F}(\boldsymbol{x}))
$$

Autoencoder (or reverse autoencoder)

The connection says that

$$
\boldsymbol{W}(\boldsymbol{S}(\boldsymbol{U}(\boldsymbol{x})))=\boldsymbol{F}(\boldsymbol{x}) \text { or } \boldsymbol{S}(\boldsymbol{z})=\boldsymbol{U}(\boldsymbol{F}(\boldsymbol{W}(\boldsymbol{z})))
$$

Invariance occurs only if $\mathcal{M} \subset \mathcal{N}$. Or when

$$
\sum_{k=1}^{N}\left\|\boldsymbol{W}\left(\boldsymbol{U}\left(\boldsymbol{x}_{k}\right)\right)-\boldsymbol{x}_{k}\right\|^{2} \approx 0
$$

All data must be on the manifold! \Longrightarrow Not a reduced order modeb

In summary

Reverse Autoencoder

Foliations: the smallprint of existence - uniqueness

Assume a steady state at $x=0$. Let μ_{k} be the eigenvalues of the Jacobian at the steady state, $\mu_{1}, \ldots, \mu_{\nu}$ correspond to the dynamics of interest.

Definition

The number

$$
\beth_{E^{\star}}=\frac{\min _{k=1} \ldots \nu \log \left|\mu_{k}\right|}{\max _{k=1} \ldots n \log \left|\mu_{k}\right|}
$$

is called the spectral quotient of the left-invariant linear subspace E^{\star} of F about the origin.

Theorem

Assume that $D F(0)$ is semisimple and that there exists an integer $\sigma \geq 2$, such that $\beth_{E^{\star}}<\sigma \leq r$. Also assume that

$$
\begin{equation*}
\prod_{k=1}^{n} \mu_{k}^{m_{k}} \neq \mu_{j}, j=\mathbf{1}, \ldots, \nu \tag{1}
\end{equation*}
$$

for all $m_{k} \geq 0,1 \leq k \leq n$ with at least one $m_{l} \neq 0, \nu+1 \leq I \leq n$ and with $\sum_{k=0}^{n} m_{k} \leq \sigma-1$. Then in a sufficiently small neighbourhood of the origin there exists an invariant foliation \mathcal{F} tangent to the left-invariant linear subspace E^{\star} of the C^{r} map F. The foliation \mathcal{F} is unique among the σ-times differentiable foliations and it is also C^{r} smooth.

Invariant manifolds as locally defined foliations

Define the encoder

$$
\hat{\boldsymbol{U}}(\boldsymbol{x})=\boldsymbol{U}^{\perp} \boldsymbol{x}-\boldsymbol{W}_{0}(\boldsymbol{U}(\boldsymbol{x}))
$$

In the neighbourhood of the invariant manifold

$$
B \hat{\boldsymbol{U}}(x)=\hat{\boldsymbol{U}}(\boldsymbol{F}(x))
$$

The decoder \boldsymbol{W} is then reconstructed from \boldsymbol{U}^{\perp} and \boldsymbol{W}_{0}.

A 2D example

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{x})=\boldsymbol{V}\left(\boldsymbol{A} \boldsymbol{V}^{-1}(\boldsymbol{x})\right), \tag{2}
\end{equation*}
$$

where

$$
\boldsymbol{A}=\left(\begin{array}{cc}
\frac{9}{10} & 0 \\
0 & \frac{4}{5}
\end{array}\right) \quad \boldsymbol{V}(\boldsymbol{x})=\binom{x_{1}+\frac{1}{4}\left(x_{1}^{3}-3\left(x_{1}-1\right) x_{2} x_{1}+2 x_{2}^{3}+\left(5 x_{1}-2\right) x_{2}^{2}\right)}{x_{2}+\frac{1}{4}\left(2 x_{2}^{3}+\left(2 x_{1}-1\right) x_{2}^{2}-x_{1}^{2}\left(x_{1}+2\right)\right)}
$$

Tackling the curse of dimensionality: HT tensors

- The low-dimensional map \boldsymbol{S} is a dense polynomial
- The encoder is a compressed polynomial

$$
d=5, \mathbf{U}_{i} \in \mathbb{R}^{n \times k_{i}}, \mathbf{B}_{t} \in \mathbb{R}^{k_{t} \times k_{t_{1}} \times k_{t_{2}}}
$$

$$
\boldsymbol{U}(\boldsymbol{x})=\boldsymbol{U}^{1} \boldsymbol{x}+\sum_{d=2}^{p} \sum_{i_{\mathbf{1}} \cdots i_{d}=1}^{n} U_{t_{r}}^{d}\left(\cdot ; i_{1}, \ldots, i_{d}\right) x_{i_{1}} \cdots x_{i_{d}},
$$

- The tensor is defined recursively

$$
\begin{aligned}
& U_{t}\left(p ; i_{1}, \ldots, i_{\left|t_{1}\right|}, j_{\mathbf{1}}, \ldots, j_{\left|t_{2}\right|} \mid\right)= \\
= & \sum_{q=1}^{k_{t_{1}} k_{t_{2}}} \sum_{r=1} B_{t}(p, q, r) u_{t_{1}}\left(q ; i_{\mathbf{1}}, \ldots, i_{\left|t_{1}\right|} \mid\right) u_{t_{2}}\left(r, j_{1}, \ldots, j_{\left.\right|_{t_{2}} \mid}\right),
\end{aligned}
$$

(DNNs are hopeless for this application)

Ten-dimensional mechanical system

The system is a nonlinearly scrambled up The transformations are $y_{2 k-1}=$ version of $r_{k} \cos \theta_{k}$ and $y_{2 k}=r_{k} \sin \theta_{k}$ and then

$$
\begin{aligned}
& \begin{array}{l}
\dot{r}_{1}=-\frac{1}{500} r_{1}+\frac{1}{100} r_{1}^{3}-\frac{1}{10} r_{1}^{5}, \\
\dot{r}_{2}=-\frac{\mathrm{e}}{500} r_{2}-\frac{1}{10} r_{2}^{5},
\end{array} \\
& \dot{r}_{3}=-\frac{1}{50} \sqrt{\frac{3}{10}} r_{3}+\frac{1}{100} r_{3}^{3}-\frac{1}{10} r_{3}^{5} \\
& \dot{r}_{4}=-\frac{1}{500} \pi^{2} r_{4}+\frac{1}{100} r_{4}^{3}-\frac{1}{10} r_{4}^{5}, \\
& \dot{r}_{5}=-\frac{13}{500} r_{5}+\frac{1}{100} r_{5}^{3}, \\
& \begin{array}{l}
\dot{\theta}_{1}=1+\frac{1}{4} r_{1}^{2}-\frac{3}{10} r_{1}^{4}, \\
\dot{\theta}_{2}=\mathrm{e}+\frac{3}{20} r_{2}^{2}-\frac{1}{5} r_{2}^{4},
\end{array} \\
& \dot{\theta}_{2}=\mathrm{e}+\frac{3}{20} r_{2}^{2}-\frac{1}{5} r_{2}^{4}, \\
& \dot{\theta}_{3}=\sqrt{30}+\frac{9}{50} r_{3}^{2}-\frac{19}{100} r_{3}^{4}, \\
& \begin{array}{ll}
\dot{\theta}_{3}=\frac{9}{50} r_{3}-\frac{10}{100} r_{3}, & y_{5} \\
\dot{\theta}_{4}=\pi^{2}+\frac{4}{25} r_{4}^{2}-\frac{17}{100} r_{4}^{4}, & y_{7} \\
\dot{\theta}_{5}=13+\frac{4}{25} r_{5}^{2}-\frac{9}{50} r_{5}^{4} . & y_{9}
\end{array} \\
& \begin{array}{llll}
y_{1} & =z_{1}+z_{3}-\frac{1}{12} z_{3} z_{5}, & y_{2} & =z_{2}-z_{3}, \\
y_{3} & =z_{3}+z_{5}-\frac{1}{12} z_{5} z_{7}, & y_{4} & =z_{4}-z_{5}, \\
y_{5} & =z_{5}+z_{7}+\frac{1}{12} z_{7} z_{9}, & y_{6} & =z_{6}-z_{7}, \\
y_{7} & =z_{7}+z_{9}-\frac{1}{12} z_{1} z_{9}, & y_{8} & =z_{8}-z_{9}, \\
y_{9} & =z_{9}+z_{1}-\frac{1}{12} z_{3} z_{1}, & y_{10} & =z_{10}-z_{1}
\end{array} \\
& \begin{array}{lrl}
=z_{1}+z_{3}-\frac{1}{12} z_{3} z_{5}, & y_{2} & =z_{2}-z_{3}, \\
=z_{3}+z_{5}-\frac{1}{12} z_{5} z_{7}, & y_{4} & =z_{4}-z_{5}, \\
=z_{5}+z_{7}+\frac{1}{12} z_{\mathbf{7}} z_{9}, & y_{6} & =z_{6}-z_{7}, \\
=z_{7}+z_{9}-\frac{1}{12} z_{1} z_{9}, & y_{8} & =z_{8}-z_{9}, \\
=z_{9}+z_{1}-\frac{1}{12} z_{3} z_{1}, & y_{10} & =z_{10}-z_{1}
\end{array} \\
& r_{2}=-\frac{e}{500} r_{2}-\frac{1}{10} r_{2}^{5}, \\
& \theta_{5}=13+\frac{4}{25} r_{5}^{2}-\frac{9}{50} r_{5}^{4} \text {. }
\end{aligned}
$$

(a)

(b)

(c)

HT tensors max rank-6. Details: https://arxiv.org/abs/2206.12269

Jointed beam

（a）

（b）

（a）

Accelerometer

（c）

Comparing with Koopman

Disclaimer: tried to make the best out of it, but all comparions are unfair (apples vs. oranges)
Details: https://arxiv.org/abs/2206.12269
Software: https://github.com/rs1909/FMA

Comparing with SSMLearn - an autoencoder (Cenedese et al)

Disclaimer: tried to make the best out of it, but all comparions are unfair (apples vs. oranges)
Details: https://arxiv.org/abs/2206.12269
Software: https://github.com/rs1909/FMA

Conclusions

- Considered all possibilies for ROM identification
- Only foliations can be fitted to data and invariant at the same time
- Koopman is a special case of foliations, SSMLearn is an autoencoder, many others similarly just learn a manifold
- Try compressed tensors and Gauss-Southwell optimisation

Again, many thanks for the opportunity to speak!

Comparing with SSMLearn - an autoencoder (Cenedese et al)

A new parametrisation is needed: $\tilde{W}(r, \theta)=\boldsymbol{W}(t, \theta+\delta(t)), t=\kappa^{-1}\left(\frac{r^{2}}{2}\right)$, where

$$
\begin{gathered}
\delta(r)=-\int_{0}^{r} \frac{\int_{0}^{2 \pi}\left\langle D_{1} \boldsymbol{W}(\rho, \theta), D_{2} \boldsymbol{W}(\rho, \theta)\right\rangle_{X} \mathrm{~d} \theta}{\int_{0}^{2 \pi}\left\langle D_{2} \boldsymbol{W}(\rho, \theta), D_{2} \boldsymbol{W}(\rho, \theta)\right\rangle_{X} \mathrm{~d} \theta} \mathrm{~d} \rho, \\
\kappa(r)=\frac{1}{2 \pi} \int_{0}^{r} \int_{0}^{2 \pi}\left\langle D_{1} \boldsymbol{W}(\rho, \theta), \boldsymbol{W}(\rho, \theta)\right\rangle_{X} \mathrm{~d} \theta \mathrm{~d} \rho
\end{gathered}
$$

$\omega(r)$

