Tutorial for ”How topological recursion organises quantum fields on
noncommutative geometries”

This tutorial aims to understand in more details the derivation of the (closed) Dyson-
Schwinger equations related to Raimar Wulkenhaar’s Mini-course "How topological re-
cursion organises quantum fields on noncommutative geometries”.

Let Hy be the space of hermitian N x N matrices, then we are considering the following
partition function

ZF[J] :/ dM exp ( — NTr(EM? + %M’“ — JM)),
Hy

znt(M> =
NTr(2M*) the interaction. We are in particular interested in Z* (Kontsevich model)
and Z* (Grosse-Wulkenhaar model).

where E,J € Hy and E has distinct positive eigenvalues (E;);. Denote by S¥

The correlation functions (the so-called (N + ... + Np)-point function of genus g with
b boundaries):
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where we assume for the defintion that all a] are pairwise distinct.

Supporting Exercises

Exercise/Remark 1: Show that Z3[0] is equivalent to
Z30] = C/ dM exp ( —~ NTr(EM + S\M3)>
Hy

by determining C, E, A, M. There is the notation of generalised Kontsevich model with
the partition function

Hy

where V(z) is a polynomial with real coefficients. Show that Z* can not be transformed
to Z9Kont From this point of view Z* with k& > 3 is a different type of generalisation of
the classical Kontsevich model.

Exercise 2: Show that the partition function can be represented as
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where K is some constant depending on F.
Exercise 3: Show that the correlation function is the connected expectation values
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Exercise 4: Find an argument why any (N + ... + Np)-point function with Zle N, odd
vanishes for Z¥, whenever k is even.

Exercise 5: Prove the Leibniz rule

7Oz g(2)) = [/(00)e’ ) g(x) + ze! ) g(x).

Exercise 6: Compute the Ward identity
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by considering invariance of the partition function under unitary transformation. Le
U = et € U(N), choose an infinitesimal transformation of the form M + M’ = UMU'T =
M +iAM —iMA + O(A?).

Exercise 7: Prove the recursive algebraic relation between correlation functions for N; >
k — 2 boundary length.
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