## Topological Expansion of BGW+HCIZ

Jonathan Novak UC San Diego June 2022 London ON /

FOURTER in RMT

• Characteristic function:  $A^* = A \mapsto E[e^{iTrAX_n}]$ .

· Characterizes distribution of X. - absent from RMT.

• Why?

 $\chi(A) = \mathbb{E}[e^{i \operatorname{Tr} A X_*}]$ 



### Invariant Ensembles

• Spectral theorem:  $X_{N} = U_{N}B_{N}U_{N}^{-1}$ , with independent eigenvectors  $U_{N}$  and eigenvalues  $B_{N} = \text{diag}(b_{1} \ge \dots \ge b_{N})$ .

• Characteristic function:

$$\chi(A) = \mathbb{E}_{(B_{N}, U_{N})} \left[ e^{i \operatorname{Tr} A U_{N} B_{N} U_{N}^{\dagger}} \right]$$
$$= \mathbb{E}_{B_{N}} \int_{U(N)} e^{i \operatorname{Tr} A U B_{N} U_{N}^{\dagger}} dU.$$

### New Kernel, New Problems

• RMT analogue of the scalar (and vector) Fourier Kernel e<sup>iax</sup> is the unitary matrix integral

$$I_{N}(A,B) = \int_{\mathcal{U}(N)} e^{i \operatorname{Tr} A \mathcal{U} B \mathcal{U}^{\prime}} d\mathcal{U}.$$

• Oscillatory integral over a compact real manifold of dimension N<sup>2</sup>

• No existing tools for 
$$N \rightarrow \infty$$
 asymptotics.

Stationary Phase  
• Rescale to get order N<sup>2</sup> action,  

$$I_{N} = \int_{U(N)} e^{iNTr} AUBU^{-1} dU.$$
• Find stationary points of the action  
NTr AUBU<sup>-1</sup> =  $N \sum_{k,k=1}^{N} a_{k} b_{k} |U_{k}|^{2}$   
• Linear functional on Birkhoff polytope - extreme points are  
permutation matrices.

• Stationary phase approx ~>>> determinant.

This is how complicated the kernel  $I_N = I_N(A, B)$  is:

$$T_{N} = \text{const}_{N} \frac{\text{det}[e^{iaube}]}{\Delta(A) \Delta(B)}$$

Useless for  $N \rightarrow \infty$  asymptotics; have to find another approach.

Analytic Continuation

· Make everything complex:

$$I_{N} = \int_{\mathcal{U}(N)} e^{zNTr} AUBU^{-1} dU.$$

- Entire function of 2N+1 complex variables: z and eigenvals  $a_{11}, ..., a_{N}, b_{11}, ..., b_{N}$  of  $A, B \in gl_{N}(C)$ .
- Reverts to RMT Fourier kernel on  $iR \times R^{2N}$ , becomes random matrix partition function on  $R \times R^{2N}$ .

## Gibbs Measure

•  $I_N$  restricts to partition function of Gibbs measure on U(N): inverse coupling  $Z \in \mathbb{R}$ , Hamiltonian

$$H = N \sum_{i,j=1}^{N} a_i b_j |U_{ij}|^2,$$

• Large N behavior of 
$$F_N = \log T_N$$
 anticipated by analogy with Hermitian matrix models.

Theorem (Ercolani - McLaughlin) There exists  $\varepsilon > 0$  such that free energy  $F_N = \log Z_N$  of Hermitian one-matrix model

$$\mathcal{Z}_{N} = \int_{H(N)}^{e^{\dagger N} \operatorname{Tr} X^{4}} \mathcal{M}_{N}(dX) , \quad \operatorname{Re}(t) < 0,$$

Satisfies

$$F_{N} = \sum_{g=0}^{k} N^{2-2g} F_{g} + o(N^{2-2k})$$

as  $N \rightarrow \infty$ , for each  $k \in |N_0$ , with error uniform in  $t \in [-\epsilon, 0]$ , and  $F_g = F_g(t)$  generating for for genus g quadrangulations, which converges uniformly absolutely for  $|t| \le \epsilon$ .

- Existence of asymptotic expansion in Hermitian matrix models: Coulomb gas spectrum, orthogonal polynomials.
- · Topological interpretation: Wick calculus.

• Alternative approach (Guionnet): Schwinger - Dyson equations plus concentration inequalities.

• HCIZ matrix model not an eigenvalue model; use second approach.

Theorem (Guionnet-Novak)

For each KEINo there exists Ex>O such that

$$F_{N} = \sum_{g=0}^{k} N^{2-2g} F_{Ng} + o(N^{2-2k})$$

as 
$$N \rightarrow \infty$$
, where the error term is uniform on compact box

$$B_{N}(\varepsilon_{L}) = [-\varepsilon_{L}, \varepsilon_{L}] \times \mathbb{R}^{2N} \subset \mathbb{R}^{2N+1}$$
  
inverse  
coupling external  
field

and



• Argument does not extend to complex parameters.

• Box thickness 
$$\varepsilon_{\mu} \rightarrow 0$$
 exponentially in K.

• No topological description of Fig.

Further Motivations

• HCIZ in Hermitian multimatrix models:

$$\mathcal{Z}_{N} = \int_{H(N)^{2}} N \operatorname{Tr} \left( V_{1}(X_{1}) + V_{2}(X_{2}) + z X_{1} X_{2} \right) \mathcal{U}_{N}^{\otimes 2} \left( dX_{1}, dX_{2} \right)$$

•HCIZ in Hermitian matrix models with external source:

$$Z_{N} = \int_{H(N)}^{N} VTr(V(X) + AX) \mathcal{U}_{N}(dX).$$

• HCIZ in representation theory:

$$\mathcal{Z}_{N} = \frac{\chi_{(b_{n}, \dots, b_{N})}(e^{A})}{\chi_{(b_{n}, \dots, b_{N})}(e^{\circ})}$$

Topological Expansion Conjecture (QFT 1980)  
There exists 
$$\varepsilon > 0$$
 such that, for each  $K \in IN_0$ , we have  
 $\log \int_{U(N)} e^{zNTrAUBU^{-1}} dU = \sum_{g=0}^{k} N^{2-2g} F_{Ng} + o(N^{2-2k})$   
as  $N \rightarrow \infty$ , where the error term is uniform over  $|z| \le \varepsilon$   
and  $|a_i|, |b_i| \le 1$ , and the free energies are analytic functions  
of  $z, a_1, \dots, a_N, b_1, \dots, b_N$  whose modulus is uniformly bounded in N,  
and which are generating functions for combinatorial invariants  
of compact connected genus g Riemann surfaces.

Theorem (Novak): The topological expansion conjecture is true: there exists E>O such that, for each KEINo,

$$\log \int_{\mathcal{U}(N)}^{zNTr} A \mathcal{U} B \mathcal{U}^{-1} d \mathcal{U} = \sum_{g=0}^{k} N^{2-2g} F_{ng} + o(N^{2-2u})$$

as  $N \rightarrow \infty$ , where the error term is uniform on  $D_{n}(\varepsilon) \in \mathbb{C}^{2N+1}$  and

$$F_{Ng} = \sum_{d=1}^{\infty} \frac{z^{d}}{d!} \sum_{\alpha,\beta \vdash d} \frac{p_{\alpha}(\alpha,\dots,\alpha_{n})}{N^{\ell(\alpha)}} \frac{p_{\beta}(b_{\dots},b_{n})}{N^{\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \overrightarrow{H}_{g}(\alpha,\beta)$$

converges uniformly absolutely on  $D_{n}(\varepsilon)$ ; the topological invariants  $\overline{H}_{g}(\alpha,\beta)$  are the monotone double Hurwitz numbers.

Theorem (Novak): Analogous statement for the BGW integral: there exists E>O such that, for each KEINo,

$$\log \int_{\mathcal{U}(N)} e^{z N Tr} (A \mathcal{U} + B \mathcal{U}^{-1}) d\mathcal{U} = \sum_{g=0}^{k} N^{2-2g} F_{ng} + o(N^{2-2k})$$

as  $N \rightarrow \infty$ , where error term is uniform on  $D_{N}(\varepsilon) \subset \mathbb{C}^{N+1}$  and

$$F_{Ng} = \sum_{d=1}^{\infty} \frac{Z^{2d}}{d!} \sum_{\alpha \vdash d} \frac{P_{\alpha}(C_{1,\dots,C_{N}})}{N^{\ell(\alpha)}} (-1)^{\ell(\alpha) \vdash d} \overrightarrow{H}_{g}(\alpha)$$

converges uniformly absolutely on  $D_N(\varepsilon)$  with  $c_{1,...,C_N}$  eigenvalues of C = AB, and  $H_g(\alpha) = H_g(\alpha, |\alpha|)$  are the monotone single Hurwitz numbers. Proof: The strong coupling expansion (Wilson 1974) and the large N expansion ('t Hooft 1974) are analytically compatible for sufficiently small complex parameters. --Q.E.D.

Probability Several Complex Variables  

$$I_{N} = \int e^{zNTrAUBU^{T}} dU = I_{N}(z|a_{0},...,a_{N})$$

$$U(N)$$

• Have: 
$$I_{N} = 1$$
 on infinite coupling hyperplane  $\{z = 0\} \subset \mathbb{C}^{2N+1}$ 

- <u>Make</u>: Cut out closed unit polydisc  $D_N \in \mathbb{C}^{2N}$ , embed in  $\{z=0\} \in \mathbb{C}^{2N+1}$ thicken out to closed polydisc  $D_N(\varepsilon)$  of polyradius  $(\varepsilon, 1, ..., 1)$  in  $\mathbb{C}^{2N+1}$ .
- Want: Asymptotics of  $F_N = \log I_N$  on  $D_N(\varepsilon)$  as  $N \rightarrow \infty$  with  $\varepsilon > 0$ fixed.

• <u>Obstruction</u>: Could be that, for any  $\varepsilon > 0$  we choose, hypersurface  $\{I_N = 0\}$  intersects polydisc  $D_N(\varepsilon)$  non-trivially in  $\mathbb{C}^{2N+1}$  for infinitely many NEIN.



Strong Coupling Expansion

- Non-vanishing constant: if  $\exists \vartheta > 0$  such thats  $I_N \neq 0$  on  $D_N(\vartheta)$  for all NEN, then conditional proof?
- F. = log In belongs to Banach algebra (O. (S), Il·IIS) for all NEIN.
- Strong coupling expansion = Maclaurin series,

$$F_{N} = \sum_{d=1}^{\infty} \frac{z^{d}}{d!} F_{N}^{d} ,$$



$$F_{N}^{d} \sim \sum_{g=0}^{\infty} N^{2-2g} F_{Ng}^{d}.$$

· For each fixed dEIN and KEIN, have

$$\lim_{N \to \infty} N^{2u-2} \|F_N^d - \sum_{g=0}^{k} N^{2-2g} F_N^d\| = 0,$$
  
with  $F_{Ng}^d \colon \mathbb{C}^{2N} \to \mathbb{C}$  hom. deg. d polynomials such that  
sup  $\|F_{Ng}^d\| < \infty.$ 

· Large N ansatz unknown in this context (lattice QCD).

$$F_{N}^{d} \sim \sum_{g=0}^{\infty} N^{2-2g} \# S$$
 branched covers of  $P'(C)$ , degree d,  $S$  genus g, specified branch locus  $S$ .

• Second obstruction: 
$$\sum_{d=1}^{\infty} F_{ng}^{d}$$
 is  $\|\cdot\|$  - absolutely convergent iff  $d \leq N$  ("stable range").

Volume 69B, number 1

PHYSICS LETTERS

18 July 1977

### NONCONVERGENCE OF THE 1/N EXPANSION FOR SU(N) GAUGE FIELDS ON A LATTICE

### B. De WIT

Instituut-Lorentz, University of Leiden, Leiden, The Netherlands

### G. 't HOOFT

Institute for Theoretical Physics, University of Utrecht, Utrecht, The Netherlands

### Received 1 May 1977

We present specific examples that demonstrate the non-convergence of the 1/N expansion for the lattice theory of SU(N) gauge fields.

1/N expansions in field theories with N or  $N^2$  field components are a useful device for simplification and/or bookkeeping purposes of Feynman diagrams [1]. In the conventional perturbation expansion of SU(N) gauge theories one may consider the limit  $N \rightarrow \infty$  keeping  $g^2 N$  fixed, g being the coupling constant. One then finds at each order of  $g^2N$  a finite polynomial in 1/N with coefficients that are related in a precise manner to the topology of the corresponding diagrams as twodimensional surfaces [2]. In particular the leading term consists of planar Feynman diagrams only, which suggests that in the limit  $N \rightarrow \infty$ one obtains hadrons that are essentially non-interacting. The 1/N expansion then corresponds to an expansion with respect to the coupling strength between the hadrons. Our general experience with couplingconstant expansions in field theories then suggests that the 1/N expansion will diverge at a fixed value for  $g^2 N$ , even though the series is finite and therefore converges at fixed order in  $g^2N$ . We think that the probable formal divergence of the 1/N expansion is not a sufficient argument to reject 1/N expansions altogether, first because in the physically interesting case of SU(3) the effective coupling strength of 1/3 may be small enough so that the spectrum obtained in the  $N \rightarrow \infty$  limit will still resemble the physical spectrum, and secondly because fundamental problems such as the quark-confinement mechanism are likely to be independent of N, and understanding of such mechanisms in the  $N \rightarrow \infty$  limit could be of great significance.

Thus we were motivated to study the 1/N expansion further, but now in the SU(N) gauge theory on a lattice. Here the usual expansion is made with respect to  $1/g^2$  and  $1/m_q$  where  $m_q$  are the masses of the quarks [3]. Alternatively, one may expand with respect to  $1/g^2N$  and 1/N, keeping  $m_0$  fixed and arbitrary [4]. Again we look at fixed order in  $1/g^2N$  and this time we find that the series  $\ln 1/N$  does not only continue up to infinity as an essentially geometric series, but, more annoyingly, fails to produce the correct answer at finite N when summed. To be precise: we find for N larger than a few units pure rational functions of N, but when N = 1, 2 or 3 is substituted in here we find incorrect or even infinite answers. The critical value of N above which the rational function is valid and below which it fails depends on the order of  $1/g^2N$  considered. We interpret this result as an aspect of the formal divergence of the 1/N expansion, but it must be kept in mind that also in this case we are unable to interchange the limits  $g^2 N \rightarrow \infty$  and  $N \rightarrow \infty$ .

To demonstrate the aforementioned properties of the 1/N expansion is the purpose of this note. The action for gauge fields and quarks on an infinite Euclidean lattice is given by [3]

$$\begin{split} &S[\bar{\psi}_{\mathbf{q}},\psi_{\mathbf{q}},U^{\dagger},U] \\ &=\sum_{x,\mathbf{q}}\overline{\psi}_{\mathbf{q}}(x)\left\{ \frac{1}{2}\sum_{\mu}\left(1+\gamma_{\mu}\right)U(x,\hat{\mu})\psi_{\mathbf{q}}(x+\hat{\mu})+\right. \end{split}$$

### NON-PLANAR DIAGRAMS IN THE LARGE N LIMIT OF U(N) AND SU(N) LATTICE GAUGE THEORIES

Don WEINGARTEN Physics Department, Indiana University, Bloomington, IN 47405, USA

Received 10 September 1979

It is shown that the limit as  $N \rightarrow \infty$  with  $g^2 N$  fixed of the strong coupling expansion for the vacuum expectation values of a U(N) or SU(N) lattice gauge theory is not given by a sum of planar diagrams. This contradicts a result claimed by De Wit and 't Hooft.

Some time ago 't Hooft [1] showed that as  $N \rightarrow \infty$  with  $g^2N$  fixed the leading Feynman diagrams for the Green's functions of a U(N) or SU(N) gauge theory are planar. This result suggested a possible way the relation between QCD and the string model might be made precise [1] and has been exploited in a wide variety of subsequent work [2]. Thus an interesting question is what happens to Wilson's strong coupling expansion for lattice gauge theories [3] in the limit  $N \rightarrow \infty$ ,  $g^2N$  fixed. De Wit and 't Hooft [4] have claimed that once again planar diagrams dominate. This result has been applied by Eguchi [5] to relate a lattice U(N) gauge theory to a theory of non-interacting Nambu-Goto strings and has been reconsidered more recently by Bars and Green [6].

In the present article, however, we will show that planar diagrams do not dominate the large N limit of the strong coupling expansion of either U(N) or SU(N) lattice gauge theories. Thus the discussions of this question in refs. [4–6] are incorrect. Our proof will consist of exhibiting a non-planar term, in the expansion of a vacuum expectation, which has the same dependence on N as  $N \rightarrow \infty$ ,  $g^2N$  fixed, as do the planar contributions.

Let us begin by briefly reviewing the euclidean lattice formulation of a gauge theory with gauge group G and the strong coupling expansion of vacuum expectation values [3]. For simplicity we will consider only a pure gauge theory without fermions. Let  $\Lambda \subset \mathbb{Z}^4$  be a finite hypercubic lattice. For each oriented pair of nearest neighbor sites (x, y) in  $\Lambda$  let  $U(x, y) = U(y, x)^{\dagger}$  be a matrix in G. For each oriented plaquette (square) p of four nearest-neighbor sites in  $\Lambda$ , let U(p) be the ordered product of U(x, y) around p starting at some arbitrarily chosen site of p. The action S is

$$S = (2g^2)^{-1} \sum_{p} \operatorname{Tr} U(p), \qquad (1)$$

and the vacuum expectation of any polynomial  $\mathcal{F}$  of U(x, y) is

$$\langle \mathcal{F} \rangle = \int d\mu \, \mathcal{F}\exp(S) / \int d\mu \, \exp(S) \,,$$
 (2)

where  $\mu$  is the product of one copy of Haar measure on *G* for each independent U(x, y).

The strong coupling expansion for  $\langle \mathcal{F} \rangle$  is obtained by expressing the exponentials in numerator and denominator of eq. (2) as power series in  $(2g^2)^{-1}$ . The terms which appear can be associated with surfaces of plaquettes. After the integrals over  $d\mu$  are carried out, the denominator yields a sum of closed surfaces and the numerator yields a sum of surfaces with boundary determined by  $\mathcal{F}$ . The effect of dividing the numerator by the denominator is equivalent to modifying the rules for calculating the numerator: Each integral over Haar measure of a product of U(x, y) is replaced by some combination of connected vertices (contractions)<sup>‡1</sup> obtained from a cluster

<sup>±1</sup> The definition of contractions is discussed by Wilson [3b, Appendix B].

Full Claim  
Stable Nonvanishing Constant: There exist 
$$\delta > 0$$
 such that  
 $I_{N} = \int_{u(N)}^{e^{2NTrAUBU''}} dU$  is nonvanishing on  $D_{N}(\delta)$  for all N «IN.  
Stable Topological Constant: There exists  $\gamma > 0$  such that  
 $I_{Ng} = \sum_{d=1}^{\infty} \frac{z^{d}}{d!} F_{Ng}^{d}$  converges uniformly absolutely on  $D_{N}(\gamma)$  for all N «IN, gcINo.  
Asymptotic Interchange Constant: There exists  $0 < \varepsilon \leq \min(\delta, \gamma)$   
such that  
 $\lim_{N\to\infty} N^{2K-2} ||F_{N}| - \sum_{g=0}^{K} N^{22g} F_{Ng}||_{\varepsilon} = 0$  VK«INo.

# FINITE N

Feynman Diagrams for Haar Measure

• Coupling expansion:

$$T_{N} = \left| + \sum_{d=1}^{\infty} \frac{z^{d}}{d!} \right|_{N}$$

· Actually, BGW integral is generating for for Haar correlators.

$$\int e^{zNTr} (AU + BU^{-1}) = \left| + \sum_{d=1}^{\infty} \frac{z^{2d}}{d!d!} N^{2d} \times u(N) \right|$$

$$\sum_{i,j,i',j' \in Fun(d,N)} A_{i(d)j(d)} B_{i'(uj'(n)} \cdots B_{i'(d)j'(d)} \int U_{i(uj(u))} U_{i(d)j(d)} \overline{U_{i'(uj'(u))} \cdots U_{i'(d)j'(d)}} \, dU.$$

$$W_{g_N}(\pi) = \int \mathcal{U}_{1,\dots} \mathcal{U}_{dd} \overline{\mathcal{U}_{1,\pi(1)} \dots \mathcal{U}_{d\pi(d)}} \, d\mathcal{U} \stackrel{?}{=} \sum_{\substack{\{d | agrams\}}} \mathcal{U}_{dn}$$



A fragment of S(d)





For any 
$$1 \le d \le N$$
, any  $\alpha \vdash d$ , and any  $\pi \in S(d)$ ,

$$\int_{\mathcal{U}(N)} \mathcal{U}_{\mathrm{II}} \cdots \mathcal{U}_{\mathrm{dd}} \overline{\mathcal{U}_{\mathrm{IIII}}} \cdots \mathcal{U}_{\mathrm{dIIII}} \mathrm{dU} = \frac{1}{N^{\mathrm{d}}} \sum_{r=0}^{\infty} (-1)^{r} \frac{\overline{\mathcal{W}(\alpha)}}{N^{r}},$$

where  $W'(\alpha)$  is number of r-step monotone walks from id to  $\pi$  on S(d). (This is a disconnected monotone Hurwitz number).

Corollary: We have

$$\int_{U(N)}^{zNTr} (AU+BU') dU$$

$$= 1 + \sum_{d=1}^{N} \frac{z^{2d}}{d!} N^{d} \sum_{\alpha \vdash d} p_{\alpha}(AB) \sum_{r=0}^{\infty} (-\frac{1}{N})^{r} \overline{V}(\alpha) + O(z^{2N+2})$$

$$= 1 + \sum_{d=1}^{N} \frac{z^{d}}{d!} \sum_{\alpha \vdash d} p_{\alpha}(A) p_{\beta}(B) \sum_{r=0}^{\infty} (-\frac{1}{N})^{r} \overline{V}(\alpha, \beta) + O(\overline{z}^{N+1})$$

# Infinite N

Bott Periodicity



Stable

 $\mathcal{U}(\infty) = \lim_{N \to \infty} \mathcal{U}(N)$ 

## Stable BGW and HCIZ

$$\int_{\mathcal{U}(\infty)}^{zh^{-1}} \operatorname{Tr} (AU + BU^{-1}) dU = \left| + \sum_{d=1}^{\infty} \frac{z^{2d}}{d!} h^{-d} \sum_{\alpha \vdash d} p_{\alpha}(A) \sum_{r=0}^{\infty} (-h)^{r} \overline{\mathcal{V}}(\alpha) \right|$$





• Monotone Hurwitz numbers:  $\overrightarrow{H_g}(\alpha,\beta) = \overrightarrow{W}^{2g-2+l(\alpha)+l(\beta)}(\alpha,\beta)$ .

$$\int_{\mathcal{U}(\infty)}^{\infty} zh^{-1} \operatorname{Tr} \left( AU + BU^{-1} \right) dU = \left| + \sum_{d=1}^{\infty} \frac{z^{2d}}{d!} \sum_{\alpha \vdash d} \frac{P_{\alpha}(A)}{h^{-\ell(\alpha)}} \left( -1 \right)^{\ell(\alpha) + d} \sum_{g=-\infty}^{\infty} h^{2g-2} \overrightarrow{H}_{g}(\alpha) \right|_{\mathcal{U}(\infty)}$$

$$\int_{\mathcal{U}(\infty)}^{\infty} \frac{zh}{d\mu} \operatorname{Tr} AUBU^{-1} = \left[ + \sum_{d=1}^{\infty} \frac{z^{d}}{d!} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}} \frac{p_{\alpha}(A)}{h^{-\ell(\alpha)}} \frac{p_{\beta}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\beta}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\beta}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\beta}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{\substack{\alpha \vdash d \\ \beta \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\beta)} \sum_{\substack{\alpha \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} (-1)^{\ell(\beta)} \sum_{\substack{\alpha \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} (-1)^{\ell(\beta)} \sum_{\substack{\alpha \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} (-1)^{\ell(\beta)} \sum_{\substack{\alpha \vdash \alpha}}^{\infty} \frac{p_{\alpha}(A)}{h^{-\ell(\beta)}} (-1)^{\ell(\beta)} (-1)$$

Stable Free Energies

$$\log \int e^{zh'} T_r (AU + BU') dU$$

$$=\sum_{d=1}^{\infty}\frac{z^{2d}}{d!}\sum_{\alpha\vdash d}\frac{P_{\alpha}(A)}{h^{-\ell(\alpha)}}(-1)^{\ell(\alpha)+d}\sum_{g=0}^{\infty}h^{2g-2}\overline{H}_{g}(\alpha)$$

$$\log \int e^{zh^{-1}} \operatorname{Tr} AUBU^{-1} dU$$

$$= \sum_{d=1}^{\infty} \frac{z^{d}}{d!} \sum_{\substack{\alpha \vdash d \\ \beta \vdash d}} \frac{p_{\alpha}(A)}{h^{-\ell(\alpha)}} \frac{p_{\beta}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \sum_{g=0}^{\infty} h^{2g-2} \overline{H}_{g}(\alpha, \beta)$$

Stable Topological Expansion

$$\log \int_{\mathcal{U}(\infty)}^{\infty} \frac{zh^{-1} \operatorname{Tr} (AU + BU^{-1})}{dU} = \sum_{g=0}^{\infty} h^{2g-2} F_{g},$$

$$F_{g} = \sum_{d=1}^{\infty} \frac{z^{2d}}{d!} \sum_{\alpha \vdash d} \frac{P_{\alpha}(A)}{h^{-\ell(\alpha)}} (-1)^{\ell(\alpha) + d} \overrightarrow{H}_{g}(\alpha)$$

$$\log \int_{\mathcal{U}(\infty)}^{\infty} e^{\frac{\pi}{h} \operatorname{Tr} A \mathcal{U} B \mathcal{U}'} d\mathcal{U} = \sum_{g=0}^{\infty} h^{2g-2} F_{g},$$

$$F_{g} = \sum_{d=1}^{\infty} \frac{z^{d}}{d!} \sum_{\substack{\alpha \vdash d \\ \beta \vdash d}} \frac{P_{\alpha}(A)}{h^{-\ell(\alpha)}} \frac{P_{\beta}(B)}{h^{-\ell(\beta)}} (-1)^{\ell(\alpha)+\ell(\beta)} \overrightarrow{H}_{g}(\alpha,\beta)$$

Large N

# Holomorphic Candidates

Theorem: There exists  $\gamma > 0$  such that

$$F_{Ng} = \sum_{d=1}^{\infty} \frac{Z^{d}}{d!} \sum_{\alpha,\beta \vdash d} \frac{P_{\alpha}(\alpha_{1},\ldots,\alpha_{N})}{N^{\ell(\alpha)}} \frac{P_{\beta}(b_{1},\ldots,b_{N})}{N^{\ell(\beta)}} (-1)^{\ell(\alpha) + \ell(\beta)} \overrightarrow{H}_{g}(\alpha,\beta)$$

converges uniformly absolutely on  $D_N(\gamma)$  for all NEIN and gelNo.

- stable topological constant exists -

Mystery

- Univariate power series  $F_g = \sum_{d=1}^{\infty} \frac{Z^d}{d!} H_g(l^d, l^d)$  has radius of convergence  $Z_c = \frac{2}{27}$ .
- Based on parameterization of  $F_g$  by  $\sum_{i=1}^{i} \left(\frac{2}{3}, \frac{4}{3}, \frac{3}{2}; \frac{27}{2}z\right)$ .

$$\lim_{N \to \infty} \frac{1}{N^3} \log \left| \{f_{inite groups of order p^{N}\} \right| = \frac{2}{27}$$

Disconnected by Necessity

- Impossible to compare  $F_N = \log I_N$  to  $\sum_{g=0}^{N} N^{2-2g} F_{Ng}$  in ( $(O_N(r), \|\cdot\|_r)$  because of complex zeros.
- Have to work with disconnected topologies: topologically normalized partition function

$$\Phi_{Nk} = e^{-\sum_{g=0}^{k} N^{2-2g} F_{ng}} \int_{\mathcal{U}(N)} e^{zNTrAUBU^{-1}} dU \in \mathcal{O}_{n}(\gamma).$$

Theorem: Topological expansion of  $F_n = \log I_n$  is equivalent to topological concentration of  $I_n$ : there exists  $O < \epsilon \leq \gamma$ such that for each  $K \in \mathbb{N}_o$ 

$$\|e^{-\sum_{g=0}^{k}N^{2-2g}F_{Ng}}I_{N}-1\|_{E} = O_{k}(N^{2-2k})$$

• Can see topological concentration easily at  $N=\infty$ : it's topological cancellation.

$$\Rightarrow e^{\sum_{g=0}^{k} h^{2g-2} F_{g}} \int_{\mathcal{U}(\infty)}^{\mathbb{Z}h^{-1} \operatorname{Tr} A \mathcal{U} B \mathcal{U}^{-1}} d\mathcal{U} = e^{\sum_{g=0}^{k} h^{2g-2} F_{g}} \int_{\mathcal{U}(\infty)}^{\mathbb{Z}h^{2g-2} F_{g}} \int_{\mathbb{Z}h^{2g-2}}^{\mathbb{Z}h^{-1} \operatorname{Tr} A \mathcal{U} B \mathcal{U}^{-1}} d\mathcal{U} = O(h^{2u})$$

$$\Rightarrow e^{\sum_{g=0}^{k} h^{2g-2} F_{g}} \int_{\mathcal{U}(\infty)}^{\mathbb{Z}h^{-1} \operatorname{Tr} A \mathcal{U} B \mathcal{U}^{-1}} d\mathcal{U} = O(h^{2u})$$