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The assumptions

Diagram from: S. Preidikman & D. Mook,

JVC, 2000

We have the data

(xk , yk) , k = 1, 2, . . . ,N xk , yk ∈ Rn

The data is approximately on the graph of function
F , i.e.,

yk = F (xk) + ξk ,

where ξk is a small random error with zero mean.

Find a low-dimensional description of the data
Create an abstraction, capture an invariant, etc. . .



Requirements

1. Lower dimensional than the manifold that the data covers
a) b)

2. The data has a connection to the model
3. The model is unique, describes the data, predicts the future, explains phenomena, informs experimental design, etc



Connections to data
Two kinds of connections

I Encoder (submersion)

I Decoder (immersion)



Four possibilies
Invariant foliation
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W (S (z)) = F (W (z))

Autoencoder

X X

Z Z

F

U

S

W

W (S (U (x))) = F (x)
W (S (U (xk))) = yk

Reverse autoencoder
X X

Z Z

F

U

S

W

S (z) = U (F (W (z)))



A weak definition of ROM: invariance

Definition
Assume two maps F : X → X , S : Z → Z and a encoder U : X → Z or a decoder
W : Z → X .
1. The encoder-map pair (U ,S) is a reduced order model (ROM) of F if for all initial

conditions x0 ∈ G ⊂ X the trajectory xk+1 = F (xk) and for initial condition
z0 = U (x0) the second trajectory zk+1 = S (zk) are connected such that
zk = U (xk) for all k > 0.

2. The decoder-map pair (W ,S) is a reduced order model of F if for all initial
conditions z0 ∈ H = {z ∈ Z : W (z) ∈ G} the trajectory zk+1 = S (zk) and for
initial condition x0 = W (z0) the second trajectory xk+1 = F (xk) are connected
such that xk = W (zk) for all k > 0.



Invariant foliations and manifolds

(a)

A leaf is

Lz = {x ∈ G ⊂ X : U (x) = z}

Invariance F (Lz) ⊂ LS(z) means

S (U (x)) = U (F (x))

(b)

Invariance is pointwise

W (S (z)) = F (W (z))



Autoencoder (or reverse autoencoder)

The connection says that

W (S (U (x))) = F (x) or S (z) = U (F (W (z)))

Invariance occurs only ifM⊂ N . Or when
N∑

k=1

‖W (U (xk))− xk‖2 ≈ 0

All data must be on the manifold! =⇒ Not a reduced order model



In summary

Inv. Manifold Inv. Foliation
 

Autoencoder

Can be fitted 
to data

Reduced
order model

 
Reverse Autoencoder



Foliations: the smallprint of existence – uniqueness

Assume a steady state at x = 0. Let µk be the eigenvalues of the Jacobian at the steady state, µ1, . . . , µν correspond to the
dynamics of interest.

Definition
The number

iE? =
mink=1...ν log |µk |
maxk=1...n log |µk |

is called the spectral quotient of the left-invariant linear subspace E? of F about the origin.

Theorem
Assume that DF (0) is semisimple and that there exists an integer σ ≥ 2, such that iE? < σ ≤ r . Also assume that

n∏
k=1

µ
mk
k
6= µj , j = 1, . . . , ν (1)

for all mk ≥ 0, 1 ≤ k ≤ n with at least one ml 6= 0, ν + 1 ≤ l ≤ n and with
∑n

k=0 mk ≤ σ − 1. Then in a sufficiently small
neighbourhood of the origin there exists an invariant foliation F tangent to the left-invariant linear subspace E? of the C r map F . The
foliation F is unique among the σ-times differentiable foliations and it is also C r smooth.



Invariant manifolds as locally defined foliations

Define the encoder
Û (x) = U⊥x −W 0 (U (x))

In the neighbourhood of the invariant manifold

BÛ (x) = Û (F (x))

The decoder W is then reconstructed from U⊥ and W 0.



A 2D example

F (x) = V
(
AV−1 (x)

)
, (2)

where

A =

(
9
10 0
0 4

5

)
V (x) =

 x1 + 1
4

(
x3
1 − 3 (x1 − 1) x2x1 + 2x3

2 + (5x1 − 2) x2
2

)
x2 + 1

4

(
2x3

2 + (2x1 − 1) x2
2 − x2

1 (x1 + 2)
) 

a) Autoencoder b) Inv. Foliation

c) Inv. Foliation d) Linearised Foliation



Tackling the curse of dimensionality: HT tensors
I The low-dimensional map S is a dense

polynomial
I The encoder is a compressed

polynomial

U (x) = U1x +

p∑
d=2

n∑
i1···id=1

Ud
tr (·; i1, . . . , id ) xi1 · · · xid ,

I The tensor is defined recursively

Ut

(
p; i1, . . . , i|t1|, j1, . . . , j|t2|

)
=

=

kt1∑
q=1

kt2∑
r=1

Bt (p, q, r)Ut1

(
q; i1, . . . , i|t1|

)
Ut2

(
r ; j1, . . . , j|t2|

)
,

(DNNs are hopeless for this applica-
tion)



Ten-dimensional mechanical system
The system is a nonlinearly scrambled up
version of

ṙ1 = − 1
500 r1 + 1

100 r31 −
1
10 r51 , θ̇1 = 1 + 1
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ṙ2 = − e
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ṙ3 = − 1
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√
3
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10 r53 , θ̇3 =

√
30 + 9
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19
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ṙ4 = − 1
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1
10 r54 , θ̇4 = π2 + 4
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17
100 r44 ,

ṙ5 = − 13
500 r5 + 1

100 r35 , θ̇5 = 13 + 4
25 r25 −

9
50 r45 .

The transformations are y2k−1 =
rk cos θk and y2k = rk sin θk and then

y1 = z1 + z3 − 1
12 z3z5, y2 = z2 − z3,

y3 = z3 + z5 − 1
12 z5z7, y4 = z4 − z5,

y5 = z5 + z7 + 1
12 z7z9, y6 = z6 − z7,

y7 = z7 + z9 − 1
12 z1z9, y8 = z8 − z9,

y9 = z9 + z1 − 1
12 z3z1, y10 = z10 − z1,
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HT tensors max rank-6. Details: https://arxiv.org/abs/2206.12269

https://arxiv.org/abs/2206.12269


Jointed beam
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Comparing with Koopman
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Disclaimer: tried to make the best out of it, but all comparions are unfair (apples vs. oranges)

Details: https://arxiv.org/abs/2206.12269
Software: https://github.com/rs1909/FMA

https://arxiv.org/abs/2206.12269
https://github.com/rs1909/FMA


Comparing with SSMLearn – an autoencoder (Cenedese et al)

1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

frequency [rad/s]

am
pl

itu
de

(a)

MAN
ST-1
VF-1
VF-2

10−2 100
0.00

0.02

0.04

0.06

damping ratio [-]

am
pl

itu
de

(b)

Disclaimer: tried to make the best out of it, but all comparions are unfair (apples vs. oranges)

Details: https://arxiv.org/abs/2206.12269
Software: https://github.com/rs1909/FMA

https://arxiv.org/abs/2206.12269
https://github.com/rs1909/FMA


Conclusions

I Considered all possibilies for ROM identification

I Only foliations can be fitted to data and invariant at the same time

I Koopman is a special case of foliations, SSMLearn is an autoencoder, many others
similarly just learn a manifold

I Try compressed tensors and Gauss-Southwell optimisation

Again, many thanks for the opportunity to speak!



Comparing with SSMLearn – an autoencoder (Cenedese et al)
A new parametrisation is needed: W̃ (r , θ) = W (t, θ + δ (t)) , t = κ−1

(
r2

2

)
, where

δ (r) = −
´ r
0

´ 2π
0 〈D1W (ρ,θ),D2W (ρ,θ)〉Xdθ´ 2π
0 〈D2W (ρ,θ),D2W (ρ,θ)〉Xdθ

dρ,

κ (r) = 1
2π

´ r
0

´ 2π
0 〈D1W (ρ, θ) ,W (ρ, θ)〉X dθdρ
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