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Motivation

Drawing by Michel Foucault

I What do we sense?

I What do we interprete?

I What is reality?
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Motivation

Drawing by Michel Foucault

I O(109) neurons in the visual
cortex

I Information stored in the
brain

I There is a joint concept on
”things”
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Motivation

I Neural networks as a statistical system:

I many approaches analogous to statmech of the brain

I main idea: consider nodes as ”neurons” and edges as ”axons”

I Formulate a ”Hamiltonian” as coupled units

I apply statistical mechanics to find transitions, states, phases

H(t) = −
∑
i ,j

JijSiSj − h(t)
∑
I

SI

with J the coupling Si the state of a unit, and h a time-dependent
forcing. Measured quantities in terms of statistics, e.g.
magnetization

M =
∑
i

si = N < s >
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Motivation

Deep Neural Networks

Given: input x ∈ Rd , weights w1, ...,wp−1 ∈ Rdxd , wp ∈ RdxK ,
nonlinear functions σ
Output y ∈ RK :

y(w , x) = σ(wpσ(wp−1σ(...σ(w1x))))

I supervised learning: given is x i , y i
N
i=1

I minimize the empirical loss

f (w) = 1/N
N∑
i=1

fi (w),

e.g.
fi (w) = 1 if y(w , x) 6= y i , else 0
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Motivation

Deep Neural Networks

I the objective f (w) is a non-convex funciton of w

I optimization problem

w∗ = argminw (f (w))

Measured quantity, e.g., the mean classification quality

Q =< |f | >

Q is nonextensive in contrast to M
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Analogy

DNNs vs. Stat Mech
I weights and coupling w ↔ J

I classification and magnetization y i ↔ M(t)

I Objective and Hamiltonian f (w)↔ H(J)

Solution of finding the ground state of a system, or the optimal
solution, resp. is very expensive, since the number of macrostates
is huge. Approximate solutions are accepted.
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Analogy

Stat Mech
I describe quantities by mean values

I mean values are sharp due to large number of variables

I parameters are equivalent to constraints

I solution (classic) by Lagrange formalism

Entropy or information

S = − < ln ωi > ,

with ωi = ω(fi ) = 1
Z e

−βfi (or Ei ). f is a parameter, e.g. mean
energy, or a constraint in optimization (like fi = fi (w)).
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The role of noise

Side step: The Ising model once more

H = −J
∑
ij

si sj − h
∑
i

si

mean energy or temperature determines the transition from
magnetized to unmagnetic
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Phase transitions in the Ising model

Figure: Left: Magnetization, right: Correlation function.

M0 =< Σi si > (1)

Gc(i , j) =< si sj > − < si >< sj > (2)
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Noise generalized

What is the temperature or the noise in DNNs?
Consider image recognition, e.g. numbers or faces.
Working definition: noise is anything that does not beolong to the
object to be classified, e.g. wrong pixels, objects covering a face,
insufficient resolution

with increasing noise: transition from successful classification
to impossible classification

I Depends on the classification complexity

I the size of the network matters

I the evolution time, i.e. the number of epochs matters

I Asymptotics: infinite number of epochs, infinitie DNN, infinite
number of images
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A simple setup

classify black or white squares as 0 or 1.
Without noise: a two-neuron network is needed after the first layer.
With noise: more neurons are needed, e.g. to compute a
convolution or pooling.
With noise very large: no classification possible without ensemble
averaging.
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A realistic setup

The problem is not too complex, e.g. image, or number
recognition The number of weights is not too high ()O(1012))

Investigate noise dependence

I Expected: with diminished noise, classification is possible

I Setup: many images, high resolution, large network
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A realistic setup
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Investigate noise dependence
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Finite Size Scaling - Ising again

For systems of finite size Ld and observables Q(t) ∝ (t)y :

Ly/νQ(L, t) = f (L1/νt) (3)

with t = T−Tc
Tc

.
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Application - Size optimization

What is the optimal size of a network to classify correctly in
an acceptable time

I Important for saving resources

I allows estimation of needed networks and number of epochs

I answers specialized chipdesign (e.g. with autonomous drive)
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statmech yields (cf. Biehl, 2000)

with soft-committee machines.

Signal: x

Rule (correct classification): τ(ξ)

Classification result: σ(ξ) =
∑
ξweighted
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statmech computations

Training error: ε = 1
2nobs

∑nobs
1 (σ(ξ)− τ(ξ))2

Generalization error: εg = 1
2 < (σ(ξ)− τ(ξ))2 >

partition function: Z =
∫
dµexp[−βnobsε]
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What do we want to find out?

I Close to the phase transition: Optimal balance between
training efficiency and model quality.

I Finite size scaling: How many data are needed? How much
can an increase in quality and amount of data improve the
training?

I Model classification: Can we recommend the optimal model
for a given problem ?
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phase-ml.ambrosys.de

I Add Gaussian white noise to some classification data.

I Train a model and compute metrics.

I Average over multiple noise realizations (create an ensemble
of systems).

I Repeat for multiple noise intensities.
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Image recognition

A gentle reminder on interpretation

Drawing by Michel Foucault

I What is essential and what is not?

I What is noise and what is not?
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Experiment description

Data
MNIST dataset from sklearn
Resolution: 8x8
Number of Instances: 1797
Missing Attribute Values: None
Copy of hand-written digits datasets
10 classes - 1 per digit

cf. Garris et all, NISTIR 5469, 1994, Alpaydin and Kaynak (1998)
Cascading Classifiers, Kybernetika, Gentile, NIPS 2000
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Experiment

Metrics : sklearn.metrics.accuracy score

accuracy(y , ŷ) :=
1

N

N−1∑
i=0

1(ŷi = yi )

Model: sklearn.linear model.Perceptron

tolerance tol = 1e − 3, random state=0

Noise
Gaussian with mean 0 and standard deviation σ
Added pixelwise

Methods and results Markus Abel Thomas Seidler 23/31



Results

Figure: Left: Perceptron, right: RidgeClassifier.

I Classification problem: Detect black or white image

I Entropy = 2 Bit, theoretically needed: 2 neurons

I Noise: larger system needed

I Noise intensities: 1000 between 0 and 5 (with a signal
intensity of 1)
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Results for MNIST

left: maximum number of data, right: different data sizes.

I Nice transition, already for N = O(103)

I Is there finite-size scaling with N?
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Results for MNIST

left: maximum number of data, right: finite-size behaviour

I if the (daring) scaling is determined: exponent is 1/2

I if true - is this a universal behaviour?

Methods and results Markus Abel Thomas Seidler 26/31



Results for MNIST - so what?

What is the practical implication? - Architectures

Knowing scaling for an architecture, we can now determine the
amount of data needed to reach a certain quality of the
classification

What is the practical implication? - Data sizes

Knowing the amount of data, we can determine the minimum
size of a network to reach a certain quality of the classification
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Universality and critical exponents

Close to critical temperature, example magnetization or correlation:

M0 ∝
(
Tc − T

Tc

)β
(4)

Gc ∝
1

rd−2+η
(5)

β, η is ”universal” for a whole class of systems.

Does this hold for classes of machine learning problems?
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Discussion

Optimization and statistical mechanics

I Analogy can be established

I For small networks corrections are needed

I For large networks formalism may apply

I Phase transitions are observed
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Discussion

Application

I Classification shows a well defined transition for a model class

I Dependence on ”driving”, i.e. statistical properties of the data

I Dependence on size of network

I Dependence on the complexity of the optimization task
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Outlook

Model and problem universality

I Problems may be classified (continuous, discrete, NP hard,
nonlinear, ...)

I Models may be classified (NNs, random forests, dynamic
programming,...)

I universality exponents may help to determine a good choice of
method for a certain problem

I ... and the typical size of a NN needed to reach a certain
quality
given an amount of data, including if a DNN approach is
useful at all
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