
Approximation Theory of Deep Learning from the

Dynamical Viewpoint

Qianxiao Li

Department of Mathematics, National University of Singapore

https://blog.nus.edu.sg/qianxiaoli

3rd Symposium on Machine Learning and Dynamical Systems

Fields Institute, Toronto, Canada

29 Sep 2022

Background

Deep Learning: Theory vs Practice

1

What’s new?

Compositional/dynamical structures

Models Algorithms Data

2

What’s new?

Compositional/dynamical structures

Models Algorithms Data

2

Composition is Dynamics

Composition

y = FT ◦ FT−1 ◦ · · · ◦ F0(x)

Dynamics

y = xT , x = x0

xt+1 = Ft(xt) t = 0, 1, . . . ,T − 1

Such connections underlies the study of dynamical systems

3

Composition is Dynamics

Composition

y = FT ◦ FT−1 ◦ · · · ◦ F0(x)

Dynamics

y = xT , x = x0

xt+1 = Ft(xt) t = 0, 1, . . . ,T − 1

Such connections underlies the study of dynamical systems

3

Supervised Learning

Goal: Learn/approximate target F ∗

4

Supervised Learning

Goal: Learn/approximate target F ∗

4

The Problem of Approximation

5

The Problem of Approximation

5

The Problem of Approximation

Given a hypothesis space H and a target (concept) space C, we seek two types of

approximation results

• Universal Approximation (Density)

For each F ∗ ∈ C and ϵ > 0, there exist F̂ ∈ H such that ∥F ∗ − F̂∥ ≤ ϵ

• Approximation Rates. Let H = ∪mHm, where Hm ⊂ Hm+1, m measures size of

hypothesis space (approximation budget)

inf
F̂∈Hm

∥F ∗ − F̂∥ ≤ Complexity(F ∗)rate(m), rate(m) → 0

6

The Problem of Approximation

Given a hypothesis space H and a target (concept) space C, we seek two types of

approximation results

• Universal Approximation (Density)

For each F ∗ ∈ C and ϵ > 0, there exist F̂ ∈ H such that ∥F ∗ − F̂∥ ≤ ϵ

• Approximation Rates. Let H = ∪mHm, where Hm ⊂ Hm+1, m measures size of

hypothesis space (approximation budget)

inf
F̂∈Hm

∥F ∗ − F̂∥ ≤ Complexity(F ∗)rate(m), rate(m) → 0

6

Example: Approximation by Trigonometric Polynomials

Consider

• C = Cα
per([0, 2π],R) (periodic Cα functions)

• Hm =

{
m−1∑
i=0

ai cos(ix) + bi sin(ix) : ai , bi ∈ R

}
(trigonometric polynomials)

Then,

• Density: (Stone) Weierstrass Theorem (gives sufficient conditions)

• Approximation Rate: Jackson’s Theorem

inf
F̂∈Hm

∥F ∗ − F̂∥C ≤ C (α)maxi≤α ∥F ∗(i)∥C
mα

Insight: Efficient approximation if F ∗ is smooth (small gradient norm)

7

Example: Approximation by Trigonometric Polynomials

Consider

• C = Cα
per([0, 2π],R) (periodic Cα functions)

• Hm =

{
m−1∑
i=0

ai cos(ix) + bi sin(ix) : ai , bi ∈ R

}
(trigonometric polynomials)

Then,

• Density: (Stone) Weierstrass Theorem (gives sufficient conditions)

• Approximation Rate: Jackson’s Theorem

inf
F̂∈Hm

∥F ∗ − F̂∥C ≤ C (α)maxi≤α ∥F ∗(i)∥C
mα

Insight: Efficient approximation if F ∗ is smooth (small gradient norm)

7

Example: Approximation by Trigonometric Polynomials

Consider

• C = Cα
per([0, 2π],R) (periodic Cα functions)

• Hm =

{
m−1∑
i=0

ai cos(ix) + bi sin(ix) : ai , bi ∈ R

}
(trigonometric polynomials)

Then,

• Density: (Stone) Weierstrass Theorem (gives sufficient conditions)

• Approximation Rate: Jackson’s Theorem

inf
F̂∈Hm

∥F ∗ − F̂∥C ≤ C (α)maxi≤α ∥F ∗(i)∥C
mα

Insight: Efficient approximation if F ∗ is smooth (small gradient norm)

7

Approximation Theory of Deep Learning:

Stone-Weierstrass and Jackson type results when H and C
have compositional/dynamical structures

7

Approximation Theory of DL:

Function Approximation

Dynamical Structures in Deep Learning

DL builds complexity through composition/dynamics

How to achieve universal approximation this way?

8

The Continuum Idealization of Residual Networks

W. E, “A Proposal on Machine Learning via Dynamical Systems,” Communications in Mathematics and Statistics, vol. 5, no. 1, 2017

E. Haber and L. Ruthotto, “Stable architectures for deep neural networks,” Inverse Problems, vol. 34, no. 1, 2017

Q. Li, L. Chen, C. Tai, and W. E, “Maximum principle based algorithms for deep learning,” The Journal of Machine Learning Research, vol. 18,

no. 1, 2017

T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential equations,” in

Advances in neural information processing systems, 2018
9

How do dynamics approximate functions?

Binary Classification Problem

Not linearly separable!

Evolve with the dynamics

ẋt,1 = −xt,2 sin(t)

ẋt,2 = −1

2
(1− x2t,1)xt,2 + xt,1 cos(t)

Classify using linear classifier at the end:

g(xT) = 1xT ,1>0

10

How do dynamics approximate functions?

Dynamical Hypothesis Space

H(F ,G) = ∪T≥0{g ◦ φ : g ∈ G, φ ∈ Φ(F ,T)}

11

How do dynamics approximate functions?

Dynamical Hypothesis Space

H(F ,G) = ∪T≥0{g ◦ φ : g ∈ G, φ ∈ Φ(F ,T)}

11

Universal Approximation by Dynamics

• Sufficient conditions for universal approximation by dynamics [LLS, 22]

• In dimension ≥ 2, always possible under mild conditions

1. G covers range of F ∗

2. F is restricted affine invariant

3. Conv(F) contains a well function

• In dimension 1, only increasing functions if G = {id}
• Connections with controllability [Cuchiero et al, 20; Tabuda & Gharesifard, 22]

Q. Li, T. Lin, and Z. Shen, “Deep learning via dynamical systems: An approximation perspective,” Journal of the European Mathematical Society,

2022

C. Cuchiero, M. Larsson, and J. Teichmann, “Deep Neural Networks, Generic Universal Interpolation, and Controlled ODEs,”

SIAM Journal on Mathematics of Data Science, vol. 2, no. 3, 2020

P. Tabuada and B. Gharesifard, “Universal Approximation Power of Deep Residual Neural Networks Through the Lens of Control,”

IEEE Transactions on Automatic Control, 2022

12

Approximation of Symmetric Functions by Dynamical Hypothesis Spaces

Functions invariant to (some) permutations of its indices

F ∗(x) = F ∗(s(x)) where s(x)i = xs(i), s ∈ G (subgroup of Sd)

Examples

• Convolutional NN:

G = T (Group of Translations)

• DeepSets: G = Sd

• Material Property Prediction from CIF

data: G = Sd1 × Sd2

Similar sufficient conditions for

approximation of G -invariant functions for

any transitive G [LLS, 22b]

X-coord Y-coord Z-coord

Na 0 0 0

Cl 0.5 0.5 0.5

X-coord Y-coord Z-coord

Ca 0 0 0

Ca 0.5 0.5 0.5

C 0.25 0.25 0.25

C 0.75 0.75 0.75

O 0.0073 0.4927 0.75

O 0.25 0.9927 0.5073

O 0.4927 0.75 0.0073

O 0.5073 0.25 0.9927

O 0.75 0.0073 0.4927

O 0.9927 0.5073 0.25

Q. Li, T. Lin, and Z. Shen, “Deep Neural Network Approximation of Invariant Functions through Dynamical Systems,” arXiv, no. arXiv:2208.08707,

2022. arXiv: 2208.08707

13

https://arxiv.org/abs/2208.08707

Approximation Rates?

We have a Stone-Weierstrass type result for dynamical/compositional hypothesis

spaces

What about Jackson type results?

• In 1D, some crude rates can be obtained [LLS, 22]

• In general, problem is much more delicate

• Requires identification of right function spaces, complexity measures, etc.

• Connections to switching controls, Barron spaces, compositional features . . .

Q. Li, T. Lin, and Z. Shen, “Deep learning via dynamical systems: An approximation perspective,” Journal of the European Mathematical Society,

2022

14

Deep Learning as Mean-field Optimal Control

Learning/optimization on dynamical hypothesis spaces:

inf
θ∈L∞([0,T],Θ)

J(θ) := Eµ∗

Φ(xT , y)︸ ︷︷ ︸
Loss

+

∫ T

0
R(xt , θt)︸ ︷︷ ︸
Regularizer

dt


ẋt = f (xt , θt) 0 ≤ t ≤ T (x0, y) ∼ µ∗

This is a mean-field optimal control problem, because we need to select θ that controls

not one, but an entire distribution of inputs and outputs

Key questions:

• Theoretical: Necessary and sufficient conditions for optimality

• Practical: Understanding, improving learning algorithms

15

Deep Learning as Mean-field Optimal Control

Learning/optimization on dynamical hypothesis spaces:

inf
θ∈L∞([0,T],Θ)

J(θ) := Eµ∗

Φ(xT , y)︸ ︷︷ ︸
Loss

+

∫ T

0
R(xt , θt)︸ ︷︷ ︸
Regularizer

dt


ẋt = f (xt , θt) 0 ≤ t ≤ T (x0, y) ∼ µ∗

This is a mean-field optimal control problem, because we need to select θ that controls

not one, but an entire distribution of inputs and outputs

Key questions:

• Theoretical: Necessary and sufficient conditions for optimality

• Practical: Understanding, improving learning algorithms

15

Deep Learning as Mean-field Optimal Control

Learning/optimization on dynamical hypothesis spaces:

inf
θ∈L∞([0,T],Θ)

J(θ) := Eµ∗

Φ(xT , y)︸ ︷︷ ︸
Loss

+

∫ T

0
R(xt , θt)︸ ︷︷ ︸
Regularizer

dt


ẋt = f (xt , θt) 0 ≤ t ≤ T (x0, y) ∼ µ∗

This is a mean-field optimal control problem, because we need to select θ that controls

not one, but an entire distribution of inputs and outputs

Key questions:

• Theoretical: Necessary and sufficient conditions for optimality

• Practical: Understanding, improving learning algorithms

15

Mathematical Results and Numerical Algorithms

• Necessary and sufficient conditions for optimality

• Mean-field Pontryagin’s maximum principle (PMP) [EHL, 19]

• Mean-field Hamilton Jacobi Bellman equations (HJB) [EHL, 19]

• Algorithms

• Training algorithms based on PMP [LCTE, 17], for quantized networks [LH, 18]

• Close-loop control method to improve adversarial robustness [CLZ, 21]

W. E, J. Han, and Q. Li, “A mean-field optimal control formulation of deep learning,” Research in the Mathematical Sciences, vol. 6, no. 1, 2019

Q. Li, L. Chen, C. Tai, and W. E, “Maximum principle based algorithms for deep learning,” The Journal of Machine Learning Research, vol. 18,

no. 1, 2017

Q. Li and S. Hao, “An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks,” in

Proceedings of the 35th International Conference on Machine Learning (ICML), vol. 80, 2018

Z. Chen, Q. Li, and Z. Zhang, “Towards robust neural networks via close-loop control,” in

International Conference on Learning Representations (ICLR), 2021

16

Approximation Theory of DL:

Sequence Modelling

Sequence Modelling Applications

17

DL Architectures for Sequence Modelling

General question: How are they different? When should we use which?

18

Modelling Static vs Dynamic Relationships

Static setting

(input) x ∈ X = Rd

(output) y ∈ Y = Rn

(target) y = F ∗(x)

Dynamic setting

(input) x = {xk ∈ Rd} ∈ X
(output) y = {yk ∈ Rn} ∈ Y
(target) yk = H∗

k (x) ∀ k

Goal of supervised learning

• Static: learn/approximate the target F ∗

• Dynamic: learn/approximate the target {H∗
k}

19

Modelling Static vs Dynamic Relationships

Static setting

(input) x ∈ X = Rd

(output) y ∈ Y = Rn

(target) y = F ∗(x)

Dynamic setting

(input) x = {xk ∈ Rd} ∈ X
(output) y = {yk ∈ Rn} ∈ Y
(target) yk = H∗

k (x) ∀ k

Goal of supervised learning

• Static: learn/approximate the target F ∗

• Dynamic: learn/approximate the target {H∗
k}

19

Modelling Static vs Dynamic Relationships

Static setting

(input) x ∈ X = Rd

(output) y ∈ Y = Rn

(target) y = F ∗(x)

Dynamic setting

(input) x = {xk ∈ Rd} ∈ X
(output) y = {yk ∈ Rn} ∈ Y
(target) yk = H∗

k (x) ∀ k

Goal of supervised learning

• Static: learn/approximate the target F ∗

• Dynamic: learn/approximate the target {H∗
k}

19

An Approximation Theory for Sequence Modelling

Our goal is to derive similar statements like Jackson’s Theorem, but for

• C → suitable classes of sequence relationships (functionals, operators)

• H → RNNs, CNNs/WaveNets, Encoder-Decoders, Transformers

For each case, we aim to characterize

• What C can be approximated (efficiently)?

• How does the complexity measure and rate estimate depend on different H?

• How to choose which H to use in practice?

20

An Approximation Theory for Sequence Modelling

Our goal is to derive similar statements like Jackson’s Theorem, but for

• C → suitable classes of sequence relationships (functionals, operators)

• H → RNNs, CNNs/WaveNets, Encoder-Decoders, Transformers

For each case, we aim to characterize

• What C can be approximated (efficiently)?

• How does the complexity measure and rate estimate depend on different H?

• How to choose which H to use in practice?

20

Recurrent Neural Networks

The Recurrent Neural Network Hypothesis Space

The recurrent neural network (RNN) architecture

hk+1 = σ(Whk + Uxk), hk ∈ Rm

h0 = 0, ŷk = c⊤hk

• The RNN parametrizes a sequence of functions {Ĥk = {x0, . . . , xk−1} 7→ ŷk}.
• A continuous-time idealization parametrizes functionals {x ≡ {xt} 7→ ŷt}

ḣt = σ(Wht + Uxt), h−∞ = 0, ŷt = c⊤ht , t ∈ R

21

The Recurrent Neural Network Hypothesis Space

The recurrent neural network (RNN) architecture

hk+1 = σ(Whk + Uxk), hk ∈ Rm

h0 = 0, ŷk = c⊤hk

• The RNN parametrizes a sequence of functions {Ĥk = {x0, . . . , xk−1} 7→ ŷk}.

• A continuous-time idealization parametrizes functionals {x ≡ {xt} 7→ ŷt}

ḣt = σ(Wht + Uxt), h−∞ = 0, ŷt = c⊤ht , t ∈ R

21

The Recurrent Neural Network Hypothesis Space

The recurrent neural network (RNN) architecture

hk+1 = σ(Whk + Uxk), hk ∈ Rm

h0 = 0, ŷk = c⊤hk

• The RNN parametrizes a sequence of functions {Ĥk = {x0, . . . , xk−1} 7→ ŷk}.
• A continuous-time idealization parametrizes functionals {x ≡ {xt} 7→ ŷt}

ḣt = σ(Wht + Uxt), h−∞ = 0, ŷt = c⊤ht , t ∈ R

21

Empirically, it is found RNN performs poorly when modelling

“long-term memory”

Can we investigate this phenomena precisely?

21

The Linear RNN Hypothesis Space

We analyze the linear case where σ(h) = h, we have the dynamics

ŷt = c⊤ht ,

ḣt = Wht + Uxt .
where

ht ∈ Rm (hidden state)

W ∈ Rm×m (Recurrent Kernel)

U ∈ Rm×d (Input Kernel)

c ∈ Rm (Output layer weights)

This gives rise to the (stable) linear RNN hypothesis space

HRNN = ∪m≥1

{
{Ĥt(x) =

∫ ∞

0

c⊤eWsUxt−sds},W ∈ Wm,U ∈ Rm×d , c ∈ Rm

}
︸ ︷︷ ︸

H(m)
RNN

Wm = {W ∈ Rm×m : eigenvalues of W have negative real parts (Hurwitz)}

22

The Linear RNN Hypothesis Space

We analyze the linear case where σ(h) = h, we have the dynamics

ŷt = c⊤ht ,

ḣt = Wht + Uxt .
where

ht ∈ Rm (hidden state)

W ∈ Rm×m (Recurrent Kernel)

U ∈ Rm×d (Input Kernel)

c ∈ Rm (Output layer weights)

This gives rise to the (stable) linear RNN hypothesis space

HRNN = ∪m≥1

{
{Ĥt(x) =

∫ ∞

0

c⊤eWsUxt−sds},W ∈ Wm,U ∈ Rm×d , c ∈ Rm

}
︸ ︷︷ ︸

H(m)
RNN

Wm = {W ∈ Rm×m : eigenvalues of W have negative real parts (Hurwitz)}

22

Properties of Linear RNN Hypothesis Space

H(m)
RNN =

{
{Ĥt(x) =

∫ ∞

0
c⊤eWsUxt−sds} : W ∈ Wm,U ∈ Rm×d , c ∈ Rm

}

Proposition

Let {Ĥt : t ∈ R} be any family of functionals in HRNN. Then for each t ∈ R,

• Ĥt is a continuous, linear functional.

• Ĥt is a causal functional.

• Ĥt is a regular functional.

• The family {Ĥt : t ∈ R} is time-homogeneous.

23

Approximation Guarantee (Density)

Theorem [LHEL, 2021]

Let {H∗
t : t ∈ R} be a family of continuous, linear, causal, regular and

time-homogeneous functionals on C0(R,Rd). Then, for any ϵ > 0 there exists

{Ĥt : t ∈ R} ∈ HRNN such that

∥H∗ − Ĥ∥ ≡ sup
t∈R

sup
∥x∥C≤1

|H∗
t (x)− Ĥt(x)| ≤ ϵ.

Main idea: Prove a general Riesz representation

H∗
t (x) =

∫ ∞

0
ρ(s)⊤xt−sds

[
Recall: Ĥt(x) =

∫ ∞

0
c⊤eWsUxt−sds

]
Then, RNN approximation reduces to the L1 approximation of ρ(t) by [c⊤eWtU]⊤.

Z. Li, J. Han, W. E, and Q. Li, “On the curse of memory in recurrent neural networks: Approximation and optimization analysis,” in

International Conference on Learning Representations (ICLR), 2021

24

Smoothness and Memory

Approximation rates depend on appropriate complexity measures

Key concepts: smoothness and memory

Define

• ei , i = 1, . . . , d as the standard basis vectors in Rd

• ei as the constant signal ei ,t = ei1{t≥0}

Given a family of functionals {H∗
t : t ∈ R}

• Denote the output of constant signal yi (t) := H∗
t (ei)

• smoothness is characterized by the smoothness of t 7→ yi (t)

• memory is characterized by the decay rate of the t 7→ y
(k)
i (t)

25

Smoothness and Memory

Approximation rates depend on appropriate complexity measures

Key concepts: smoothness and memory

Define

• ei , i = 1, . . . , d as the standard basis vectors in Rd

• ei as the constant signal ei ,t = ei1{t≥0}

Given a family of functionals {H∗
t : t ∈ R}

• Denote the output of constant signal yi (t) := H∗
t (ei)

• smoothness is characterized by the smoothness of t 7→ yi (t)

• memory is characterized by the decay rate of the t 7→ y
(k)
i (t)

25

Smoothness and Memory

Approximation rates depend on appropriate complexity measures

Key concepts: smoothness and memory

Define

• ei , i = 1, . . . , d as the standard basis vectors in Rd

• ei as the constant signal ei ,t = ei1{t≥0}

Given a family of functionals {H∗
t : t ∈ R}

• Denote the output of constant signal yi (t) := H∗
t (ei)

• smoothness is characterized by the smoothness of t 7→ yi (t)

• memory is characterized by the decay rate of the t 7→ y
(k)
i (t)

25

Smoothness and Memory

Approximation rates depend on appropriate complexity measures

Key concepts: smoothness and memory

Define

• ei , i = 1, . . . , d as the standard basis vectors in Rd

• ei as the constant signal ei ,t = ei1{t≥0}

Given a family of functionals {H∗
t : t ∈ R}

• Denote the output of constant signal yi (t) := H∗
t (ei)

• smoothness is characterized by the smoothness of t 7→ yi (t)

• memory is characterized by the decay rate of the t 7→ y
(k)
i (t)

25

Approximation Rate

Theorem [LHEL, 2021]

Set yi = H∗
t (ei). Suppose there exist constants α ∈ Z+, β, γ ∈ R+ such that for

i = 1, . . . , d , yi (t) ∈ C (α+1)(R) and for k = 1, . . . , α+ 1,

eβty
(k)
i (t) = o(1) as t → +∞ and sup

t≥0

|eβty (k)i (t)|
βk

≤ γ.

Then there exists a universal constant C (α) such that for each m ≥ 1,

inf
Ĥ∈H(m)

RNN

∥H∗ − Ĥ∥ ≤ C (α)γd

βmα
.

Z. Li, J. Han, W. E, and Q. Li, “On the curse of memory in recurrent neural networks: Approximation and optimization analysis,” in

International Conference on Learning Representations (ICLR), 2021

26

Curse of Memory in Approximation

Rate estimate

inf
Ĥ∈H(m)

RNN

∥H∗ − Ĥ∥ ≤ C (α)γd

βmα
.

Observations

• The smoothness dependence (α) is familiar

• The memory dependence (β) is new: we need

yi (t) ≡ H∗
t (ei) ∼ e−βt , β > 0

• There is no curse of dimensionality due to linearity

• However, hidden in these results is a curse of memory:

If H∗
t (ei) ∼ t−ω, then to get error ϵ, need m ∼ O

(
ωε−

1
ω

)

27

Curse of Memory in Approximation

Rate estimate

inf
Ĥ∈H(m)

RNN

∥H∗ − Ĥ∥ ≤ C (α)γd

βmα
.

Observations

• The smoothness dependence (α) is familiar

• The memory dependence (β) is new: we need

yi (t) ≡ H∗
t (ei) ∼ e−βt , β > 0

• There is no curse of dimensionality due to linearity

• However, hidden in these results is a curse of memory:

If H∗
t (ei) ∼ t−ω, then to get error ϵ, need m ∼ O

(
ωε−

1
ω

)

27

Curse of Memory in Approximation

Rate estimate

inf
Ĥ∈H(m)

RNN

∥H∗ − Ĥ∥ ≤ C (α)γd

βmα
.

Observations

• The smoothness dependence (α) is familiar

• The memory dependence (β) is new: we need

yi (t) ≡ H∗
t (ei) ∼ e−βt , β > 0

• There is no curse of dimensionality due to linearity

• However, hidden in these results is a curse of memory:

If H∗
t (ei) ∼ t−ω, then to get error ϵ, need m ∼ O

(
ωε−

1
ω

)

27

Curse of Memory in Approximation

Rate estimate

inf
Ĥ∈H(m)

RNN

∥H∗ − Ĥ∥ ≤ C (α)γd

βmα
.

Observations

• The smoothness dependence (α) is familiar

• The memory dependence (β) is new: we need

yi (t) ≡ H∗
t (ei) ∼ e−βt , β > 0

• There is no curse of dimensionality due to linearity

• However, hidden in these results is a curse of memory:

If H∗
t (ei) ∼ t−ω, then to get error ϵ, need m ∼ O

(
ωε−

1
ω

)

27

Curse of Memory in Approximation

Rate estimate

inf
Ĥ∈H(m)

RNN

∥H∗ − Ĥ∥ ≤ C (α)γd

βmα
.

Observations

• The smoothness dependence (α) is familiar

• The memory dependence (β) is new: we need

yi (t) ≡ H∗
t (ei) ∼ e−βt , β > 0

• There is no curse of dimensionality due to linearity

• However, hidden in these results is a curse of memory:

If H∗
t (ei) ∼ t−ω, then to get error ϵ, need m ∼ O

(
ωε−

1
ω

)
27

Insights on the (Linear) RNN Hypothesis Space

Insight: Efficient approximation if H∗ is smooth

and has exponential decaying memory

Futhermore

• The “only if” part is also true [LHEL, 2022]

efficient approximation =⇒ exponential decaying memory

• A related curse of memory holds for optimizing RNNs [LHEL, 2021; 2022]

• Nonlinear recurrent activation does not alleviate this [WLL, 2022]

Z. Li, J. Han, W. E, and Q. Li, “On the curse of memory in recurrent neural networks: Approximation and optimization analysis,” in

International Conference on Learning Representations (ICLR), 2021

Z. Li, J. Han, W. E, and Q. Li, “Approximation and Optimization Theory for Linear Continuous-Time Recurrent Neural Networks,”

Journal of Machine Learning Research, vol. 23, no. 42, 2022

S. Wang, Z. Li, and Q. Li, “The effects of nonlinearity on approximation capacity of recurrent neural networks,” Submitted, 2022

28

Extension to Other Architectures

Convolutional Architectures

A popular alternative to recurrent architectures is convolutional based architectures for

sequence modelling

Example: WaveNet

A. v. d. Oord, S. Dieleman, H. Zen, et al., “WaveNet: A Generative Model for Raw Audio,” arXiv:1609.03499 [cs], 2016, arXiv: 1609.03499.

(visited on 02/09/2022) 29

Encoder-Decoder Architectures

Yet another alternative are encoder-decoder class of architectures (e.g. RNN

encoder-decoder, transformer)

How are they different, when to use which?

A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017

30

Extending the RNN Analysis

These architectures can be analyzed in the same setting of functional approximation.

Key insights:

• They can all achieve density in appropriate functional spaces
• Efficient approximation depends on different notions of complexity

• RNN: Exponential memory decay

• CNN: Sparse dependence on inputs (low tensorization rank)

• Recurrent Encoder-Decoder: Dependence on global features of the input (low rank

under temporal products)

Need structural compatibility between the model and the target

H. Jiang, Z. Li, and Q. Li, “Approximation theory of convolutional architectures for time series modelling,”

International Conferences on Machine Learning (ICML), 2021

Z. Li, H. Jiang, and Q. Li, “On the approximation properties of recurrent encoder-decoder architectures,” in

International Conference on Learning Representations (ICLR), 2022

31

References i

1. Q. Li, T. Lin, and Z. Shen, “Deep learning via dynamical systems: An approximation

perspective,” Journal of the European Mathematical Society, 2022

2. Q. Li, T. Lin, and Z. Shen, “Deep Neural Network Approximation of Invariant Functions

through Dynamical Systems,” arXiv, no. arXiv:2208.08707, 2022. arXiv: 2208.08707

3. Z. Li, J. Han, W. E, and Q. Li, “On the curse of memory in recurrent neural networks:

Approximation and optimization analysis,” in

International Conference on Learning Representations (ICLR), 2021

4. H. Jiang, Z. Li, and Q. Li, “Approximation theory of convolutional architectures for time

series modelling,” International Conferences on Machine Learning (ICML), 2021

5. Z. Li, J. Han, W. E, and Q. Li, “Approximation and Optimization Theory for Linear

Continuous-Time Recurrent Neural Networks,” Journal of Machine Learning Research,

vol. 23, no. 42, 2022

6. Z. Li, H. Jiang, and Q. Li, “On the approximation properties of recurrent encoder-decoder

architectures,” in International Conference on Learning Representations (ICLR), 2022

32

https://arxiv.org/abs/2208.08707

References ii

7. W. E, J. Han, and Q. Li, “A mean-field optimal control formulation of deep learning,”

Research in the Mathematical Sciences, vol. 6, no. 1, 2019

8. Q. Li, L. Chen, C. Tai, and W. E, “Maximum principle based algorithms for deep

learning,” The Journal of Machine Learning Research, vol. 18, no. 1, 2017

9. Q. Li and S. Hao, “An Optimal Control Approach to Deep Learning and Applications to

Discrete-Weight Neural Networks,” in

Proceedings of the 35th International Conference on Machine Learning (ICML), vol. 80,

2018

10. Z. Chen, Q. Li, and Z. Zhang, “Towards robust neural networks via close-loop control,” in

International Conference on Learning Representations (ICLR), 2021

33

	Background
	Approximation Theory of DL: Function Approximation
	Approximation Theory of DL: Sequence Modelling
	Recurrent Neural Networks
	Extension to Other Architectures

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

