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The assumptions

We have the data
(XK, ¥i)s k=1,2,....N xi,y, €R"

The data is approximately on the graph of function
F, ie,

yk:F(Xk)+£k,

where £, is a small random error with zero mean.
Diagram from: S. Preidikman & D. Mook,

JVC, 2000

Find a low-dimensional description of the data
Create an abstraction, capture an invariant, etc. ..




Requirements

1. Lower dimensional than the manifold that the data covers

a) . b)

2. The data has a connection to the model

3. The model is unique, describes the data, predicts the future, explains phenomena, informs experimental design, etc



Connections to data
Two kinds of connections
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Four possibilies
Invariant foliation

Z%
S(U(x)) = U(F(x))

S(U(xk))=U(yx)
Autoencoder

W (S (U(x))) = F(x)
W (S (U (xk))) =y«

Invariant manifold

W(S(z)) = F(W(2))

Reverse autoencoder

X ,,,,E,,,> X
@ —- l
U (F (W (z2)))



A weak definition of ROM: invariance

Definition
Assume two maps F: X — X, S:Z — Z and a encoder U : X — Z or a decoder
w:z— X.

1. The encoder-map pair (U, S) is a reduced order model (ROM) of F if for all initial
conditions xg € G C X the trajectory xx11 = F (xx) and for initial condition
2o = U (xo) the second trajectory z, 1 = §(z) are connected such that
z, = U (xg) for all k > 0.

2. The decoder-map pair (W, S) is a reduced order model of F if for all initial
conditions zg € H={z € Z: W (z) € G} the trajectory z,1; = §(zx) and for
initial condition xo = W (zg) the second trajectory xx+1 = F (xx) are connected
such that x, = W (zy) for all k > 0.



Invariant foliations and manifolds
(a)

F

L,

Lsiz) Lo
A leaf is

L={xeGCX:U(x)=z} Invariance is pointwise
Invariance F (L;) C Lg(;) means

S(U(x)) = U(F(x))



Autoencoder (or reverse autoencoder)
M = image of W

M)

" parameter space Z

The connection says that
W (S (U(x))) =F(x) or S(z) = U(F(W(z2)))
Invariance occurs only if M C N. Or when

ZHW (x)) = xkl* ~ 0

All data must be on the manlfold! = Not a reduced order model



In summary

Reduced Can be fitted
order model to data

Inv. Manifold { Inv. Foliation Autoencoder

Reverse Autoencoder



Foliations: the smallprint of existence — uniqueness

Assume a steady state at x = 0. Let p) be the eigenvalues of the Jacobian at the steady state, p3, ..., correspond to the
dynamics of interest.

Definition
The number
ming_y_ ., log |pl
s = —————
maxk—1...n log | pl

is called the spectral quotient of the left-invariant linear subspace E* of F about the origin.

Theorem
Assume that DF (0) is semisimple and that there exists an integer o > 2, such that Jg« < o < r. Also assume that
n
m .
T e #mpi=1,...,v (1)
k=1

for all mi >0, 1 < k < n with at least one m; # 0, v + 1 < | < n and with Y }_o m < o — 1. Then in a sufficiently small
neighbourhood of the origin there exists an invariant foliation F tangent to the Ieft—lnvanant linear subspace E* of the C" map F. The
foliation F is unique among the o-times differentiable foliations and it is also C" smooth.



Invariant manifolds as locally defined foliations

Define the encoder

U(x) = Utx—Wq (U (x))

In the neighbourhood of the invariant manifold
BU (x) = U(F (x))

The decoder W is then reconstructed from U' and W.

v



A 2D example

where

Autoencoder

F(x)=V (AV ! (x)),

0 V() x1+% x;—3(x1—1)xzx1 +2x§+(5x1—2)x§)
x) =
= X2 + % 2><§ +(2xa — 1)><22 — xf (x1 + 2))

()



Tackling the curse of dimensionality: HT tensors
» The low-dimensional map S is a dense

polynomial
» The encoder is a compressed d =5,U, c Rk B, e RkHy xky
polynomial ’ Birases)
P n ///////// ’;\\\
UX)=Ux+> " > UL (i, yig) Xig iy, B1os B
d=21iy--ig=1 / \ / {Q
/B{l,z} P3 P4 I‘JS
u U

» The tensor is defined recursively
(DNNs are hopeless for this applica-

Us (p; PR g 1s - jltzl) - tion)

kty kip

= ZZBt (Pyq,r) Uy (q; 1y, [|f1|) Uty (r;j;l AAAAA j|f2\) s

q=1r=1



Ten-dimensional mechanical system
The system is a nonlinearly scrambled up The transformations are yo_ 1 =

version of ri cos Oy and yo, = rsin 6y and then
r:1=753ﬁr1+ﬁr137%r15, 9:1:1+%3’122* %’i:’ yi  =z1+23 — Sz3zs, y2 =22 -2z,
fa = —555"2 — 15’2 9.2:e+2—0r27gf2, ys =z3+25 — 352527, ya  =Za — s,
=g/t s — w5 ?3:\/%-*-%@—%';, Y5 =25 + 27 + 352720, Yo =26 — 27,
fa = —ghs Tt 1h51a — 514 9l4:7r2+%r§7ﬁr:, y7 =z +29 — 35717, ys =728~ Z9,
5= — s + 1igre 0s =13+ L2 — 2r2. Yo =20+2z1— 352371, yio =z10 — 21,
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HT tensors max rank-6. Details: https://arxiv.org/abs/2206.12269


https://arxiv.org/abs/2206.12269

Jointed beam
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Comparing with Koopman

(a)
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Disclaimer: tried to make the best out of it, but all comparions are unfair (apples vs. oranges)

Details: https://arxiv.org/abs/2206.12269
Software: https://github.com/rs1909/FMA


https://arxiv.org/abs/2206.12269
https://github.com/rs1909/FMA

Comparing with SSMLearn — an autoencoder (Cenedese et al)

(a)
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Disclaimer: tried to make the best out of it, but all comparions are unfair (apples vs. oranges)

Details: https://arxiv.org/abs/2206.12269
Software: https://github.com/rs1909/FMA


https://arxiv.org/abs/2206.12269
https://github.com/rs1909/FMA

Conclusions

» Considered all possibilies for ROM identification

» Only foliations can be fitted to data and invariant at the same time

» Koopman is a special case of foliations, SSMLearn is an autoencoder, many others
similarly just learn a manifold

» Try compressed tensors and Gauss-Southwell optimisation

Again, many thanks for the opportunity to speak!



Comparing with SSMLearn — an autoencoder (Cenedese et al)
A new parametrisation is needed: W (r,0) = W (t,0 + 0 (t)), t = r ! (;) where

_pr JETDiW(p,0),D2 W (p,0)) 4O
o(r) = fo f%"(DzW(pﬁ),DzW(p,e))xd@ ’

K (r)= 2 fy Ja" (DLW (p,0), W (p,0))x d0dp

1.0 1.
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