Using statistical mechanics to approach the optimal size of a network in image recognition

Markus Abel

Thomas Seidler

September 27 2023

Talk at the 3rd Symposium for Machine Learning and Dynamical Systems

ambrosys

Image recognition and AI

Introduction

Drawing by Michel Foucault

- What do we sense?
- What do we interprete?
- What is reality?

Drawing by Michel Foucault

- O(10⁹) neurons in the visual cortex
- Information stored in the brain
- There is a joint concept on "things"

Introduction

ambrosys

- Neural networks as a statistical system:
- many approaches analogous to statmech of the brain
- main idea: consider nodes as "neurons" and edges as "axons"
- Formulate a "Hamiltonian" as coupled units
- apply statistical mechanics to find transitions, states, phases

$$H(t) = -\sum_{i,j} J_{ij}S_iS_j - h(t)\sum_I S_I$$

with J the coupling S_i the state of a unit, and h a time-dependent forcing. Measured quantities in terms of statistics, e.g. magnetization

$$M = \sum_i s_i = N < s >$$

Introduction

ambrosys

Deep Neural Networks

Given: input $x \in R^d$, weights $w^1, ..., w^{p-1} \in R^{d \times d}$, $w^p \in R^{d \times K}$, nonlinear functions σ Output $y \in R^K$:

$$y(w,x) = \sigma(w^{p}\sigma(w^{p-1}\sigma(...\sigma(w^{1}x))))$$

• supervised learning: given is $x^i, y^{i}_{i=1}^N$

minimize the empirical loss

$$f(w) = 1/N \sum_{i=1}^{N} f_i(w),$$

e.g.

$$f_i(w) = 1$$
 if $y(w, x) \neq y^i$, else 0

Introduction

ambrosys

Deep Neural Networks

- the objective f(w) is a non-convex funciton of w
- optimization problem

$$w^* = \operatorname{argmin}_w(f(w))$$

Measured quantity, e.g., the mean classification quality

$$Q = < |f| >$$

 ${\boldsymbol{Q}}$ is nonextensive in contrast to ${\boldsymbol{M}}$

Introduction

Analogy

DNNs vs. Stat Mech

- weights and coupling $w \leftrightarrow J$
- classification and magnetization $y^i \leftrightarrow M(t)$
- Objective and Hamiltonian $f(w) \leftrightarrow H(J)$

Solution of finding the ground state of a system, or the optimal solution, resp. is very expensive, since the number of macrostates is huge. Approximate solutions are accepted.

Analogy

Stat Mech

- describe quantities by mean values
- mean values are sharp due to large number of variables
- parameters are equivalent to constraints
- solution (classic) by Lagrange formalism

Entropy or information

 $S = - < \ln \omega_i > ,$

with $\omega_i = \omega(f_i) = \frac{1}{Z}e^{-\beta f_i}$ (or E_i). f is a parameter, e.g. mean energy, or a constraint in optimization (like $f_i = f_i(w)$).

Introduction

The role of noise

Side step: The Ising model once more

mean energy or temperature determines the transition from magnetized to unmagnetic

Statistical Mechanics applied to ML

Phase transitions in the Ising model

Figure: Left: Magnetization, right: Correlation function.

$$M_0 = <\Sigma_i s_i > \tag{1}$$

$$G_c(i,j) = \langle s_i s_j \rangle - \langle s_i \rangle \langle s_j \rangle$$

$$\tag{2}$$

Statistical Mechanics applied to ML

Noise generalized

What is the temperature or the noise in DNNs? Consider image recognition, e.g. numbers or faces. Working definition: noise is anything that does not beolong to the object to be classified, e.g. wrong pixels, objects covering a face, insufficient resolution

with increasing noise: transition from successful classification to impossible classification

- Depends on the classification complexity
- the size of the network matters
- ▶ the evolution time, i.e. the number of epochs matters
- Asymptotics: infinite number of epochs, infinitie DNN, infinite number of images

Statistical Mechanics applied to ML

classify black or white squares as 0 or 1.

Without noise: a two-neuron network is needed after the first layer. With noise: more neurons are needed, e.g. to compute a convolution or pooling. With noise very large: no classification possible without ensemble

averaging.

The problem is not too complex, e.g. image, or number recognition The number of weights is not too high $()O(10^{1}2))$

Investigate noise dependence

- Expected: with diminished noise, classification is possible
- Setup: many images, high resolution, large network

The problem is not too complex, e.g. image, or number recognition The number of weights is not too high, say $O(10^{12})$

Investigate noise dependence

- Expected: with diminished noise classification is possible
- Setup: many images, high resolution, large network

Finite Size Scaling - Ising again

For systems of finite size L^d and observables $Q(t) \propto (t)^y$:

$$L^{y/\nu}Q(L,t) = f(L^{1/\nu}t)$$
(3)

with
$$t = \frac{T - T_c}{T_c}$$

Statistical Mechanics applied to ML

Markus Abel Thomas Seidler

15/31

What is the optimal size of a network to classify correctly in an acceptable time

- Important for saving resources
- allows estimation of needed networks and number of epochs
- answers specialized chipdesign (e.g. with autonomous drive)

statmech yields (cf. Biehl, 2000)

with soft-committee machines.

Signal: x

Rule (correct classification): $\tau(\xi)$

Classification result: $\sigma(\xi) = \sum \xi_{weighted}$

Statistical Mechanics applied to ML

statmech computations

Training error:
$$\epsilon = \frac{1}{2n_{obs}} \sum_{1}^{n_{obs}} (\sigma(\xi) - \tau(\xi))^2$$

Generalization error: $\epsilon_g = \frac{1}{2} < (\sigma(\xi) - \tau(\xi))^2 >$
partition function: $Z = \int d\mu exp[-\beta n_{obs}\epsilon]$

Statistical Mechanics applied to ML

 Close to the phase transition: Optimal balance between training efficiency and model quality.

- Close to the phase transition: Optimal balance between training efficiency and model quality.
- Finite size scaling: How many data are needed? How much can an increase in quality and amount of data improve the training?

- Close to the phase transition: Optimal balance between training efficiency and model quality.
- Finite size scaling: How many data are needed? How much can an increase in quality and amount of data improve the training?
- Model classification: Can we recommend the optimal model for a given problem ?

Add Gaussian white noise to some classification data.

Methods and results

- Add Gaussian white noise to some classification data.
- Train a model and compute metrics.

Methods and results

- Add Gaussian white noise to some classification data.
- Train a model and compute metrics.
- Average over multiple noise realizations (create an ensemble of systems).

Methods and results

- Add Gaussian white noise to some classification data.
- Train a model and compute metrics.
- Average over multiple noise realizations (create an ensemble of systems).
- Repeat for multiple noise intensities.

Image recognition

A gentle reminder on interpretation

Drawing by Michel Foucault

- What is essential and what is not?
- What is noise and what is not?

Methods and results

Experiment description

ambrosys

Data

MNIST dataset from sklearn Resolution: 8x8 Number of Instances: 1797 Missing Attribute Values: None Copy of hand-written digits datasets 10 classes - 1 per digit

cf. Garris et all, NISTIR 5469, 1994, Alpaydin and Kaynak (1998) Cascading Classifiers, Kybernetika, Gentile, NIPS 2000

Methods and results

Experiment

Metrics : sklearn.metrics.accuracy_score

$$accuracy(y, \hat{y}) := \frac{1}{N} \sum_{i=0}^{N-1} \mathbb{1}(\hat{y}_i = y_i)$$

Model: sklearn.linear_model.Perceptron tolerance tol = 1e - 3, random_state=0

Noise

Gaussian with mean 0 and standard deviation σ Added pixelwise

Methods and results

Results

Figure: Left: Perceptron, right: RidgeClassifier.

- Classification problem: Detect black or white image
- Entropy = 2 Bit, theoretically needed: 2 neurons
- Noise: larger system needed
- Noise intensities: 1000 between 0 and 5 (with a signal intensity of 1)

Methods and results

Results for MNIST

- left: maximum number of data, right: different data sizes.
 - Nice transition, already for $N = O(10^3)$
 - Is there finite-size scaling with N?

Methods and results

Results for MNIST

left: maximum number of data, right: finite-size behaviour

- if the (daring) scaling is determined: exponent is 1/2
- if true is this a universal behaviour?

Methods and results

What is the practical implication? - Architectures

Knowing scaling for an architecture, we can now determine the amount of data needed to reach a certain quality of the classification

What is the practical implication? - Data sizes

Knowing the amount of data, we can determine the minimum size of a network to reach a certain quality of the classification

Methods and results

Universality and critical exponents

Close to critical temperature, example magnetization or correlation:

$$M_0 \propto \left(\frac{T_c - T}{T_c}\right)^{\beta} \tag{4}$$
$$G_c \propto \frac{1}{r^{d-2+\eta}} \tag{5}$$

ambrosys

 β , η is "universal" for a whole class of systems.

Does this hold for classes of machine learning problems?

Methods and results

Discussion

Optimization and statistical mechanics

- Analogy can be established
- For small networks corrections are needed
- For large networks formalism may apply
- Phase transitions are observed

Discussion

Application

- Classification shows a well defined transition for a model class
- Dependence on "driving", i.e. statistical properties of the data
- Dependence on size of network
- Dependence on the complexity of the optimization task

Outlook

ambrosys

Model and problem universality

- Problems may be classified (continuous, discrete, NP hard, nonlinear, ...)
- Models may be classified (NNs, random forests, dynamic programming,...)
- universality exponents may help to determine a good choice of method for a certain problem
- ... and the typical size of a NN needed to reach a certain quality

given an amount of data, including if a DNN approach is useful at all

Methods and results