Tutorial for "How topological recursion organises quantum fields on noncommutative geometries"

This tutorial aims to understand in more details the derivation of the (closed) DysonSchwinger equations related to Raimar Wulkenhaar's Mini-course "How topological recursion organises quantum fields on noncommutative geometries".

Let H_{N} be the space of hermitian $N \times N$ matrices, then we are considering the following partition function

$$
\mathcal{Z}^{k}[J]=\int_{H_{N}} d M \exp \left(-N \operatorname{Tr}\left(E M^{2}+\frac{\lambda}{k} M^{k}-J M\right)\right)
$$

where $E, J \in H_{N}$ and E has distinct positive eigenvalues $\left(E_{i}\right)_{i}$. Denote by $S_{i n t}^{k}(M)=$ $N \operatorname{Tr}\left(\frac{\lambda}{k} M^{k}\right)$ the interaction. We are in particular interested in \mathcal{Z}^{3} (Kontsevich model) and \mathcal{Z}^{4} (Grosse-Wulkenhaar model).

The correlation functions (the so-called $\left(N_{1}+\ldots+N_{b}\right)$-point function of genus g with b boundaries):

$$
G_{\left|a_{1}^{1} a_{2}^{1} \ldots a_{N_{1}}^{1}\right| \ldots\left|a_{1}^{b} \ldots a_{N_{b}}^{b}\right|}^{(g)}:=\left.N^{2 g+b-2} \frac{\partial^{N_{1}+\ldots+N_{b}}}{\partial J_{a_{1}^{1} a_{2}^{1}} . . \partial J_{a_{N_{1}}^{1} a_{1}^{1} \ldots \partial J_{a_{N_{b}}^{b} a_{1}^{b}}}} \log \mathcal{Z}^{k}[J]\right|_{J=0}
$$

where we assume for the defintion that all a_{i}^{j} are pairwise distinct.

Supporting Exercises

Exercise/Remark 1: Show that $\mathcal{Z}^{3}[0]$ is equivalent to

$$
\mathcal{Z}^{3}[0]=C \int_{H_{N}} d \tilde{M} \exp \left(-N \operatorname{Tr}\left(\tilde{E} \tilde{M}+\tilde{\lambda} \tilde{M}^{3}\right)\right)
$$

by determining $C, \tilde{E}, \tilde{\lambda}, \tilde{M}$. There is the notation of generalised Kontsevich model with the partition function

$$
\mathcal{Z}^{\text {gKont }}=\int_{H_{N}} d \tilde{M} \exp (-N \operatorname{Tr}(\tilde{E} \tilde{M}+V(\tilde{M})))
$$

where $V(x)$ is a polynomial with real coefficients. Show that \mathcal{Z}^{4} can not be transformed to $\mathcal{Z}^{\text {gKont }}$. From this point of view \mathcal{Z}^{k} with $k>3$ is a different type of generalisation of the classical Kontsevich model.

Exercise 2: Show that the partition function can be represented as

$$
\mathcal{Z}^{k}[J]=K \exp \left(-S_{\text {int }}\left(\frac{1}{N} \frac{\partial}{\partial J}\right)\right) \exp \left(\frac{N}{2} \sum_{n, m} \frac{J_{n m} J_{m n}}{E_{n}+E_{m}}\right),
$$

where K is some constant depending on E.
Exercise 3: Show that the correlation function is the connected expectation values

$$
\left.\frac{1}{N^{K}} \frac{\partial^{K}}{\partial J_{p_{1} q_{1}} \partial J_{p_{2} q_{2}} . . \partial J_{p_{K} q_{K}}} \log \mathcal{Z}[J]\right|_{J=0}=\left\langle M_{q_{1} p_{1}} M_{q_{2} p_{2}} . . M_{q_{K} p_{K}}\right\rangle_{c} .
$$

Exercise 4: Find an argument why any $\left(N_{1}+\ldots+N_{b}\right)$-point function with $\sum_{i=1}^{b} N_{b}$ odd vanishes for \mathcal{Z}^{k}, whenever k is even.

Exercise 5: Prove the Leibniz rule

$$
e^{f\left(\partial_{x}\right)}(x \cdot g(x))=f^{\prime}\left(\partial_{x}\right) e^{f\left(\partial_{x}\right)} g(x)+x e^{f\left(\partial_{x}\right)} g(x)
$$

Exercise 6: Compute the Ward identity

$$
\frac{E_{a}-E_{b}}{N} \sum_{m} \frac{\partial}{\partial J_{a m}} \frac{\partial}{\partial J_{m b}} \mathcal{Z}^{k}[J]=\sum_{m}\left(J_{m a} \frac{\partial}{\partial J_{m b}}-J_{b m} \frac{\partial}{\partial J_{a m}}\right) \mathcal{Z}^{k}[J] .
$$

by considering invariance of the partition function under unitary transformation. Le $U=e^{\mathrm{i} A} \in U(N)$, choose an infinitesimal transformation of the form $M \mapsto M^{\prime}=U M U^{\dagger}=$ $M+\mathrm{i} A M-\mathrm{i} M A+\mathcal{O}\left(A^{2}\right)$.

Exercise 7: Prove the recursive algebraic relation between correlation functions for $N_{i}>$ $k-2$ boundary length.

For $k=3$

$$
\begin{equation*}
G_{\left|a_{1}^{1} . . a_{N_{1}}^{1}\right| \mathcal{J} \mid}=-\lambda \frac{G_{\left|a_{2}^{1} a_{3}^{1} . . a_{N_{1}}^{1}\right| \mathcal{J} \mid}-G_{\left|a_{1}^{1} a_{3}^{1} \cdot . a_{N_{1}}^{1}\right| \mathcal{J} \mid}}{\left(E_{a_{1}^{1}}+E_{a_{2}^{1}}\right)\left(E_{a_{1}^{1}}-E_{a_{2}^{1}}\right)} . \tag{1}
\end{equation*}
$$

For $k=4$

$$
\begin{align*}
G_{\left|a_{1}^{1} a_{2}^{1} . . a_{N_{1}}^{1}\right| \mathcal{J} \mid} & =-\frac{\lambda}{E_{a_{2}^{1}}-E_{a_{N_{1}}^{1}}}\left\{\frac{1}{N^{2}} \sum_{k=2}^{N_{1}} \frac{G_{\left|a_{2}^{1} a_{3}^{1} . . a_{k}^{1}\right| a_{k+1}^{1} . . a_{N}^{1} a_{1}^{1}|\mathcal{J}|}-G_{\left|a_{1}^{1} a_{2}^{1} a_{3}^{1} . . a_{k-1}^{1}\right| a_{k}^{1} . . a_{N_{1}}^{1}|\mathcal{J}|}}{E_{a_{k}^{1}}-E_{a_{1}^{1}}}\right. \\
& +\sum_{\beta=2}^{b} \sum_{k=1}^{N_{\beta}} \frac{G_{\left|a_{1}^{\beta} a_{2}^{\beta} . . a_{k}^{\beta} a_{2}^{1} a_{3}^{1} . . a_{N_{1}}^{1} a_{1}^{1} a_{k+1}^{\beta} . . . a_{N_{\beta}}^{\beta}\right| \mathcal{J} \backslash\left\{J^{\beta}\right\} \mid}-G_{\left|a_{1}^{\beta} a_{2}^{\beta} . . a_{k-1}^{\beta} a_{1}^{1} a_{2}^{1} . . a_{N_{1}}^{1} a_{k}^{\beta} . . a_{N_{\beta}}^{\beta}\right| \mathcal{J} \backslash\left\{J \mathcal{J}^{\beta}\right\} \mid}}{E_{a_{k}^{\beta}}-E_{a_{1}^{1}}} \\
& +\sum_{k=2}^{N_{1}} \sum_{\mathcal{I} \uplus \mathcal{I}^{\prime}=\mathcal{J}} \frac{G_{\left|a_{k+1}^{1} . . a_{N_{1}}^{1} a_{1}^{1}\right| \mathcal{I} \mid} G_{\left|a_{2}^{1} . . a_{k}^{1}\right| \mathcal{I}^{\prime} \mid}-G_{\left|a_{k}^{1} . . a_{N_{1}}^{1}\right| \mathcal{I} \mid} G_{\left|a_{1}^{1} a_{2}^{1} . . a_{k-1}^{1}\right| \mathcal{I}^{\prime} \mid}}{E_{a_{k}^{1}}-E_{a_{1}^{1}}} . \tag{2}
\end{align*}
$$

