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Fuzzy spectral triples Background

O e o mary | Random, NCG and path integrl
Background
@ Real spectral triples <> NC Riemannian (spin) geometry
@ Riemannian geometry in physics: gravity
@ Quantum gravity: NC spacetime
@ Recall: geometrical data/metrical data encoded in Dirac

operator of spectral triple (Connes distance formula)

Path integral over space of geometries <> integration
over space of Dirac operators
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Fuzzy spectral triples

Consider V = C¥ with Cl,, 4-action ((p, q)-Clifford module).

e Fuzzy spectral triples [J. Barrett '15]: finite dimensional
versions of real spectral triples (A, H, D; T, J) with

o A= Maty(C)
o H=A®V, with left A-action a(m®@ v) =(am)®@ v
o M(m®v)=mey(v)
o JIm®v)=m"® C(v)
e + Properties
e Right action Ja*J"I(m® v) = (ma)® v.
e Terminology for (A, H;T,J): (p, q)-fermion space
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Dirac operator of fuzzy spectral triple

e Dirac operators fully classified: L;, H; € Maty(C)
(anti-)Hermitian

D(m® v) Z[L,,m]@a,v+2{ ,m} @ Tjv

@ Recall: geodesic distance from Dirac operator of Riemannian
spin manifold

Space of geometries on fixed (p, g)-fermion space or
Dirac ensemble: real finite dimensional vector space D
of Dirac operators
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Examples: (0, 1) geometry

Simple example:
e A= Maty(C)
o H=A®C
of(mav)=mav
°o Jm@Vv)=m"QV
e D=—i]L, -]

Background
Fuzzy spectral triples
Random NCG and path integral
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Examples: Fuzzy sphere
Irreducible spin N /2-representation (W, p : su(2) — end(W)).

o Fuzzy sphere algebra: A = end(W) = Maty;1(C)

@ Sphere? Consider basis of su(2): {e;} with [e;, ¢j] = i€k ex.
Then X; := Ay p(ei) generate A and satisfy

X, Xi] =i venw X, XE+X3+X5=Ins1

o H=AxC*

o Dirac operator: Dg2 := In+1 ®F° + 3 Z,J Ly, 1@ 7 A
with Lj = 5 [ X, Xj]

e For more details, see [J. Barrett '15]
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Random NCG and the path integral

Consider fermion space A = Maty(C), H=A® V, T and J

@ Finite dimensional space D of Dirac operators

<> Space of geometries/Dirac ensemble
o Partition function Z = [,_p, e5(P) 4D, action S: D - R

@ Expectation value of O : D — C:

(0) == O(D)e*P)dp
Z Jpep
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Random NCG: previous works

@ Numerical: J. Barrett, L Glaser, M. D'Arcangelo, P. Druce

@ Analytical: M. Khalkhali, S. Azarfar, H. Hessam,
N. Pagliaroli, C. Perez-Sanchez

The following is from [J. Barrett and L Glaser '16].
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Comparison with results from

™

Wigner semicircle law

random matrix theory:

Background
Fuzzy spectral triples
Random NCG and path integral

o EE
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(e) Type (1,0) n =15

Figure 3: The semicircle law is compared with the density of states for H

or L.

(£) Type (0,1) n =15
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Comparison with results from random matrix theory:
Phase transition

Consider action S(g» D? + D*) with g» < 0

Vi)

Figure 11: The potential V = A* + g2\ for go = —1, —1.5, —2, —2.5, -3,
—3.5, —4, —4.5, —5. The lines are coloured from red (g, = —1) through to
vellow (g2 = —5).

Known: Random matrix model with this kind of potential leads to

a phase transition
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Numerical evidence of phase transitions

(e) Type (2,0)

(e) Type (0,2) (f) Type (0,3)

Figure 12: The eigenvalues of S = Tr (D* + g2D?) for n = 10 and go = —1,
—1.5, =2, —=2.5, =3, —3.5, —4, —4.5, —5. The lines are coloured from red
(g2 = —1) through to yellow (g> = —5).
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Diffeomorphism symmetries?

e Overcounting problem: integration over D/automorphisms

So far ignored in literature

Our attempt: [J. Gaunt, H. N. and A. Schenkel '22]

Implementation: homological methods

o Path integral determined by cohomology of a certain complex

~- Batalin-Vilkovisky (BV) formalism

(Toy-)model for quantum gravity
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NC diffeomorphisms

Automorphism of (p, q)-fermion space (A, H; T, J)?

o Pair (p: A— A & :H — H) with

o ¢ € Aut(A) = PU(N) := U(N)/U(1) - NC diffeomorphism
group
o P(mRv)=¢(m)® T(v) where T € Aut(V)

o (T(V), T(W)v={(v,v)v, Ty=4yTand TC=CT

@ Group K C Aut(V) of such T - global transformations of
spinors

e G:= PU(N) x K gauge group of (p, q)-fermion space
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Gauge transformations

@ Left G-action on (p, q)-fermion space
° pa:Gx A=A pale, T)(m) = ¢(m)

o pruGxH oM, pule. T mev)=p(m) e T(v)
~> Induced left adjoint action on space of Dirac operators D
pp:GxD =D, pp(p, T)(D)=pu(p, T)oDopu(p™ T
o Infinitesimal gauge transformations: g = su(N) @ ¢

o pa(e® k)(m) = [e, mla
o prle® K)(m® V) = e mlu® v+ me k(v)
° pD(G ) k)(D) = [pH(E 2] k)7 D]End(?—[)
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Perturbations

Goal: compute path integral (O) = % fDeD/g O(D)e>(P)dD
with G-invariant (S : D — R) € Sym DY and polynomial O.
@ Formal perturbations D = Dy + A D where D € D and
Dy exact solution of Euler-Lagrange (EL) eqn of S

@ Infinitesimal gauge transformation on perturbation:

(e ® k)(D) = [pr(e ® k), Dolmnag) |+ A low(e ® k), Dlgna)

e Induced action: S(D) := % (S(Do + A D) — $(Do))

~» Compute path integral perturbatively around Dy up to gauge
transformations
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BV-formalism

@ Homological method to compute path integrals where the
action S has gauge symmetries: %fDED/Q O(D) e=5(P)dD

@ However: Cannot take naive quotient D/G

S\msu\\z(\'\':)

@ BV-formalism: assign dg-algebra to every gauge invariant S.
Two parts: Classical BV-formalism and BV-quantisation
Modern formulation by [K. Costello and O. Gwilliam '16]

@ Computation: homological perturbation theory
16 /29
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Classical BV formalism

Input data:

@ vector space D of perturbations D of Dy + exact solution of
EL-eqn of action S

e infinitesimal gauge symmetries by g = su(N) @ ¢, acting on D
e g-invariant action S := % (S(Do 4+ A D) — 5(Dy))

Output cochain complex:

o Classical observables Obs® := Sym(£) where
L:=gl2l®D[1]® DY & g'[-1]

o Differential d : Obs® — Obs® determined by EL-eqns and
infinitesimal gauge transformations
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Shifted Poisson structure

o Consider dual pair of bases

{ea c D}dlm'D :

{t,G }dlmg ’

Gauge symmetries
BV formalism
Computing path integral

{fa c D\/}dlmD ’
{9, }dlmg

@ Canonical (-1)-shifted symplectic structure

w = de, AdMRF -

ddR t: A ddRei

o Hamiltonian vector field ;H: d®a =1 yw

~~ shifted Poisson bracket/antibracket: {a, b} ‘= ¢yt Hw

for all a, b € Obs®

@ Antibracket { -,

- } satisfies graded antisymmetry, graded

Jacobi identity, derivation property and compatibility with d.
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BV quantisation

@ So far: from classical BV formalism, obtained
(Sym(£),d,{-, - }) with £ = g[2] & D[1] & D" & g"[~1]

@ Quantum BV formalism: Use antibracket to deform
differential

o BV Laplacian: Agy : Obs® — Obs®!

Apv (o1 pn) = Z(_1)22:1 okl +wi| Sicii lexd
i<j

v

>< {(p”@j} <p1.-.¢i.-.<pj-..<pn
with ¢; € Sym(£) homogeneous.

e cochain complex of quantum observables

Obs™ := (Sym(L),d" :=d+ hAgy)
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Computing the path integral

o Path integral (0) = 3 fDeD/g O(D) e=>(P) dD determined
by cohomology of Obs®™ := (Sym(L),d™ :=d + hAgy)

o Computed perturbatively in A using homological perturbation
theory
~ Split quantum differential d9* = dfree + \d'™* + A Ay

e Starting point: Obs™® := (Sym(ﬁ),dfree) = Sym(ﬁ,dfree)
where

(ﬁ,dfree) _ <g[2] gauge D[l] EL DV gauge gv[_1]>
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Homological perturbation

Next: Choose strong deformation retract (SDR)

(H'(ﬁ, dfree)7 0) *% (57 dfree) D h

~ SDR

.
(Sym H*(L, dr*°), 0) f Obsfree DH (*)

Homological perturbation lemma: Let § := Ad™ + i Apy.
There exists a deformation of (*) into a SDR

0
(SymH*(£,d™),6) T Obs™ )7
7
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Correlation functions

In particular:

s D

n-point correlation function

. .ggn)

=
AS)
=

<991 R #9n> =

N((6H)*(p1---¢n)) € SymH*(L,d™) |

-

x
I

0

for all p1,...,0, € L and § = Ad™ + h Ay

o Computes fDeD/g 01 pne5P)AD

@ Feynman diagrams
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Framework done. Next: Investigate if gauge symmetry contributes
to correlation functions.

Two cases:
e Dy=0
[ DO 75 0
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Case 1: Dy =0

@ Action S(D) = £ TrEnd(H)(Dz) + Sint(p),

Smt(D) sum of monomials of degree > 3.

o (£,d) = (gl2] =Dl oDV —gV[-1] )
o H(£,d™) = g[2] @ g'[-1]

Graphical calculus: denote elements ;- - - ¢, € Sym(L) by n
vertical lines with

€92 , g € D[1] e DY | € g’[-1]
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Case 1: Dy = 0, quartic interaction

e S = TrEnd(H)(% D2 + % D4)

@ 2-point correlation function: ¢y, s € L0 = DV

<g01g02> = h ﬂ + h22)\2 % + O()\3)

@ Observe: no contribution from lines in g[2] and g"[—1]!

In fact:

In the Dy = 0 case, for p1,...,p, € L0 =pv, {p1-

“¢n)
receive no contribution from lines in g[2] and g"[—1].

In other words: no contributions from gauge symmetry
in (¢1---®n) in the Dy = 0 case!
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Case 2: Dy # 0, quartic (0, 1)-model

e S= ’I‘I‘End('H)(_% D2 + % D4) with 84 > 0

o (0,1) geometry: D = —i[L, -] with L trace-free Hermitian
N x N-matrix

° (E’dfree) _ <g[2] gauge D[l] EL DY gauge gv[71]>

o H*(L,d™°) = go[2] & go[—1] with go C g Lie subalgebra
stabilizing Dy ~» Symmetry broken!

Graphical calculus:
:L§+0569[2], §€D[1], e D

= e ole
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Case 2: Dy # 0, quartic (0, 1)-model, 2-point correlator

For ¢1,p € L0 =DV
(p1p2) = h {]

- h2A2< % %/% ;@
; g;% PR 199
199 - i*%f? SR

+ O(\%)

Contributions from lines in g[2] and g¥[—1]!
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Analogy: Higgs mechanism
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Summary

Fuzzy spectral triples: A = Maty(C), H = A ® Ck. Dirac
operator encodes geometry.

Dirac operators fully classified - Random NCG

Numerical evidence of certain properties from random matrix
theory also in randon NCG, e.g. phase transitions

Overcounting problem: path integral D/gauge symmetries?

Homological methods: BV formalism and homological
perturbation

n-point correlation functions

o Dy = 0: gauge symmetry does not contribute!

o Dy # 0: gauge symmetry contributes (symmetry breaking)!
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Thank you for your attention!
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