Topological Expansion of BGW+HCIZ

Jonathan Norak UC San Diego June 2022 London ON

Fourier in RMT

- Random Hermitian matrix: $X_{N}=\left[X_{N}(i, j)\right]_{1 \leq i, j \leq N}$
- Characteristic function $A^{*}=A \mapsto \mathbb{E}\left[e^{i \operatorname{Tr} A X_{\omega}}\right]$.
- Characterizes distribution of X_{N} - absent from RMT.
- Why?

$$
\chi(A)=\mathbb{E}\left[e^{i T A X_{0}}\right]
$$

Invariant Ensembles

- Spectral theorem $X_{N}=U_{v} B_{v} U_{v}^{-1}$, with independent eigenvectors U_{N} and eigenvalues $B_{N}=\operatorname{diag}\left(b_{1} \geq \ldots \geq b_{N}\right)$.
- Characteristic function

$$
\begin{aligned}
\chi(A) & =\mathbb{E}_{\left(B_{N}, U_{v}\right)}\left[e^{\left.i \operatorname{Tr} A U_{N} B_{v} U_{*}^{-1}\right]}\right. \\
& =\mathbb{E}_{B_{N}} \int_{U(N)} e^{i \operatorname{Tr} A U B_{N} U^{-1}} d U
\end{aligned}
$$

New Kernel, New Problems

- RMT analogue of the scalar (and vector) Fourier Kernel $e^{i a x}$ is the unitary matrix integral

$$
I_{N}(A, B)=\int_{U(N)} e^{i \operatorname{Tr} A U B U^{-1}} d U
$$

- Oscillatory integral over a compact real manifold of dimension N^{2}
- No existing tools for $N \rightarrow \infty$ asymptotics.

Stationary Phase

- Rescale to get order N^{2} action,

$$
I_{N}=\int_{U(N)} e^{i N \operatorname{Tr} A U B U^{-1}} d U
$$

- Find stationary points of the action

$$
N \operatorname{Tr} A U B U^{-1}=N \sum_{k, l=1}^{N} a_{k} b_{l}\left|u_{k e}\right|^{2}
$$

- Linear functional on Birkhoff polytope - extreme points are permutation matrices.
- Stationary phase approx \leadsto determinant.

Theorem (Harish-Chandra, Itzykson-Euber)
This is how complicated the kernel $I_{N}=I_{N}(A, B)$ is:

$$
I_{v}=\text { constr }_{v} \frac{\operatorname{det}\left[e^{i a_{6} b_{e}}\right]}{\Delta(A) \Delta(B)}
$$

Useless for $N \rightarrow \infty$ asymptotics; have to find another approach

Analytic Continuation

- Make everything complex:

$$
I_{N}=\int_{U(N)} e^{z N \operatorname{Tr} A U B U^{-1}} d U .
$$

- Entire function of $2 N+1$ complex variables: z and eigenvals $a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N}$ of $A, B \in g l_{N}(\mathbb{C})$.
- Reverts to RMT Fourier kernel on $: \mathbb{R} \times \mathbb{R}^{2 v}$, becomes random matrix partition function on $\mathbb{R} \times \mathbb{R}^{2 N}$.

Gibbs Measure

- In restricts to partition function of Gibbs measure on $U(N)$: inverse coupling $z \in \mathbb{R}$, Hamiltonian

$$
H=N \sum_{i, j=1}^{N} a_{i} b_{j}\left|U_{i j}\right|^{2}
$$

external field parameters $a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N} \in \mathbb{R}$.

- Large N behavior of $F_{N}=\log I_{N}$ anticipated by analogy with Hermitian matrix models.

Theorem (Ercolani-McLaughlin)
There exists $\varepsilon>0$ such that free energy $F_{N}=\log Z_{N}$ of Hermitian one-matrix model

$$
Z_{N}=\int_{H(N)} e^{t N \operatorname{Tr} X^{4}} \mu_{N}(d X), \operatorname{Re}(t)<0
$$

satisfies

$$
F_{N}=\sum_{g=0}^{k} N^{2-22 g} F_{g}+o\left(N^{2.24}\right)
$$

as $N \rightarrow \infty$, for each $k \in \mathbb{N}_{0}$, with error uniform in $t \in[-\varepsilon, O]$, and $F_{g}=F_{g}(t)$ generating $f_{c n} f_{\text {or genus }}$ quadrangulations, which converges uniformly absolutely for $|H| \leqslant \varepsilon$.

- Existence of asymptotic expansion in Hermitian matrix models: Coulomb gas spectrum, orthogonal polynomials.
- Topological interpretation. Wick calculus
- Alternative approach (Guionnet): Schwinger - Dyson equations plus concentration inequalities.
- HCIZ matrix model not an eigenvalue model; use second approach.

Theorem (Guionnet-Novak)
For each $k \in \mathbb{N}$. there exists $\varepsilon_{k}>0$ such that

$$
F_{N}=\sum_{g=0}^{k} N^{2-2 g} F_{v g}+o\left(N^{2-2 k}\right)
$$

as $N \rightarrow \infty$, where the error term is uniform on compact box

$$
\mathbb{B}_{N}\left(\varepsilon_{n}\right)=\underset{\substack{\text { inverse se } \\ \text { coupling }}}{\left[-\varepsilon_{n}, \varepsilon_{0}\right]} \times \underset{\substack{\text { external } \\ \text { filed }}}{\mathbb{R}^{2 N}} \subset \mathbb{R}^{2 N+1}
$$

and

$$
\sup _{N \in \mathbb{N}}\left\|F_{\text {vg }}\right\|_{\varepsilon}<\infty .
$$

Demerits

- Argument does not extend to complex parameters.
- Box thickness $\varepsilon_{x} \rightarrow 0$ exponentially in K.
- No topological description of $F_{\text {ny. }}$.

Further Motivations

- HCIZ in Hermitian multimatrix models:

$$
Z_{N}=\int_{H(N)^{2}} e^{N \operatorname{Tr}\left(V_{1}\left(X_{1}\right)+V_{2}\left(X_{2}\right)+z X_{1} X_{2}\right)} \mu_{N}^{\otimes 2}\left(d X_{1}, d X_{2}\right)
$$

- HCIZ in Hermitian matrix models with external source:

$$
Z_{N}=\int_{H(N)} e^{N \operatorname{Tr}(V(X)+A X)} \mu_{N}(d X)
$$

- HCIZ in representation theory:

$$
Z_{N}=\frac{\chi_{\left(b_{1}, \ldots, b_{N}\right)}\left(e^{A}\right)}{\chi_{\left(b_{1}, \ldots, b_{N}\right)}\left(e^{0}\right)}
$$

Topological Expansion Conjecture (QFT 1980)
There exists $\varepsilon>0$ such that, for each $k \in \mathbb{N}_{0}$, we have

$$
\log \int_{u(N)} e^{z N \operatorname{Tr} A U B U^{-1}} d U=\sum_{g=0}^{k} N^{2-2 g} F_{N g}+o\left(N^{2-z u}\right)
$$

as $N \rightarrow \infty$, where the error term is uniform over $|z| \leqslant \varepsilon$ and $\left|a_{i}\right|,\left|b_{i}\right| \leq 1$, and the free energies are analytic functions of $z, a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N}$ whose modulus is uniformly bounded in N, and which are generating functions for combinatorial invariants of compact connected genus g Riemann surfaces.

Theorem (Novak): The topological expansion conjecture is true: there exists $\varepsilon>0$ such that, for each $k \in \mathbb{N}_{0}$,

$$
\log \int_{u(N)} e^{z N T r A U B U^{-1}} d U=\sum_{g=0}^{k} N^{2-2 g g} F_{u g}+o\left(N^{2.2 x}\right)
$$

as $N \rightarrow \infty$, where the error term is uniform on $\mathbb{D}_{N}(\varepsilon) \subset \mathbb{C}^{2 N+1}$ and

$$
F_{N g}=\sum_{d=1}^{\infty} \frac{z^{d}}{d!} \sum_{\alpha, \beta-d} \frac{p_{\alpha}\left(a_{v}, a_{N}\right)}{N^{l(\alpha)}} p_{\beta}\left(b_{\left.1, \ldots, b_{0}\right)}^{N^{\ell(\beta)}}(-1)^{(\alpha) \ell l(\beta)} \vec{H}_{g}(\alpha, \beta)\right.
$$

converges uniformly absolutely on $\mathbb{D}_{N}(\varepsilon)$; the topological invariants $\vec{H}_{g}(\alpha, \beta)$ are the monotone double Hurwitz numbers.

Theorem (Novak): Analogous statement for the BGW integral: there exists $\varepsilon>0$ such that, for each $k \in \mathbb{N}$ o,

$$
\log \int_{U(N)} e^{z N \operatorname{Tr}\left(A U+B U^{-1}\right)} d U=\sum_{g=0}^{k} N^{2-2 g} F_{\text {vg }}+o\left(N^{2-2 u}\right)
$$

as $N \rightarrow \infty$, where error term is uniform on $\mathbb{D}_{N}(\varepsilon) \subset \mathbb{C}^{N+1}$ and

$$
F_{N g}=\sum_{d=1}^{\infty} \frac{Z^{2 d}}{d!} \sum_{\alpha 1-d} \frac{p_{\alpha}\left(c_{1, \ldots}, c_{0}\right)}{N^{\ell(\alpha)}}(-1)^{\ell(\alpha)+d} \vec{H}_{g}(\alpha)
$$

converges uniformly absolutely on $\mathbb{D}_{N}(\varepsilon)$ with $c_{1} \ldots, c_{N}$ eigenvalues of $C=A B$, and $\vec{H}_{g}(\alpha)=\vec{H}_{g}\left(\alpha, 1^{\alpha}\right)$ are the monotone single Hurwitz numbers.

Proof: The strong coupling expansion (Wilson 1974) and the large N expansion ('t Hooft 1974) are analytically compatible for sufficiently small complex parameters.
-Q.E.D.

Several Complex Variables

$$
I_{N}=\int_{U(N)} e^{z N T r A U B U^{-1}} d U=I_{N}\left(z \left\lvert\, \begin{array}{l}
a_{1}, \ldots, a_{N} \\
b_{1}, \ldots, b_{N}
\end{array}\right.\right)
$$

- Have: $I_{n}=1$ on infinite coupling hyperplane $\{z=0\} \subset \mathbb{C}^{2 N+1}$.
- Make: Cut out closed unit poly disc $\mathbb{D}_{N} \subset \mathbb{C}^{2 N}$, embed in $\{z=0\} \subset \mathbb{C}^{2 N+1}$ thicken out to closed polydisc $\mathbb{D}_{N}(\varepsilon)$ of polyradius $(\varepsilon, 1, \ldots, 1)$ in $\mathbb{C}^{2 N+1}$.
- Want: Asymptotics of $F_{N}=\log I_{N}$ on $\mathbb{D}_{N}(\varepsilon)$ as $N \rightarrow \infty$ with $\varepsilon>0$ fixed.
- Obstruction: Could be that, for any $\varepsilon>0$ we choose, hypersurface $\left\{I_{N}=0\right\}$ intersects polydisc $\mathbb{D}_{N}(\varepsilon)$ non-trivially in $\mathbb{C}^{2 N+1}$ for infinitely many $N \in \mathbb{N}$.

Strong Coupling Expansion

- Non-vanishing constant: if $\exists \delta>0$ such that $I_{N} \neq 0$ on D.(δ) for all $N \in \mathbb{N}$, then conditional proof?
- $F_{N}=\log I_{N}$ belongs to Banach algebra $\left(\theta_{N}(\delta),\|\cdot\|_{\delta}\right)$ for all $N \in \mathbb{N}$
- Strong coupling expansion $=$ Maclaurin series,

$$
F_{N}=\sum_{d=1}^{\infty} \frac{z^{d}}{d!} F_{N}^{d}, \quad F_{N}^{d}: \mathbb{C}^{2 N} \longrightarrow \mathbb{C}
$$

Large N Expansion

- QFT ansatz: strong coupling coefficients stratify topologically as $N \rightarrow \infty$,

$$
F_{s}^{d} \sim \sum_{y=0}^{\infty} N^{2 \cdot 3 / 2} F_{y y}^{d}
$$

- For each fixed $d \in \mathbb{N}$ and $k \in \mathbb{N}$, have

$$
\lim _{N \rightarrow \infty} N^{2 k-2}\left\|F_{N}^{d}-\sum_{g=0}^{\infty} N^{2-2 g} F_{N g}^{d}\right\|=0
$$

with $F_{\text {vg }}^{d}: \mathbb{C}^{2 \Delta} \rightarrow \mathbb{C}$ ham. deg. d polynomials such that

$$
\sup _{N \in N}\left\|F_{\mathrm{Ng}}^{d}\right\|<\infty
$$

- Large N ansatz unknown in this context (lattice QCD).
- We can give it a topological meaning:

$$
F_{N}^{d} \sim \sum_{g=0}^{\infty} N^{2-2 g} \#\left\{\begin{array}{l}
\text { branched covers of } \mathbb{P}^{\prime}(\mathbb{C}) \text {, degree } d, \\
\text { genus } g \text {, specified branch locus }
\end{array}\right\} .
$$

- Second obstruction: $\sum_{d=1}^{\infty} F_{v g}^{d}$ is $\|\cdot\|$-absolutely convergent iff $d \leq N$ ("stable range").

NONCONVERGENCE OF THE $1 / N$ EXPANSION FOR SU(N)
 GAUGE FIELDS ON A LATTICE

B. De WIT

Instituut-Lorentz, Unversity of Leiden, Leiden, The Netherlands

G. 't HOOFT

Institute for Theoretical Physics, University of Utrecht, Utrecht, The Netherlands
Received 1 May 1977
We present specific examples that demonstrate the non-convergence of the $1 / N$ expansion for the lattice theory of SU(N) gauge fields.
$1 / N$ expansions in field theories with N or N^{2} field components are a useful device for simplification and/or bookkeeping purposes of Feynman diagrams [1]. In the conventional perturbation expansion of $\operatorname{SU}(N)$ gauge theories one may consider the limit $N \rightarrow \infty$ keeping $g^{2} N$ fixed, g being the coupling constant. One then finds at each order of $g^{2} N$ a finite polynomial in $1 / N$ with coefficients that are related in a precise manner to the topology of the corresponding diagrams as twodimensional surfaces [2]. In particular the leading term consists of planar Feynman diagrams only, which suggests that in the limit $N \rightarrow \infty$ one obtains hadrons that are essentially non-interacting. The $1 / N$ expansion then corresponds to an expansion with respect to the coupling strength between the hadrons. Our general experience with couplingconstant expansions in field theories then suggests hat the $1 / N$ expansion will diverge at a fixed $v a l u e$ for $g^{2} N$, even though the series is finite and therefore converges at fixed order in $g^{2} N$. We think that the probable formal divergence of the $1 / N$ expansion is not a sufficient argument to reject $1 / N$ expansions altogether, first because in the physically interesting case of SU(3) the effective coupling strength of $1 / 3$ may be small enough so that the spectrum obtained in the $N \rightarrow \infty$ limit will still resemble the physical spectrum, and secondly because fundamental problems such as the quark-confinement mechanism are likely to be independent of N, and understanding of such mechanisms in the $N \rightarrow \infty$ limit could be of great significance.

Thus we were motivated to study the $1 / N$ expansion further, but now in the $\operatorname{SU}(N)$ gauge theory on a lattice. Here the usual expansion is made with respect to $1 / \mathrm{g}^{2}$ and $1 / m_{\mathrm{q}}$ where m_{q} are the masses of the quarks [3]. Alternatively, one may expand with re spect to $1 / g^{2} N$ and $1 / N$, keeping m_{q} fixed and arbitrary [4]. Again we look at fixed order in $1 / g^{2} N$ and this time we find that the series in $1 / N$ does not only continue up to infinity as an essentially geometric series, but, more annoyingly, fails to produce the correct answer at finite N when summed. To be precise: we find for N larger than a few units pure rational functions of N, but when $N=1,2$ or 3 is substituted in here we find incorrect or even infinite answers. The critical value of N above which the rational function is valid and below which it fails depends on the order of $1 / g^{2} N$ considered. We interpret this result as an aspect of the formal divergence of the $1 / N$ expansion, but it must be kept in mind that also in this case we are unable to interchange the limits $g^{2} N \rightarrow \infty$ and $N \rightarrow \infty$.

To demonstrate the aforementioned properties of the $1 / N$ expansion is the purpose of this note. The action for gauge fields and quarks on an infinite Euchdean lattice is given by [3]

$$
\begin{aligned}
S & {\left[\bar{\psi}_{q}, \psi_{q}, U^{\dagger}, U\right] } \\
& =\sum_{x, q} \bar{\psi}_{q}(x)\left\{\frac{1}{2} \sum_{\mu}\left(1+\gamma_{\mu}\right) U(x, \hat{\mu}) \psi_{\mathbf{q}}(x+\hat{\mu})+\right.
\end{aligned}
$$

NON-PLANAR DIAGRAMS IN THE LARGE N LIMIT OF

 U(N) AND SU(N) LATTICE GAUGE THEORIES

 U(N) AND SU(N) LATTICE GAUGE THEORIES}

Don WEINGARTEN
Physics Department, Indiana University, Bloomington, IN 4740S, USA

Received 10 September 1979

It is shown that the limit as $N \rightarrow \infty$ with $g^{2} N$ fixed of the strong coupling expansion for the vacuum expectation values of a $\mathrm{U}(N)$ or $S U(N)$ lattice gauge theory is not given by a sum of planar diagrams. This contradicts a result claimed by De Wit and 't Hooft.

Some time ago 't Hooft [1] showed that as N $\rightarrow \infty$ with $g^{2} N$ fixed the leading Feynman diagram for the Green's functions of a $\mathrm{U}(N)$ or $\mathrm{SU}(N)$ gauge theory are planar. This result suggested a possible way the relation between QCD and the string model migh be made precise [1] and has been exploited in a wide variety of subsequent work [2]. Thus an interesting question is what happens to Wilson's strong coupling expansion for lattice gauge theories [3] in the limit $N \rightarrow \infty, g^{2} N$ fixed. De Wit and 't Hooft [4] have claimed that once again planar diagrams dominate. This result has been applied by Eguchi [5] to relate a lattice $\mathbf{U}(N)$ gauge theory to a theory of non-interacting Nambu-Goto strings and has been reconsidered more recently by Bars and Green [6]

In the present article, however, we will show that planar diagrams do not dominate the large N limit of the strong coupling expansion of either $\mathbf{U}(N)$ or $\mathrm{SU}(N)$ lattice gauge theories. Thus the discussions of this question in refs. [4-6] are incorrect. Our proof will consist of exhibiting a non-planar term, in the ex pansion of a vacuum expectation, which has the same dependence on N as $N \rightarrow \infty, g^{2} N$ fixed, as do the planar contributions.
Let us begin by briefly reviewing the euclidean lattice formulation of a gauge theory with gauge group G and the strong coupling expansion of vacuum expectation values [3]. For simplicity we will consider only a pure gauge theory without fermions. Let Λ $\subset \mathbf{Z}^{4}$ be a finite hypercubic lattice. For each oriented
pair of nearest neighbor sites (x, y) in Λ let $U(x, y)$ $=U(y, x)^{\dagger}$ be a matrix in G. For each oriented pla quette (square) p of four nearest-neighbor sites in Λ, let $U(p)$ be the ordered product of $U(x, y)$ around p starting at some arbitrarily chosen site of p. The action S is
$S=\left(2 g^{2}\right)^{-1} \sum_{p} \operatorname{Tr} U(p)$,
and the vacuum expectation of any polynomial \mathcal{F} of $U(x, y)$ is
$\langle\mathscr{F}\rangle=\int \mathrm{d} \mu \mathscr{F} \exp (S) / \int \mathrm{d} \mu \exp (S)$,
where μ is the product of one copy of Haar measure on G for each independent $U(x, y)$.

The strong coupling expansion for $\langle\mathscr{F}\rangle$ is obtained by expressing the exponentials in numerator and denominator of eq. (2) as power series in $\left(2 g^{2}\right)^{-1}$. The terms which appear can be associated with surfaces of plaquettes. After the integrals over $\mathrm{d} \mu$ are carried out, the denominator yields a sum of closed surfaces and the numerator yields a sum of surfaces with boundary determined by \mathcal{F}. The effect of dividing the numerator by the denominator is equivalent to modifying the rules for calculating the numerator: Each integral over Haar measure of a product of $U(x, y)$ is replaced by some combination of connected vertices (contractions) ${ }^{+1}$ obtained from a cluster
${ }^{ \pm 1}$ The definition of contractions is discussed by Wilson [3b, Appendix B].

Full Claim
Stable Nonvanishing Constant. There exist $\delta>0$ such that $I_{N}=\int_{U(N)}^{e^{e N T T A U B U "-1 ~}} d U$ is nonvanishing on $\mathbb{D}_{N}(\delta)$ for all $N \in \mathbb{N}$.

Stable Topological Constant: There exists $\gamma>0$ such that $F_{N g}=\sum_{d=1}^{\infty} \frac{z^{d}}{d!} F_{v g}^{d} \quad$ converges uniformly absolutely on $\mathbb{D}_{N}(\gamma)$ for all $N \in \mathbb{N}, g \in \mathbb{N}$.

Asymptotic Interchange Constant There exists $0<\varepsilon \leq \min (\delta, \gamma)$ such that

$$
\lim _{N \rightarrow \infty} N^{2 k-2}\left\|F_{N}-\sum_{g=0}^{k} N^{2.2 g} F_{N g}\right\|_{\varepsilon}=O \quad \forall k \in \mathbb{N}_{0} .
$$

Finite N

Feynman Diagrams for Haar Measure

- Coupling expansion.

$$
I_{N}=1+\sum_{d=1}^{\infty} \frac{z^{d}}{d!} I_{n}^{d}
$$

- Coupling coefficients are polynomial Haar integrals.
- Actually, BGW integral is generating fin for Haar correlators.

$$
\begin{aligned}
& \int_{u(N)} e^{z N} \operatorname{Tr}\left(A u+B u^{-1}\right)=1+\sum_{d=1}^{\infty} \frac{z^{2 d}}{d!d!} N^{2 d} \times
\end{aligned}
$$

- For $1 \leqslant d \leqslant N$, reduce to permutation correlators:

$$
W_{g_{N}}(\pi)=\int_{U(N)} u_{1 \ldots} u_{d d} \overline{U_{1 \pi(1)} \ldots U_{d \pi(d)}} d U \stackrel{?}{=} \sum_{\{\text {diagrams }\}}
$$

A fragment of $S(d)$

$$
\begin{aligned}
T & =\left[\begin{array}{lll}
(122 & (13) & (14) \\
& (23) & (24) \\
& & (34)
\end{array}\right] \\
J_{2} & J_{3}
\end{aligned} J_{4}
$$

Theorem (Novak)
For any $1 \leqslant d \leqslant N$, any $\alpha r d$, and any $\pi \in S(d)$,

$$
\int_{U(N)} U_{\|} \ldots U_{d d} \overline{U_{i \pi(1)} \ldots U_{d \pi(d)}} d U=\frac{1}{N^{d}} \sum_{r=0}^{\infty}(-1)^{r} \frac{\vec{W}^{r}(\alpha)}{N^{r}}
$$

where $\vec{W}^{\prime}(\alpha)$ is number of r-step monotone walks from id to π on $S(d)$.
(This is a disconnected monotone Hurwitz number).

Corollary: We have

$$
\begin{aligned}
& \int_{U(N)} e^{z N \operatorname{Tr}\left(A U+B U^{-1}\right)} d U \\
& =1+\sum_{d=1}^{N} \frac{z^{2 d}}{d!} N^{d} \sum_{\alpha \vdash d} p_{\alpha}(A B) \sum_{r=0}^{\infty}\left(-\frac{1}{N}\right)^{r} \vec{W}^{r}(\alpha)+O\left(z^{2 N+2}\right) \\
& \begin{array}{l}
\int_{U(N)} e^{z N \operatorname{Tr} A U B U^{-1}} d U \\
\quad=1+\sum_{d=1}^{N} \frac{z^{d}}{d!} \sum_{\alpha \vdash d} p_{\alpha}(A) p_{\beta}(B) \sum_{r=0}^{\infty}\left(-\frac{1}{N}\right)^{r} \vec{W}^{r}(\alpha, \beta)+O\left(z^{N+1}\right)
\end{array} l
\end{aligned}
$$

Infinite N

Bolt Periodicity

$$
U(\infty)=\lim _{\rightarrow} U(N)
$$

Stable BGW and HCIZ

$$
\begin{aligned}
& \int_{U(\infty)} e^{z \hbar^{-1}} \operatorname{Tr}\left(A U+B U^{-1}\right) \\
& d U=1+\sum_{d=1}^{\infty} \frac{z^{2 d}}{d!} \hbar^{-d} \sum_{\alpha \vdash d} p_{\alpha}(A) \sum_{r=0}^{\infty}(-\hbar)^{r} \vec{W}^{r}(\alpha) \\
& \int_{U(\infty)} e^{z \hbar^{-1}} \operatorname{Tr} A U B U^{-1} \\
&
\end{aligned} U=1+\sum_{d=1}^{\infty} \frac{z^{\alpha}}{d!} \sum_{\substack{\alpha \ltimes-\alpha \\
\beta \vdash d}} p_{\alpha}(A) p_{p}(B) \sum_{r=0}^{\infty}(-\hbar)^{r} \vec{W}^{r}(\alpha, \beta) .
$$

Topological Interpretation

- Monotone Hurwitz numbers: $\vec{H}_{g}(\alpha, \beta)=\vec{W}^{2 g-2+l(\alpha)+l(\beta)}(\alpha, \beta)$.

$$
\begin{aligned}
& \int_{U(\infty)} e^{z \hbar^{-1} \operatorname{Tr}\left(A U+B U^{-1}\right)} d U=1+\sum_{d=1}^{\infty} \frac{z^{2 d}}{d!} \sum_{\alpha+d} \frac{p_{\alpha}(A)}{\hbar^{-l(\alpha)}}(-1)^{l(\alpha)+d} \sum_{g=-\infty}^{\infty} \hbar^{2 g-2} \vec{H}_{g}(\alpha) \\
& \int_{U(\infty)} e^{z \hbar^{-1}} \operatorname{Tr} A U B U^{-1} \\
& d U=1+\sum_{d=1}^{\infty} \frac{z^{d}}{d!} \sum_{\substack{\alpha+\alpha \\
\beta-d}} \frac{p_{\alpha}(A)}{\hbar^{-l(\alpha)}} \frac{p_{\beta}(B)}{\hbar^{-l(\beta)}}(-1)^{\ell(\alpha)+\ell(\beta)} \sum_{g=-\infty}^{\infty} \hbar^{\lambda_{g-2}} \vec{H}_{g}(\alpha, \beta)
\end{aligned}
$$

Stable Free Energies

$$
\begin{aligned}
& \log \int_{U(\infty)} e^{z \hbar^{-1} \operatorname{Tr}\left(A U+B U^{-1}\right)} d U \\
& =\sum_{d=1}^{\infty} \frac{z^{2 d}}{d!} \sum_{\alpha+d} \frac{p_{\alpha}(A)}{\hbar^{-l(\alpha)}}(-1)^{\ell(\alpha)+d} \sum_{g=0}^{\infty} \hbar^{2_{g}-2} \vec{H}_{g}(\alpha) \\
& \log \int_{U(\infty)} e^{z \hbar^{-1} \operatorname{Tr} A U B U^{-1}} d U \\
& =\sum_{d=1}^{\infty} \frac{z^{d}}{d!} \sum_{\substack{\alpha \vdash d \\
\beta \vdash d}} \frac{p_{\alpha}(A)}{\hbar^{-l(\alpha)}} \frac{p_{g}(B)}{\hbar^{-l(\beta)}}(-1)^{e l()+\ell(\beta)} \sum_{g=0}^{\infty} \hbar^{h_{g}-2} \vec{H}_{g}(\alpha, \beta)
\end{aligned}
$$

Stable Topological Expansion

$$
\begin{gathered}
\log \int_{U(\infty)} e^{z \hbar^{-1} \operatorname{Tr}\left(A U+B U^{-1}\right)} d U=\sum_{g=0}^{\infty} \hbar^{2 g-2} F_{g} \\
F_{g}=\sum_{d=1}^{\infty} \frac{z^{z d}}{d!} \sum_{\alpha+d} \frac{p_{\alpha}(A)}{\hbar^{-l(\alpha)}(-1)^{\ell(\alpha)+d} H_{g}(\alpha)} \\
\log \int_{U(\infty)} e^{z \hbar^{-1}} \operatorname{Tr} A U B U^{-1} \\
d U=\sum_{g=0}^{\infty} \hbar^{2 g-2} F_{g}, \\
F_{g}=\sum_{d=1}^{\infty} \frac{z^{d}}{d!} \sum_{\alpha-d} \frac{p_{\alpha}(A)}{\hbar_{\beta}(-l(\alpha)} \frac{p_{\beta}(B)}{\hbar^{-l(\beta)}}(-1)^{\ell(\alpha) l(\beta)} H_{g}(\alpha, \beta)
\end{gathered}
$$

Large N

Holomorphic Candidates
Theorem: There exists $\gamma>0$ such that

$$
F_{N g}=\sum_{d=1}^{\infty} \frac{z^{d}}{d!} \sum_{\alpha_{1} \beta+d} \frac{p_{\alpha}\left(a_{1, \ldots}, a_{0}\right)}{N^{\ell(\alpha)}} \frac{p_{k}\left(b_{1}, \ldots, b_{j}\right)}{N^{e(\beta)}}(-1)^{\ell(\alpha)+\ell(\beta)} \overrightarrow{H_{g}}(\alpha, \beta)
$$

converges uniformly absolutely on $\mathbb{D}_{N}(\gamma)$ for all $N \in \mathbb{N}$ and $g \in \mathbb{N}$.

- stable topological constant exists -

Mystery

- Univariate power series $F_{g}=\sum_{d=1}^{\infty} \frac{z^{d}}{d!} \vec{H}_{g}\left(1^{d}, l^{d}\right)$ has radius of convergence $Z_{c}=\frac{2}{27}$.
- Based on parameterization of F_{9} by $F_{2} F_{1}\left(\frac{2}{3}, \frac{4}{3}, \frac{3}{2} ; \frac{27}{2} z\right)$.

$$
\left.\left.\lim _{N \rightarrow \infty} \frac{1}{N^{N}} \log \right\rvert\,\left\{f_{\text {nite }} \text { groups of order } p^{N}\right\} \right\rvert\,=\frac{2}{27} \text {. }
$$

Disconnected by Necessity

- Impossible to compare $F_{N}=\log I_{N}$ to $\sum_{g=0}^{k} N^{2-2 g} F_{N g}$ in $\left(\theta_{n}(\gamma),\|\cdot\|_{\gamma}\right)$ because of complex zeros.
- Have to work with disconnected topologies: topologically normalized partition function

$$
\Phi_{N k}=e^{-\sum_{j=0}^{k} N^{2,2 / g} F_{v g}} \int_{U(\omega)} e^{z N \operatorname{Tr} A u B U^{-1}} d u \in \theta_{v}(r) .
$$

Theorem: Topological expansion of $F_{N}=\log I_{N}$ is equivalent to topological concentration of I_{N} : there exists $0<\varepsilon \leq \gamma$ such that for each $k \in \mathbb{N}$ 。

$$
\left\|e^{-\sum_{y=0}^{k} N^{2-2 g} F \operatorname{rag}} I_{N}-1\right\|_{\varepsilon}=O_{k}\left(N^{2-2 k}\right)
$$

as $N \rightarrow \infty$.

- Can see topological concentration easily at $N=\infty$: it's topological cancellation.

$$
\begin{aligned}
& \int_{U(\infty)} e^{z \hbar^{-1} \operatorname{Tr} A U B U^{-1}} d U=e^{\sum_{y=0}^{n} h^{2_{j 2} F_{g}} F_{g}} e^{\sum_{j=0}^{n} h^{2_{j} 2} F_{g}} \\
& \Rightarrow e^{-\sum_{j=2}^{K} \hbar^{2 \cdot 2} F_{g}} \int_{U(\infty)} e^{z \hbar^{-1} \operatorname{Tr} A U B U^{-1}} d U=e^{\sum_{j=0}^{n} h^{2_{9}-2} F_{g}} \\
& \text { surfaces of genus } \\
& \Rightarrow e^{-\sum_{j=0}^{k} \hbar^{2 j^{2}} F_{g}} \int_{U(\infty)} e^{z \hbar^{-1} \operatorname{Tr} A U B U^{-1}} d U=O\left(\hbar^{2 k}\right)^{\ell} \quad d K+1
\end{aligned}
$$

A Possible Program

- How to reconcile formal and convergent topological expansions?

Step 1: Find holomorphic approximation of partition function.
Step 2: Determine holomorphic candidates using topological recursion
Step 3: Prove topological expansion of free energy by establishing topological concentration of partition function

