Data-driven reduced order models using invariant foliations, manifolds and autoencoders

Robert Szalai

Department of Engineering Mathematics University of Bristol

28 September, 2022

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▶ What is a reduced order model?

► The four candidates

► Foliations in detail

The assumptions

We have the data

$$(\boldsymbol{x}_k, \boldsymbol{y}_k), \ k = 1, 2, \dots, N \quad \boldsymbol{x}_k, \boldsymbol{y}_k \in \mathbb{R}^n$$

The data is approximately on the graph of function \boldsymbol{F} , i.e.,

$$\boldsymbol{y}_{k}=\boldsymbol{F}\left(\boldsymbol{x}_{k}\right)+\boldsymbol{\xi}_{k},$$

where $\boldsymbol{\xi}_k$ is a small random error with zero mean.

Diagram from: S. Preidikman & D. Mook,

JVC, 2000

Find a low-dimensional description of the data

Create an abstraction, capture an invariant, etc...

Requirements

2. The data has a connection to the model

3. The model is unique, describes the data, predicts the future, explains phenomena, informs experimental design, etc

Connections to data

Two kinds of connections

Four possibilies

Invariant foliation $\xrightarrow{F} X$ X ιU U s $\boldsymbol{S}(\boldsymbol{U}(\boldsymbol{x})) = \boldsymbol{U}(\boldsymbol{F}(\boldsymbol{x}))$ $S(U(\mathbf{x}_k)) = U(\mathbf{y}_k)$ Autoencoder ___**F**___> X w U $\boldsymbol{W}\left(\boldsymbol{S}\left(\boldsymbol{U}\left(\boldsymbol{x}\right)\right)\right)=\boldsymbol{F}\left(\boldsymbol{x}\right)$ $W(S(U(\mathbf{x}_{k}))) = \mathbf{y}_{k}$

A weak definition of ROM: invariance

Definition

Assume two maps $F : X \to X$, $S : Z \to Z$ and a encoder $U : X \to Z$ or a decoder $W : Z \to X$.

- 1. The encoder-map pair $(\boldsymbol{U}, \boldsymbol{S})$ is a *reduced order model* (ROM) of \boldsymbol{F} if for all initial conditions $\boldsymbol{x}_0 \in G \subset X$ the trajectory $\boldsymbol{x}_{k+1} = \boldsymbol{F}(\boldsymbol{x}_k)$ and for initial condition $\boldsymbol{z}_0 = \boldsymbol{U}(\boldsymbol{x}_0)$ the second trajectory $\boldsymbol{z}_{k+1} = \boldsymbol{S}(\boldsymbol{z}_k)$ are connected such that $\boldsymbol{z}_k = \boldsymbol{U}(\boldsymbol{x}_k)$ for all k > 0.
- The decoder-map pair (*W*, *S*) is a *reduced order model* of *F* if for all initial conditions *z*₀ ∈ *H* = {*z* ∈ *Z* : *W*(*z*) ∈ *G*} the trajectory *z*_{k+1} = *S*(*z*_k) and for initial condition *x*₀ = *W*(*z*₀) the second trajectory *x*_{k+1} = *F*(*x*_k) are connected such that *x*_k = *W*(*z*_k) for all *k* > 0.

Invariant foliations and manifolds

A leaf is

$$\mathcal{L}_{\boldsymbol{z}} = \{ \boldsymbol{x} \in \boldsymbol{G} \subset \boldsymbol{X} : \boldsymbol{U}(\boldsymbol{x}) = \boldsymbol{z} \}$$

Invariance $F(\mathcal{L}_z) \subset \mathcal{L}_{S(z)}$ means

 $oldsymbol{S}\left(oldsymbol{U}\left(oldsymbol{x}
ight)
ight)=oldsymbol{U}\left(oldsymbol{F}\left(oldsymbol{x}
ight)
ight)$

Invariance is pointwise

$$oldsymbol{W}\left(oldsymbol{S}\left(z
ight)
ight)=oldsymbol{F}\left(oldsymbol{W}\left(z
ight)
ight)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Autoencoder (or reverse autoencoder) $\mathcal{M} = \text{image of } W$ F \mathcal{W} $\mathcal{N} = F^{-1}(\mathcal{M})$ parameter space Z

The connection says that

$$W(S(U(x))) = F(x)$$
 or $S(z) = U(F(W(z)))$

Invariance occurs only if $\mathcal{M}\subset\mathcal{N}.$ Or when

$$\sum_{k=1}^{N} \left\| \boldsymbol{W} \left(\boldsymbol{U} \left(\boldsymbol{x}_{k} \right) \right) - \boldsymbol{x}_{k} \right\|^{2} \approx 0$$

All data must be on the manifold! \implies Not a reduced order model \rightarrow (\equiv) (\equiv) \rightarrow (\neg) (\neg)

In summary

Reverse Autoencoder

Foliations: the smallprint of existence - uniqueness

Assume a steady state at x = 0. Let μ_k be the eigenvalues of the Jacobian at the steady state, μ_1, \ldots, μ_ν correspond to the dynamics of interest.

Definition

The number

$$\Box_{E^{\star}} = \frac{\min_{k=1...\nu} \log |\mu_k|}{\max_{k=1...n} \log |\mu_k|}$$

is called the spectral quotient of the left-invariant linear subspace E^{\star} of F about the origin.

Theorem

Assume that DF (0) is semisimple and that there exists an integer $\sigma \geq 2$, such that $\exists_{F^*} < \sigma \leq r$. Also assume that

$$\prod_{k=1}^{n} \mu_{k}^{m_{k}} \neq \mu_{j}, \ j = 1, \dots, \nu$$
(1)

for all $m_k \ge 0$, $1 \le k \le n$ with at least one $m_l \ne 0$, $\nu + 1 \le l \le n$ and with $\sum_{k=0}^n m_k \le \sigma - 1$. Then in a sufficiently small neighbourhood of the origin there exists an invariant foliation \mathcal{F} tangent to the left-invariant linear subspace E^* of the C^r map F . The foliation \mathcal{F} is unique among the σ -times differentiable foliations and it is also C^r smooth.

Invariant manifolds as locally defined foliations

Define the encoder

$$\hat{oldsymbol{U}}\left(oldsymbol{x}
ight)=oldsymbol{U}^{ot}oldsymbol{x}-oldsymbol{W}_{0}\left(oldsymbol{U}\left(oldsymbol{x}
ight)
ight)$$

In the neighbourhood of the invariant manifold

$$B\hat{U}(x) = \hat{U}(F(x))$$

イロト イロト イヨト イヨト

= nar

The decoder W is then reconstructed from U^{\perp} and W_0 .

A 2D example

where

Tackling the curse of dimensionality: HT tensors

- The low-dimensional map S is a dense polynomial
- The encoder is a compressed polynomial

$$\boldsymbol{U}(\boldsymbol{x}) = \boldsymbol{U}^{1}\boldsymbol{x} + \sum_{d=2}^{p} \sum_{i_{1}\cdots i_{d}=1}^{n} U_{t_{r}}^{d}\left(\cdot; i_{1}, \ldots, i_{d}\right) \boldsymbol{x}_{i_{1}}\cdots \boldsymbol{x}_{i_{d}};$$

$$d = 5, \mathbf{U}_{i} \in \mathbb{R}^{n \times k_{i}}, \mathbf{B}_{t} \in \mathbb{R}^{k_{t} \times k_{t_{1}} \times k_{t_{2}}}$$

$$B_{\{1,2,3\}}$$

$$B_{\{1,2\}}$$

$$U_{1}$$

$$U_{1}$$

$$U_{2}$$

$$B_{\{1,2\}}$$

$$U_{3}$$

$$U_{4}$$

$$U_{5}$$

$$U_{1}$$

$$U_{2}$$

► The tensor is defined recursively

$$\begin{split} & U_t\left(p; i_1, \dots, i_{|t_1|}, j_1, \dots, j_{|t_2|}\right) = \\ & = \sum_{q=1}^{k_{t_1}} \sum_{r=1}^{k_{t_2}} B_t\left(p, q, r\right) U_{t_1}\left(q; i_1, \dots, i_{|t_1|}\right) U_{t_2}\left(r; j_1, \dots, j_{|t_2|}\right), \end{split}$$

(DNNs are hopeless for this application)

・ロト ・四ト ・ヨト ・ヨト ・ロト

Ten-dimensional mechanical system

The system is a nonlinearly scrambled up The transformations are $y_{2k-1} = r_k \cos \theta_k$ and $y_{2k} = r_k \sin \theta_k$ and then

HT tensors max rank-6. Details: https://arxiv.org/abs/2206.12269

э

Jointed beam

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

Comparing with Koopman

Disclaimer: tried to make the best out of it, but all comparions are unfair (apples vs. oranges) Details: https://arxiv.org/abs/2206.12269 Software: https://github.com/rs1909/FMA

Comparing with SSMLearn – an autoencoder (Cenedese et al)

Disclaimer: tried to make the best out of it, but all comparions are unfair (apples vs. oranges) Details: https://arxiv.org/abs/2206.12269 Software: https://github.com/rs1909/FMA

Conclusions

Considered all possibilies for ROM identification

Only foliations can be fitted to data and invariant at the same time

 Koopman is a special case of foliations, SSMLearn is an autoencoder, many others similarly just learn a manifold

Try compressed tensors and Gauss-Southwell optimisation

Again, many thanks for the opportunity to speak!

Comparing with SSMLearn – an autoencoder (Cenedese et al) A new parametrisation is needed: $\tilde{W}(r,\theta) = W(t,\theta + \delta(t)), t = \kappa^{-1}(\frac{r^2}{2})$, where
$$\begin{split} \delta\left(r\right) &= -\int_{0}^{r} \frac{\int_{0}^{2\pi} \langle D_{1}\boldsymbol{W}(\boldsymbol{\rho},\boldsymbol{\theta}), D_{2}\boldsymbol{W}(\boldsymbol{\rho},\boldsymbol{\theta}) \rangle_{X} \mathrm{d}\boldsymbol{\theta}}{\int_{0}^{2\pi} \langle D_{2}\boldsymbol{W}(\boldsymbol{\rho},\boldsymbol{\theta}), D_{2}\boldsymbol{W}(\boldsymbol{\rho},\boldsymbol{\theta}) \rangle_{X} \mathrm{d}\boldsymbol{\theta}} \mathrm{d}\boldsymbol{\rho}, \\ \kappa\left(r\right) &= \frac{1}{2\pi} \int_{0}^{r} \int_{0}^{2\pi} \langle D_{1}\boldsymbol{W}\left(\boldsymbol{\rho},\boldsymbol{\theta}\right), \boldsymbol{W}\left(\boldsymbol{\rho},\boldsymbol{\theta}\right) \rangle_{X} \mathrm{d}\boldsymbol{\theta} \mathrm{d}\boldsymbol{\rho} \end{split}$$
(a) (b) 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.0190 0.0195 0.0200 0.0205 0.0210 0.998.1.000 $\omega(r)$ ζ(r) < □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ • Ѻ�.♡