Blobbed Topological Recursion for Dirac Ensembles

Shahab Azarfar

School of Data Science, University of Virginia

June 13, 2022

 This talk is based on joint work with Masoud Khalkhali, Random Finite Noncommutative Geometries and Topological Recursion, arXiv:1906.09362

• The major ideas discussed through the talk are certainly due to the following mathematicians (just to name a few):

- (Blobbed) Topological Recursion: Eynard, Chekhov, Borot, Orantin, ...
- Noncommutative Geometry: Connes, Marcolli, Barrett, ...

 ⟨□⟩ ⟨∂⟩ ⟨ ₹⟩ ⟨ ₹⟩

 Shahab Azarfar
 June 13, 2022
 2 / 28

Outline

Classical 1-Hermitian Matrix Models

2 Dirac Ensembles

3 Schwinger-Dyson Eq. and (Blobbed) Topological Recursion

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

Shahab Azarfar June 13, 2022 3/28

Outline

Classical 1-Hermitian Matrix Models

2 Dirac Ensembles

3 Schwinger-Dyson Eq. and (Blobbed) Topological Recursion

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ♡Q҈

4/28

Classical 1-Hermitian Matrix Models

• One starts from a U_N -invariant measure $d\mu(H)$ on \mathcal{H}_N

$$d\mu(H) = \exp\left[-(N/t)\operatorname{Tr}(\mathcal{V}(H))\right] dH$$

• Weyl integration formula: $d\mu(H)$ induces a measure $d\tilde{\mu}(\lambda)$ on \mathbb{R}^N

$$d\tilde{\mu}(\lambda) = \prod_{1 \le i < j \le N} |\lambda_j - \lambda_i|^2 \prod_{i=1}^N e^{-(N/t)\mathcal{V}(\lambda_i)} d\lambda_i$$

• Formal matrix models: all integrations are w.r.t. the normalized Gaussian measure

$$d\mu^{0}(H) = c \exp\left(-\frac{N \operatorname{Tr}(H^{2})}{2t}\right) dH$$

Correlation Functions

- Partition function $Z_N = \int_{\mathcal{H}_N} \mathrm{d}\mu(H)$, and Free energy $F = \log Z_N$
- Disconnected correlators are the moments of the following form

$$\hat{W}_n(x_1,\dots,x_n) = \mathbb{E}\left[\prod_{j=1}^n \left(\sum_{i=1}^N \frac{1}{x_j - \lambda_i}\right)\right], \quad x_j \in \mathbb{C} \backslash \mathbb{R},$$

where $\sum_{i=1}^{N} \frac{1}{x-\lambda_i}$ is the trace of the resolvent.

• Connected correlators are the joint cumulants of the following form

$$W_n(x_1, \dots, x_n) = \sum_{K \vdash \mathbb{I}_1, n\mathbb{I}} (-1)^{[K]-1} ([K] - 1)! \prod_{i=1}^{[K]} \hat{W}_{|K_i|} (x_{K_i})$$

Shahab Azarfar June 13, 2022 6 / 28

Counting Discretized Surfaces

- Wick's Theorem: computation of the moments of the Gaussian measure can be reduced to enumeration of the maps (ribbon graphs)
- A term $\tau_{\ell_i} = t_{\ell_i} \frac{\text{Tr}(H^{\ell_i})}{\ell_i}$ in $\text{Tr}(\mathcal{V}(H)) \leadsto \underbrace{\text{an } \ell_i\text{-gon of Boltzmann weight } t_{\ell_i}}$

Figure: A planar map with one marked rooted face (the colored 9-gon containing the point ∞)

Shahab Azarfar June 13, 2022 7/

Topological Expansion

 \bullet Using Wick's theorem, one obtains a large-N topological expansion

$$F = \sum_{g \geq 0} \left(N/t \right)^{2-2g} F_g \,, \qquad F_g = \sum_{[M] \in \mathbb{M}_g} \mathfrak{Bw}([M]) \,,$$

$$W_n(x_1, \dots, x_n) = \sum_{g \ge 0} (N/t)^{2-2g-n} W_{g,n}(x_1, \dots, x_n),$$

where $W_{g,n}(x_1,\dots,x_n)$ enumerates the connected closed maps of genus g with n marked rooted polygonal faces

• Topological Recursion provides a machinery for computing the $W_{g,n}$'s recursively, given certain initial data

Shahab Azarfar June 13, 2022 8/28

Outline

Classical 1-Hermitian Matrix Models

2 Dirac Ensembles

3 Schwinger-Dyson Eq. and (Blobbed) Topological Recursion

9/28

Real Spectral Triples

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ equipped with a real structure $J : \mathcal{H} \to \mathcal{H}$ and a chirality operator $\gamma : \mathcal{H} \to \mathcal{H}$
- The real spectral triple $(C^{\infty}(\mathcal{M}), L^2(\mathcal{M}, \$), \not D, \gamma, J)$ associated to a spin Riemannian manifold \mathcal{M}
- Connes' distance formula: The Dirac operator D encapsulates all the information about the Riemannian metric over M

Shahab Azarfar June 13, 2022 10 / 28

Dirac Ensembles

- Moduli space of Dirac operators D encodes all possible geometries ("metrics") over a fixed fermion space $(\mathcal{A}, \mathcal{H}, \gamma, J)$
- As a model for *Quantum Gravity* on a finite noncommutative space, one considers a distribution of the following form over the moduli space of Dirac operators

$$e^{-\mathcal{S}(D)} dD$$

• The action functional is spectral

$$\mathcal{S}(D) = \operatorname{Tr}\left(f(D)\right) = \sum_{\lambda \in \operatorname{Spec}(D)} f(\lambda)$$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 からで

Matrix Geometries of type (p, q) [Barrett (2015)]

- A particular class of finite real spectral triples
 - $\mathcal{A} = M_N(\mathbb{C})$
 - $\mathcal{H} = V_{p,q} \otimes M_N(\mathbb{C})$
 - $\langle v \otimes A, u \otimes B \rangle = \langle v, u \rangle \operatorname{Tr} (AB^*), \quad v, u \in V_{p,q}, A, B \in M_N(\mathbb{C})$
 - $\pi(A)(v \otimes B) = v \otimes (AB)$,

where $V_{p,q}$ is an irreducible complex module over the Clifford algebra $\mathrm{C}\ell_{p,q}$

• The Dirac operators are expressed in term of commutators or anticommutators with given Hermitian matrices H and anti-Hermitian matrices L

12 / 28

Random matrix geometries of type (1,0)

• The Dirac operator

$$D = \{H, \cdot\}, \quad H \in \mathcal{H}_N$$

• We consider a model with the following action functional

$$S(D) = S_{\text{unstable}}(D) + S_{\text{stable}}(D)$$
,

where

$$S_{\text{unstable}}(D) = \text{Tr}\left(\mathcal{V}(D)\right), \quad \mathcal{V}(x) = \frac{1}{2t} \left(\frac{x^2}{2} - \sum_{n=3}^d \alpha_n \frac{x^n}{n}\right),$$

and

$$\mathcal{S}_{\text{stable}}(D) = -\sum_{s=1}^{\mathfrak{g}} \left(N/t\right)^{-4s} \sum_{n_I \in \mathbb{N}_{\uparrow}^s} \hat{\alpha}_{n_I} \prod_{i=1}^s \operatorname{Tr}\left(D^{n_i}\right) \,.$$

Topological expansion of the action functional

• An elementary 2-cell of topology (g,n) with polygonal boundaries of perimeters $\{\ell_i\}_{i=1}^n$, $\ell_i \ge 1$, is a (equivalence class of) surface of genus g whose boundary has n connected components, and consists of the 1-skeleton of ℓ_i -gons

Figure: An elementary 2-cell of topology (g, n) = (3, 2) with polygonal boundaries of perimeters $(\ell_1, \ell_2) = (5, 6)$

• Decomposition of $\mathcal{S}(D)$ in terms of underlying elementary 2-cells

$$\begin{split} \mathcal{S}(D) &= \mathcal{S}_0(H) + \mathcal{S}_{\text{int}}(H) \\ &= \frac{N}{2t} \operatorname{Tr} \left(H^2 \right) - \sum_{[C] \in \mathcal{C}} \frac{(N/t)^{\chi(C)}}{(\beta_0 \left(\partial C \right))!} \; T_{[C]}(H) \,, \end{split}$$

where

- $\chi(C)$ = the Euler characteristic of an elementary 2-cell C
- $\beta_0(\partial C)$ = the number of connected components of the boundary of C
- Classifying the elementary 2-cells based on whether $\chi(C) \geqslant 0$ or $\chi(C) < 0$

$$C = C_{unstable} \cup C_{stable}$$

• For an elementary 2-cell C of topology (g,n) with polygonal boundaries of perimeters $\{\ell_i\}_{i=1}^n$

$$T_{[C]}(H) \coloneqq \mathbf{t}_{\vec{\ell}}^{(g)} \prod_{i=1}^{n} \frac{\operatorname{Tr}\left(H_{i}^{\ell}\right)}{\ell_{i}}$$

Corresponding Hermitian matrix model

- A formal multi-trace 1-Hermitian matrix model
- The term $\exp(-S_{int}(H))$ is considered as a formal power series in the Boltzmann weights $\mathbf{t}_{\vec{i}}^{(g)}$
- Using Wick's theorem, we get the following large-N topological expansion

$$W_n(x_1, \dots, x_n) = \sum_{g \geqslant 0} (N/t)^{2-2g-n} W_{g,n}(x_1, \dots, x_n),$$

where $W_{g,n}(x_1,\dots,x_n) \in \mathbb{Q}[\mathbf{t}][[t]][[(x_j^{-1})_i]]$ enumerates the connected closed stuffed maps of genus g with n marked rooted polygonal faces

Shahab Azarfar

Stuffed maps

• Each term of the form $\frac{(N/t)^{\chi(C)}}{(\beta_0(\partial C))!}$ $T_{[C]}(H)$ is represented by the corresponding elementary 2-cell C

Figure: A closed stuffed map of genus two with two marked rooted polygonal faces (brown disk) obtained by gluing the unstable elementary 2-cells of topology (g, n) = (0, 1) (green disk) and (g, n) = (0, 2) (red cylinder)

 ♦ □ ▷ ◆ □ ▷ ◆ □ ▷ ◆ □ ▷ ◆ □ ▷ ◆ □ ▷ ○ □

 Shahab Azarfar
 June 13, 2022
 17/28

Large-N expected spectral distribution ("equilibrium measure")

- Tame Boltzmann weights are those numerical values of $\mathbf{t}_{\vec{\ell}}^{(g)}$ for which the generating function of the rooted planar stuffed maps with topology of a disk and perimeter ℓ is finite for all $\ell \in \mathbb{N}$.
- The formal series $W_{0,1}(x)$ is a holomorphic function with discontinuity locus $\Gamma = [\mathfrak{a}, \mathfrak{b}] \subset \mathbb{R}$.
- \bullet The large-N expected spectral density

$$\varphi(s) = \frac{1}{2\pi i} \lim_{\epsilon \to 0^+} \left(W_{0,1}(s - i\epsilon) - W_{0,1}(s + i\epsilon) \right) , \quad \forall s \in \Gamma_{\text{interior}}$$

is supported on Γ , and assumes positive values on $\Gamma_{\rm interior}$.

Shahab Azarfar June 13, 2022 18/28

Outline

Classical 1-Hermitian Matrix Models

2 Dirac Ensembles

3 Schwinger-Dyson Eq. and (Blobbed) Topological Recursion

◆ロト ◆部ト ◆意ト ◆意ト 意 めらぐ

19 / 28

Schwinger-Dyson Equations (SDEs)

- The Schwinger-Dyson equations for a matrix model are a tower of equations satisfied by the n-point correlation functions of the model.
- The root of SDEs is the invariance of the integral of a top-degree differential form under a 1-parameter family of orientation-preserving diffeomorphisms on a manifold, i.e.

$$\int_{\phi_t(\Omega)} \Psi \omega = \int_{\Omega} {\phi_t}^* (\Psi \omega) , \quad \forall t \in (-\epsilon, \epsilon),$$

where $\Psi: \mathcal{M} \to \mathbb{R}$ is a smooth function over a Riemannian n-manifold \mathcal{M} with the canonical volume form ω , and $\phi_t:\Omega\to\Omega$ is a local flow over a compact n-dimensional submanifold $\Omega \subset \mathcal{M}$.

Shahab Azarfar

SDEs for Random Matrix Geometries of type (1,0)

The rank n SDE is given by:

$$\begin{split} W_{n+1}(x,x,x_I) + \sum_{J \subseteq I} W_{|J|+1}(x,x_J) \, W_{n-|J|}(x,x_{I \setminus J}) \\ + \sum_{i \in I} \oint_{\Gamma} \frac{\mathrm{d}\xi}{2\pi \mathrm{i}} \, \frac{W_{n-1}(\xi,x_{I \setminus \{i\}})}{(x-\xi)(x_i-\xi)^2} \\ + \sum_{k=1}^{2\mathfrak{g}} \sum_{\substack{K \vdash [\![1,k]\!] \\ J_1 \sqcup \cdots \sqcup J_{[K]} = I}} \oint_{\Gamma} \left[\prod_{r=1}^k \frac{\mathrm{d}\xi_r}{2\pi \mathrm{i}} \right] \frac{\partial_{\xi_1} T_k(\xi_1,\cdots,\xi_k)}{(k-1)! \, (x-\xi_1)} \prod_{i=1}^{[K]} W_{|K_i|+|J_i|} \left(\xi_{K_i},x_{J_i} \right) \\ = 0 \, , \end{split}$$

where the symmetric k-point interactions T_k are defined by

$$\sum_{\lambda} T_k(\lambda_{i_1}, \lambda_{i_2}, \cdots, \lambda_{i_k}) = \sum_{\substack{[C] \in \mathcal{C} \\ \beta_0(\partial C) = k}} (N/t)^{\chi(C)} T_{[C]}(H).$$

 Shahab Azarfar
 June 13, 2022
 21 / 28

= 0.

By considering a large-N expansion of topological type for the correlation functions W_n and the k-point interactions T_k , the rank n SDE to order N^{3-2g-n} is given by:

$$\begin{split} W_{g-1,\,n+1}(x,x,x_I) + \sum_{J\subseteq I,\,\,0\leqslant f\leqslant g} W_{f,\,|J|+1}(x,x_J) \, W_{g-f,\,n-|J|}(x,x_{I\backslash J}) \\ + \sum_{i\in I} \oint_{\Gamma} \frac{\mathrm{d}\xi}{2\pi\mathrm{i}} \, \frac{W_{g,\,n-1}(\xi,x_{I\backslash \{i\}})}{(x-\xi)(x_i-\xi)^2} \\ + \sum_{1\leqslant k\leqslant 2\mathfrak{g}} \sum_{\substack{K\vdash [\![1,k]\!]\\0\leqslant h}} \sum_{\substack{0\leqslant f_1,\cdots,f_{[K]}\\J_1\sqcup\cdots\sqcup J_{[K]}=I}} \sum_{\substack{h+k-[K]+\sum_i f_i=g}} \\ \oint_{\Gamma} \Big[\prod_{r=1}^k \frac{\mathrm{d}\xi_r}{2\pi\mathrm{i}} \, \Big] \, \frac{\partial_{\xi_1} T_{h,k}(\xi_1,\cdots,\xi_k)}{(k-1)! \, (x-\xi_1)} \, \prod_{i=1}^{[K]} W_{f_i,\,|K_i|+|J_i|} \, (\xi_{K_i},x_{J_i}) \end{split}$$

June 13, 2022 22 / 28 Shahab Azarfar

Spectral Curve

 \bullet The rank one SDE to leading order in N

$$(W_{0,1}(x))^2 + \sum_{k=1}^2 \oint_{\Gamma} \left[\prod_{r=1}^k \frac{\mathrm{d}\xi_r}{2\pi \mathrm{i}} \right] \frac{\partial_{\xi_1} T_{0,k}(\xi_1, \dots, \xi_k)}{x - \xi_1} \prod_{r=1}^k W_{0,1}(\xi_r) = 0.$$

• The Stieltjes transform $W_{0,1}(x)$ of the large-N spectral distribution $\mu = \varphi(s) \, ds$ of the model satisfies a quadratic algebraic equation:

$$W_{0,1}(x) = Q(x) + M(x)\sqrt{(x-\mathfrak{a})(x-\mathfrak{b})},$$

where the coefficients of the polynomials Q(x) and M(x) depend on the Boltzmann weights and the moments of μ .

Shahab Azarfar

June 13, 2022 23 / 28

Spectral Curve

• Using the Joukowski map $x : \mathbb{C} \setminus \{0\} \to \mathbb{C}$, given by

$$x(z) = \frac{\mathfrak{a} + \mathfrak{b}}{2} + \frac{\mathfrak{b} - \mathfrak{a}}{4} \left(z + \frac{1}{z}\right),$$

the function $W_{0,1}(x(z))$ gets an analytic continuation over the spectral curve Σ of the model.

Figure: Illustration of the Joukowski map an the spectral curve Σ of the model

• From the coefficients $W_{g,n}$ of the correlation functions to meromorphic symmetric differentials $\omega_{g,n}$ of degree n, i.e. sections of the n-times external tensor product

 $K_{\Sigma}^{\boxtimes n} \to \Sigma^n$ of the canonical line bundle $K_{\Sigma} \to \Sigma$, given by

$$\omega_{g,n}(z_1,\dots,z_n) = W_{g,n}(x(z_1),\dots,x(z_n)) dx(z_1) dx(z_2) \dots dx(z_n)$$

$$+ \delta_{n,2} \delta_{g,0} \frac{dx(z_1) dx(z_2)}{(x(z_1) - x(z_2))^2}$$

- Input for the (Blobbed) Topological Recursion Formula
 - The Riemann surface Σ equipped with a local biholomorphic involution
 - The 1-form $\omega_1^0(z)$
 - The symmetric bidifferential $\omega_2^0(z,z_1)$

Blobbed Topological Recursion [Borot (2014)]

Main Result

For random matrix geometries of type (1,0) with the distribution $\mathrm{d}\rho = e^{-\mathcal{S}(D)}\,\mathrm{d}D$, all the stable $\omega_{g,n}$, 2g+n-2>0, can be computed recursively, using the blobbed topological recursion formula given by

$$\omega_{g,n}(z,z_I) = \sum_{p \in \Re} \operatorname{Res}_{\zeta=p} K(z,\zeta) \, \mathcal{E}_{g,n}(\zeta,\iota(\zeta);z_I) - \frac{1}{2\pi \mathrm{i}} \oint_{\partial \Sigma} \omega_{0,2}(z,\zeta) \, \mathcal{V}_{g,n}(\zeta;z_I) \,,$$

where

$$K(z,\zeta) = \frac{1}{2} \frac{\int_{\iota(\zeta)}^{\zeta} \omega_{0,2}(z,\tau)}{\omega_{0,1}(\zeta) - \omega_{0,1}(\iota(\zeta))}$$

$$\mathcal{E}_{g,n}(z,\iota(z);z_I) = \omega_{g-1,\,n+1}(z,\iota(z),z_I) + \sum_{\substack{J \subseteq I \,,\, 0 \leqslant f \leqslant g \\ (J,f) \neq (\emptyset,0) \,,\, (I,g)}} \omega_{f,\,|J|+1}(z,z_J)\,\omega_{g-f,\,n-|J|}(\iota(z),z_{I\setminus J})$$

 Shahab Azarfar
 June 13, 2022
 26 / 28

Schematic illustration of the Topological Recursion

- The operator $\sum_{p \in \Re} \mathop{\mathrm{Res}}_{\zeta=p} K(z,\zeta)$ is represented by a pair of pants
- A differential $\omega_{g,n}$ of degree n is represented by a surface of genus g with n boundary components

$$\omega_{g,n} = K * \omega_{g-1,n+1} + \sum K * \omega_{g_1n_1} \omega_{g_2,n_2} g_1$$

$$g = g + \sum g_{g-1} + \sum g_{g_2}$$

Image courtesy of Wikipedia

