
Tutorial for ”How topological recursion organises quantum fields on
noncommutative geometries”

This tutorial aims to understand in more details the derivation of the (closed) Dyson-
Schwinger equations related to Raimar Wulkenhaar’s Mini-course ”How topological re-
cursion organises quantum fields on noncommutative geometries”.

Let HN be the space of hermitian N×N matrices, then we are considering the following
partition function
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where E, J ∈ HN and E has distinct positive eigenvalues (Ei)i. Denote by Skint(M) =
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the interaction. We are in particular interested in Z3 (Kontsevich model)
and Z4 (Grosse-Wulkenhaar model).

The correlation functions (the so-called (N1 + ...+Nb)-point function of genus g with
b boundaries):
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where we assume for the defintion that all aji are pairwise distinct.

Supporting Exercises

Exercise/Remark 1: Show that Z3[0] is equivalent to

Z3[0] = C

∫
HN

dM̃ exp

(
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))
by determining C, Ẽ, λ̃, M̃ . There is the notation of generalised Kontsevich model with
the partition function

ZgKont =
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where V (x) is a polynomial with real coefficients. Show that Z4 can not be transformed
to ZgKont. From this point of view Zk with k > 3 is a different type of generalisation of
the classical Kontsevich model.

Exercise 2: Show that the partition function can be represented as
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where K is some constant depending on E.

Exercise 3: Show that the correlation function is the connected expectation values
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Exercise 4: Find an argument why any (N1 + ...+Nb)-point function with
∑b

i=1Nb odd
vanishes for Zk, whenever k is even.

Exercise 5: Prove the Leibniz rule

ef(∂x)(x · g(x)) = f ′(∂x)e
f(∂x)g(x) + xef(∂x)g(x).

Exercise 6: Compute the Ward identity
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by considering invariance of the partition function under unitary transformation. Le
U = eiA ∈ U(N), choose an infinitesimal transformation of the form M 7→M ′ = UMU † =
M + iAM − iMA+O(A2).

Exercise 7: Prove the recursive algebraic relation between correlation functions for Ni >
k − 2 boundary length.
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