Blobbed Topological Recursion for Dirac Ensembles

Shahab Azarfar

School of Data Science, University of Virginia

June 13, 2022

- This talk is based on joint work with Masoud Khalkhali, Random Finite Noncommutative Geometries and Topological Recursion, arXiv:1906.09362
- The major ideas discussed through the talk are certainly due to the following mathematicians (just to name a few):
- (Blobbed) Topological Recursion: Eynard, Chekhov, Borot, Orantin, ...
- Noncommutative Geometry: Connes, Marcolli, Barrett, ...

Outline

(1) Classical 1-Hermitian Matrix Models
(2) Dirac Ensembles
(3) Schwinger-Dyson Eq. and (Blobbed) Topological Recursion

Outline

(1) Classical 1-Hermitian Matrix Models
(2) Dirac Ensembles

3 Schwinger-Dyson Eq. and (Blobbed) Topological Recursion

Classical 1-Hermitian Matrix Models

- One starts from a U_{N}-invariant measure $\mathrm{d} \mu(H)$ on \mathcal{H}_{N}

$$
\mathrm{d} \mu(H)=\exp [-(N / t) \operatorname{Tr}(\mathcal{V}(H))] \mathrm{d} H
$$

- Weyl integration formula: $\mathrm{d} \mu(H)$ induces a measure $\mathrm{d} \tilde{\mu}(\boldsymbol{\lambda})$ on \mathbb{R}^{N}

$$
\mathrm{d} \tilde{\mu}(\boldsymbol{\lambda})=\prod_{1 \leq i<j \leq N}\left|\lambda_{j}-\lambda_{i}\right|^{2} \prod_{i=1}^{N} e^{-(N / t) \mathcal{V}\left(\lambda_{i}\right)} \mathrm{d} \lambda_{i}
$$

- Formal matrix models: all integrations are w.r.t. the normalized Gaussian measure

$$
\mathrm{d} \mu^{0}(H)=c \exp \left(-\frac{N \operatorname{Tr}\left(H^{2}\right)}{2 t}\right) \mathrm{d} H
$$

Correlation Functions

- Partition function $Z_{N}=\int_{\mathcal{H}_{N}} \mathrm{~d} \mu(H)$, and Free energy $F=\log Z_{N}$
- Disconnected correlators are the moments of the following form

$$
\hat{W}_{n}\left(x_{1}, \cdots, x_{n}\right)=\mathbb{E}\left[\prod_{j=1}^{n}\left(\sum_{i=1}^{N} \frac{1}{x_{j}-\lambda_{i}}\right)\right], \quad x_{j} \in \mathbb{C} \backslash \mathbb{R},
$$

where $\sum_{i=1}^{N} \frac{1}{x-\lambda_{i}}$ is the trace of the resolvent.

- Connected correlators are the joint cumulants of the following form

$$
W_{n}\left(x_{1}, \cdots, x_{n}\right)=\sum_{K \vdash \llbracket 1, n \rrbracket}(-1)^{[K]-1}([K]-1)!\prod_{i=1}^{[K]} \hat{W}_{\left|K_{i}\right|}\left(x_{K_{i}}\right)
$$

Counting Discretized Surfaces

- Wick's Theorem: computation of the moments of the Gaussian measure can be reduced to enumeration of the maps (ribbon graphs)
- A term $\tau_{\ell_{i}}=t_{\ell_{i}} \frac{\operatorname{Tr}\left(H^{\ell_{i}}\right)}{\ell_{i}}$ in $\operatorname{Tr}(\mathcal{V}(H)) \leadsto$ an ℓ_{i}-gon of Boltzmann weight $t_{\ell_{i}}$

Figure: A planar map with one marked rooted face (the colored 9-gon containing the point ∞)

Topological Expansion

- Using Wick's theorem, one obtains a large- N topological expansion

$$
\begin{gathered}
F=\sum_{g \geq 0}(N / t)^{2-2 g} F_{g}, \quad F_{g}=\sum_{[M] \in \mathbb{M}_{g}} \mathfrak{B w}([M]), \\
W_{n}\left(x_{1}, \cdots, x_{n}\right)=\sum_{g \geq 0}(N / t)^{2-2 g-n} W_{g, n}\left(x_{1}, \cdots, x_{n}\right),
\end{gathered}
$$

where $W_{g, n}\left(x_{1}, \cdots, x_{n}\right)$ enumerates the connected closed maps of genus g with n marked rooted polygonal faces

- Topological Recursion provides a machinery for computing the $W_{g, n}$'s recursively, given certain initial data

Outline

(1) Classical 1-Hermitian Matrix Models

(2) Dirac Ensembles

3 Schwinger-Dyson Eq. and (Blobbed) Topological Recursion

Real Spectral Triples

- A spectral triple $(\mathcal{A}, \mathcal{H}, D)$ equipped with a real structure $J: \mathcal{H} \rightarrow \mathcal{H}$ and a chirality operator $\gamma: \mathcal{H} \rightarrow \mathcal{H}$
- The real spectral triple $\left.\left(C^{\infty}(\mathcal{M}), L^{2}(\mathcal{M}, \$)^{\prime}\right), \not D, \gamma, J\right)$ associated to a spin Riemannian manifold \mathcal{M}
- Connes' distance formula: The Dirac operator $\not D$ encapsulates all the information about the Riemannian metric over \mathcal{M}

Dirac Ensembles

- Moduli space of Dirac operators D encodes all possible geometries ("metrics") over a fixed fermion space $(\mathcal{A}, \mathcal{H}, \gamma, J)$
- As a model for Quantum Gravity on a finite noncommutative space, one considers a distribution of the following form over the moduli space of Dirac operators

$$
e^{-\mathcal{S}(D)} \mathrm{d} D
$$

- The action functional is spectral

$$
\mathcal{S}(D)=\operatorname{Tr}(f(D))=\sum_{\lambda \in \operatorname{Spec}(D)} f(\lambda)
$$

Matrix Geometries of type (p, q) [Barrett (2015)]

- A particular class of finite real spectral triples
- $\mathcal{A}=M_{N}(\mathbb{C})$
- $\mathcal{H}=V_{p, q} \otimes M_{N}(\mathbb{C})$
- $\langle v \otimes A, u \otimes B\rangle=\langle v, u\rangle \operatorname{Tr}\left(A B^{*}\right), \quad v, u \in V_{p, q}, A, B \in M_{N}(\mathbb{C})$
- $\pi(A)(v \otimes B)=v \otimes(A B)$,
where $V_{p, q}$ is an irreducible complex module over the Clifford algebra
$\mathrm{C} \ell_{p, q}$
- The Dirac operators are expressed in term of commutators or anticommutators with given Hermitian matrices H and anti-Hermitian matrices L

Random matrix geometries of type $(1,0)$

- The Dirac operator

$$
D=\{H, \cdot\}, \quad H \in \mathcal{H}_{N}
$$

- We consider a model with the following action functional

$$
\mathcal{S}(D)=\mathcal{S}_{\text {unstable }}(D)+\mathcal{S}_{\text {stable }}(D),
$$

where

$$
\mathcal{S}_{\text {unstable }}(D)=\operatorname{Tr}(\mathcal{V}(D)), \quad \mathcal{V}(x)=\frac{1}{2 t}\left(\frac{x^{2}}{2}-\sum_{n=3}^{d} \alpha_{n} \frac{x^{n}}{n}\right),
$$

and

$$
\mathcal{S}_{\text {stable }}(D)=-\sum_{s=1}^{\mathfrak{g}}(N / t)^{-4 s} \sum_{n_{I} \in \mathbb{N}_{\uparrow}^{s}} \hat{\alpha}_{n_{I}} \prod_{i=1}^{s} \operatorname{Tr}\left(D^{n_{i}}\right) .
$$

Topological expansion of the action functional

- An elementary 2-cell of topology (g, n) with polygonal boundaries of perimeters $\left\{\ell_{i}\right\}_{i=1}^{n}, \ell_{i} \geqslant 1$, is a (equivalence class of) surface of genus g whose boundary has n connected components, and consists of the 1 -skeleton of ℓ_{i}-gons

Figure: An elementary 2-cell of topology $(g, n)=(3,2)$ with polygonal boundaries of perimeters $\left(\ell_{1}, \ell_{2}\right)=(5,6)$

- Decomposition of $\mathcal{S}(D)$ in terms of underlying elementary 2-cells

$$
\begin{aligned}
\mathcal{S}(D) & =\mathcal{S}_{0}(H)+\mathcal{S}_{\text {int }}(H) \\
& =\frac{N}{2 t} \operatorname{Tr}\left(H^{2}\right)-\sum_{[C] \in \mathcal{C}} \frac{(N / t)^{\chi(C)}}{\left(\beta_{0}(\partial C)\right)!} T_{[C]}(H),
\end{aligned}
$$

where

- $\chi(C)=$ the Euler characteristic of an elementary 2-cell C
- $\beta_{0}(\partial C)=$ the number of connected components of the boundary of C
- Classifying the elementary 2-cells based on whether $\chi(C) \geqslant 0$ or $\chi(C)<0$

$$
\mathcal{C}=\mathcal{C}_{\text {unstable }} \cup \mathcal{C}_{\text {stable }}
$$

- For an elementary 2-cell C of topology (g, n) with polygonal boundaries of perimeters $\left\{\ell_{i}\right\}_{i=1}^{n}$

$$
T_{[C]}(H):=\mathrm{t}_{\vec{\ell}}^{(g)} \prod_{i=1}^{n} \frac{\operatorname{Tr}\left(H_{i}^{\ell}\right)}{\ell_{i}}
$$

Corresponding Hermitian matrix model

- A formal multi-trace 1-Hermitian matrix model
- The term $\exp \left(-\mathcal{S}_{\text {int }}(H)\right)$ is considered as a formal power series in the Boltzmann weights $\mathrm{t}_{\vec{\ell}}^{(g)}$
- Using Wick's theorem, we get the following large- N topological expansion

$$
W_{n}\left(x_{1}, \cdots, x_{n}\right)=\sum_{g \geqslant 0}(N / t)^{2-2 g-n} W_{g, n}\left(x_{1}, \cdots, x_{n}\right),
$$

where $W_{g, n}\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{Q}[\mathbf{t}][[t]]\left[\left[\left(x_{j}^{-1}\right)_{j}\right]\right]$ enumerates the connected closed stuffed maps of genus g with n marked rooted polygonal faces

Stuffed maps

- Each term of the form $\frac{(N / t)^{\chi(C)}}{\left(\beta_{0}(\partial C)\right)!} T_{[C]}(H)$ is represented by the corresponding elementary 2 -cell C

Figure: A closed stuffed map of genus two with two marked rooted polygonal faces (brown disk) obtained by gluing the unstable elementary 2-cells of topology $(g, n)=(0,1)$ (green disk) and $(g, n)=(0,2)$ (red cylinder)

Large- N expected spectral distribution ("equilibrium measure")

- Tame Boltzmann weights are those numerical values of $\mathrm{t}_{\vec{\ell}}^{(g)}$ for which the generating function of the rooted planar stuffed maps with topology of a disk and perimeter ℓ is finite for all $\ell \in \mathbb{N}$.
- The formal series $W_{0,1}(x)$ is a holomorphic function with discontinuity $\operatorname{locus} \Gamma=[\mathfrak{a}, \mathfrak{b}] \subset \mathbb{R}$.
- The large- N expected spectral density

$$
\varphi(s)=\frac{1}{2 \pi \mathrm{i}} \lim _{\epsilon \rightarrow 0^{+}}\left(W_{0,1}(s-\mathrm{i} \epsilon)-W_{0,1}(s+\mathrm{i} \epsilon)\right), \quad \forall s \in \Gamma_{\text {interior }}
$$

is supported on Γ, and assumes positive values on $\Gamma_{\text {interior }}$.

Outline

(1) Classical 1-Hermitian Matrix Models

(2) Dirac Ensembles
(3) Schwinger-Dyson Eq. and (Blobbed) Topological Recursion

Schwinger-Dyson Equations (SDEs)

- The Schwinger-Dyson equations for a matrix model are a tower of equations satisfied by the n-point correlation functions of the model.
- The root of SDEs is the invariance of the integral of a top-degree differential form under a 1-parameter family of orientation-preserving diffeomorphisms on a manifold, i.e.

$$
\int_{\phi_{t}(\Omega)} \Psi \omega=\int_{\Omega} \phi_{t}^{*}(\Psi \omega), \quad \forall t \in(-\epsilon, \epsilon),
$$

where $\Psi: \mathcal{M} \rightarrow \mathbb{R}$ is a smooth function over a Riemannian n-manifold \mathcal{M} with the canonical volume form ω, and $\phi_{t}: \Omega \rightarrow \Omega$ is a local flow over a compact n-dimensional submanifold $\Omega \subset \mathcal{M}$.

SDEs for Random Matrix Geometries of type $(1,0)$

The rank n SDE is given by:

$$
\begin{aligned}
& W_{n+1}\left(x, x, x_{I}\right)+\sum_{J \subseteq I} W_{|J|+1}\left(x, x_{J}\right) W_{n-|J|}\left(x, x_{I \backslash J}\right) \\
+ & \sum_{i \in I} \oint_{\Gamma} \frac{\mathrm{d} \xi}{2 \pi \mathrm{i}} \frac{W_{n-1}\left(\xi, x_{I \backslash\{i\}}\right)}{(x-\xi)\left(x_{i}-\xi\right)^{2}} \\
+ & \sum_{k=1}^{2 \mathfrak{g}} \sum_{\substack{K \vdash \llbracket 1, k \rrbracket \\
J_{1} \sqcup \cdots \sqcup J_{[K]}=I}} \oint_{\Gamma}\left[\prod_{r=1}^{k} \frac{\mathrm{~d} \xi_{r}}{2 \pi \mathrm{i}}\right] \frac{\partial_{\xi_{1}} T_{k}\left(\xi_{1}, \cdots, \xi_{k}\right)}{(k-1)!\left(x-\xi_{1}\right)} \prod_{i=1}^{[K]} W_{\left|K_{i}\right|+\left|J_{i}\right|}\left(\xi_{K_{i}}, x_{J_{i}}\right) \\
= & 0,
\end{aligned}
$$

where the symmetric k-point interactions T_{k} are defined by

$$
\sum_{\lambda} T_{k}\left(\lambda_{i_{1}}, \lambda_{i_{2}}, \cdots, \lambda_{i_{k}}\right)=\sum_{\substack{[C] \in \mathcal{C} \\ \beta_{0}(\partial C)=k}}(N / t)^{\chi(C)} T_{[C]}(H)
$$

By considering a large- N expansion of topological type for the correlation functions W_{n} and the k-point interactions T_{k}, the rank n SDE to order $N^{3-2 g-n}$ is given by:

$$
\begin{aligned}
& W_{g-1, n+1}\left(x, x, x_{I}\right)+\sum_{J \subseteq I, 0 \leqslant f \leqslant g} W_{f,|J|+1}\left(x, x_{J}\right) W_{g-f, n-|J|}\left(x, x_{I \backslash J}\right) \\
&+ \sum_{i \in I} \oint_{\Gamma} \frac{\mathrm{d} \xi}{2 \pi \mathrm{i}} \frac{W_{g, n-1}\left(\xi, x_{I \backslash\{i\}}\right)}{(x-\xi)\left(x_{i}-\xi\right)^{2}} \\
&+ \sum_{\substack{1 \leqslant k \leqslant 2 \mathfrak{g} \\
0 \leqslant h}} \sum_{\substack{K \vdash \llbracket 1, k \rrbracket \\
J_{1} \sqcup \cdots \sqcup J_{[K]}=I}} \sum_{\substack{0 \leqslant f_{1}, \cdots, f_{[K]} \\
h+k-[K]+\sum_{i} f_{i}=g}} \\
& \oint_{\Gamma}\left[\prod_{r=1}^{k} \frac{\mathrm{~d} \xi_{r}}{2 \pi \mathrm{i}}\right] \frac{\partial_{\xi_{1}} T_{h, k}\left(\xi_{1}, \cdots, \xi_{k}\right)}{(k-1)!\left(x-\xi_{1}\right)} \prod_{i=1}^{[K]} W_{f_{i},\left|K_{i}\right|+\left|J_{i}\right|}\left(\xi_{K_{i}}, x_{J_{i}}\right) \\
&= 0 .
\end{aligned}
$$

Spectral Curve

- The rank one SDE to leading order in N

$$
\left(W_{0,1}(x)\right)^{2}+\sum_{k=1}^{2} \oint_{\Gamma}\left[\prod_{r=1}^{k} \frac{\mathrm{~d} \xi_{r}}{2 \pi \mathrm{i}}\right] \frac{\partial_{\xi_{1}} T_{0, k}\left(\xi_{1}, \cdots, \xi_{k}\right)}{x-\xi_{1}} \prod_{r=1}^{k} W_{0,1}\left(\xi_{r}\right)=0
$$

- The Stieltjes transform $W_{0,1}(x)$ of the large- N spectral distribution $\mu=\varphi(s) \mathrm{d} s$ of the model satisfies a quadratic algebraic equation:

$$
W_{0,1}(x)=Q(x)+M(x) \sqrt{(x-\mathfrak{a})(x-\mathfrak{b})},
$$

where the coefficients of the polynomials $Q(x)$ and $M(x)$ depend on the Boltzmann weights and the moments of μ.

Spectral Curve

- Using the Joukowski map $x: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$, given by

$$
x(z)=\frac{\mathfrak{a}+\mathfrak{b}}{2}+\frac{\mathfrak{b}-\mathfrak{a}}{4}\left(z+\frac{1}{z}\right)
$$

the function $W_{0,1}(x(z))$ gets an analytic continuation over the spectral curve Σ of the model.

Figure: Illustration of the Joukowski map an the spectral curve Σ of the model

- From the coefficients $W_{g, n}$ of the correlation functions to meromorphic symmetric differentials $\omega_{g, n}$ of degree n, i.e. sections of the n-times external tensor product $K_{\Sigma}^{\boxtimes n} \rightarrow \Sigma^{n}$ of the canonical line bundle $K_{\Sigma} \rightarrow \Sigma$, given by

$$
\begin{aligned}
\omega_{g, n}\left(z_{1}, \cdots, z_{n}\right)= & W_{g, n}\left(x\left(z_{1}\right), \cdots, x\left(z_{n}\right)\right) d x\left(z_{1}\right) d x\left(z_{2}\right) \cdots d x\left(z_{n}\right) \\
& +\delta_{n, 2} \delta_{g, 0} \frac{d x\left(z_{1}\right) d x\left(z_{2}\right)}{\left(x\left(z_{1}\right)-x\left(z_{2}\right)\right)^{2}}
\end{aligned}
$$

- Input for the (Blobbed) Topological Recursion Formula
- The Riemann surface Σ equipped with a local biholomorphic involution
- The 1-form $\omega_{1}^{0}(z)$
- The symmetric bidifferential $\omega_{2}^{0}\left(z, z_{1}\right)$

Blobbed Topological Recursion [Borot (2014)]

Main Result

For random matrix geometries of type $(1,0)$ with the distribution $\mathrm{d} \rho=e^{-\mathcal{S}(D)} \mathrm{d} D$, all the stable $\omega_{g, n}, 2 g+n-2>0$, can be computed recursively, using the blobbed topological recursion formula given by

$$
\omega_{g, n}\left(z, z_{I}\right)=\sum_{p \in \mathfrak{R}} \operatorname{Res}_{\zeta=p} K(z, \zeta) \mathcal{E}_{g, n}\left(\zeta, \iota(\zeta) ; z_{I}\right)-\frac{1}{2 \pi \mathrm{i}} \oint_{\partial \Sigma} \omega_{0,2}(z, \zeta) \mathcal{V}_{g, n}\left(\zeta ; z_{I}\right),
$$

where

$$
K(z, \zeta)=\frac{1}{2} \frac{\int_{\iota(\zeta)}^{\zeta} \omega_{0,2}(z, \tau)}{\omega_{0,1}(\zeta)-\omega_{0,1}(\iota(\zeta))}
$$

$\mathcal{E}_{g, n}\left(z, \iota(z) ; z_{I}\right)=\omega_{g-1, n+1}\left(z, \iota(z), z_{I}\right)+\sum_{J \subseteq I, 0 \leqslant f \leqslant g} \omega_{f,|J|+1}\left(z, z_{J}\right) \omega_{g-f, n-|J|}\left(\iota(z), z_{I \backslash J}\right)$

$$
(J, f) \neq(\emptyset, 0),(I, g)
$$

Schematic illustration of the Topological Recursion

- The operator $\sum_{p \in \Re} \operatorname{Res}_{\zeta=p} K(z, \zeta)$ is represented by a pair of pants
- A differential $\omega_{g, n}$ of degree n is represented by a surface of genus g with n boundary components

Image courtesy of Wikipedia

