Curvature Bounded Above II

Alexander Lytchak

September 7, 2022

Theorem

A complete, geodesic space X is CAT(0) iff any rectifiable curve $\gamma: S^1 \to X$ is majorized by a convex subset in \mathbb{R}^2 .

Characterizations of CAT

The following are **equivalent** for a complete, geodesic space *X X* is CAT(0).

Sum of angles in any triangle is at most π .

The majorization theorem holds true.

Lipschitz curves $\gamma : S^1 \to X$ bound discs of area $\leq \frac{1}{4\pi} length^2(\gamma)$.

$$|x_1 - x_3|^2 + |x_2 - x_4|^2 \le \sum |x_i - x_{i+1}|^2$$
 for all $x_1, ..., x_4 \in X$.

For $A \subset \mathbb{R}^n$ and $f : A \to X$ 1-Lipschitz there is 1-Lipschitz extension $\hat{f} : \mathbb{R}^n \to X$.

X has curvature $\leq \kappa$ if *X* is locally CAT(κ).

A Riemannian manifold has curvature $\leq \kappa$ if all sectional curvatures are $\leq \kappa$ (Rauch).

In a geodesic space of curvature $\leq \kappa$ there are no "conjugate points" along local geodesics up to length diam (M_{κ}^2) .

A complete, geodesic space X of curvature $\leq \kappa$ is CAT(κ) iff geodesics of length $< \operatorname{diam}(M_{\kappa}^2)$ unique and continuously depend on endpoints.

Finite Euclidean simplicial complex is non-positively curved iff injectivity radius is positive.

Let $\kappa \leq \mathbf{0}$

There exist curve-shortening process $\gamma \rightarrow \gamma_t$ non-changing endpoints, such that $\gamma = \gamma_0$ and γ_1 is a local geodesic.

X be complete, geodesic of curvature $\leq \kappa \leq 0$. Then *X* is CAT(κ) iff $\pi_1(X) = 1$.

A geodesic, compact, locally CAT(1) space is CAT(1) iff there are no small isometrically embedded circles.

If *X* is locally CAT(0) then universal covering is contractible. *X* is $K(\pi_1(X), 1)$.

Topology of X and coarse toology of \tilde{X} are encoded in $\pi_1(X)$.

Isometries of \tilde{X} are elliptic, hyperbolic or parabolic. They act on the boundary at infinity of \tilde{X} .

Rank-one and higher-rank dichotomy.

Controlled (semi)-convexity of distance functions.

Abundance of convex subsets.

Semiconcave functions have well-defined gradients and controlled gradient flows.

There is a center-of-mass map $c : \mathcal{M}(X) \to X$ which assignes to a probability measure with small support a center of mass.

If $\kappa \leq 0$ then *c* is contracting.

For convex combinations of Dirac measures $\mu = \sum_{i=0}^{m} a_i \delta_{x_i}$ the map *c* defines *barycentric m-simplices* in *X*.

The (completed) space of direction Σ_x at any x is CAT(1).

The (geodesic) tangent cone $T_x X = C(\Sigma_x)$ is CAT(0), embedded in any blow up at *x*.

For a separable CAT-space the following are equal:

- 1. Homological dimension
- 2. Topological dimension
- 3. Maximal dimension of non-degenerated barycentric simplex
- 4. 1+ (Maximal dimension of Σ_x)
- 5. 1+(Maximal dimension of \mathbb{S}^{m-1} in some Σ_x)

Discs in *X* can be used to verify $CAT(\kappa)$ and to investigate $CAT(\kappa)$ spaces.

Reshetnyak majorization, isoperimetric characterization.

CAT-metrics on discs are all known (uniformization theorem).

Ruled discs in $CAT(\kappa)$ are $CAT(\kappa)$.

Minimal discs in CAT(κ) are conformal and CAT(κ).

Distance-minimizing discs are $CAT(\kappa)$.

Harmonic discs are $CAT(\kappa)$.