Homological methods in random noncommutative geometry

Hans Nguyen hans.nguyen@nottingham.ac.uk

University of Nottingham

17 June, 2022

Based on joint work w/ J. Gaunt and A. Schenkel [arXiv:2203.04817]

Outline

- Fuzzy spectral triples
 - Background
 - Fuzzy spectral triples
 - Random NCG and path integral
- 2 Homological methods in random NCG
 - Gauge symmetries
 - BV formalism
 - Computing path integral
- Summary

Background

- ullet Real spectral triples \leftrightarrow NC Riemannian (spin) geometry
- Riemannian geometry in physics: gravity
- Quantum gravity: NC spacetime
- Recall: geometrical data/metrical data encoded in Dirac operator of spectral triple (Connes distance formula)

Path integral over space of geometries \leftrightarrow integration over space of Dirac operators

Fuzzy spectral triples

Consider $V = \mathbb{C}^k$ with $\mathrm{Cl}_{p,q}$ -action ((p,q)-Clifford module).

- Fuzzy spectral triples [J. Barrett '15]: finite dimensional versions of real spectral triples $(A, \mathcal{H}, D; \Gamma, J)$ with
 - $\mathcal{A} = \mathrm{Mat}_{\mathcal{N}}(\mathbb{C})$
 - $\mathcal{H} = \mathcal{A} \otimes V$, with left \mathcal{A} -action $a(m \otimes v) = (a \, m) \otimes v$
 - $\Gamma(m \otimes v) = m \otimes \gamma(v)$
 - $J(m \otimes v) = m^* \otimes C(v)$
 - + Properties
- Right action $Ja^*J^{-1}(m \otimes v) = (m a) \otimes v$.
- Terminology for $(A, \mathcal{H}; \Gamma, J)$: (p, q)-fermion space

Dirac operator of fuzzy spectral triple

• Dirac operators fully classified: $L_i, H_i \in \operatorname{Mat}_N(\mathbb{C})$ (anti-)Hermitian

$$D(m \otimes v) = \sum_{i} [L_{i}, m] \otimes \alpha_{i} v + \sum_{j} \{H_{j}, m\} \otimes \tau_{j} v$$

Recall: geodesic distance from Dirac operator of Riemannian spin manifold

Space of geometries on fixed (p,q)-fermion space or *Dirac ensemble*: real finite dimensional vector space $\mathcal D$ of Dirac operators

Examples: (0,1) geometry

Simple example:

•
$$\mathcal{A} = \mathrm{Mat}_{\mathcal{N}}(\mathbb{C})$$

•
$$\mathcal{H} = \mathcal{A} \otimes \mathbb{C}$$

•
$$\Gamma(m \otimes v) = m \otimes v$$

•
$$J(m \otimes v) = m^* \otimes \overline{v}$$

•
$$D = -i [L, \cdot]$$

Examples: Fuzzy sphere

Irreducible spin N/2-representation $(W, \rho : \mathfrak{su}(2) \to \underline{end}(W))$.

- Fuzzy sphere algebra: $\mathcal{A} = \underline{\mathrm{end}}(W) \cong \mathrm{Mat}_{N+1}(\mathbb{C})$
- Sphere? Consider basis of $\mathfrak{su}(2)$: $\{e_i\}$ with $[e_i,e_j]=\mathrm{i}\,\epsilon_{ijk}\,e_k$. Then $X_i:=\lambda_N\,\rho(e_i)$ generate $\mathcal A$ and satisfy

$$[X_i, X_j] = i \lambda_N \epsilon_{ijk} X_k , \quad X_1^2 + X_2^2 + X_3^2 = I_{N+1}$$

- $\mathcal{H} = \mathcal{A} \otimes \mathbb{C}^4$
- Dirac operator: $D_{\mathbb{S}^2_N}:=I_{N+1}\otimes\widehat{\gamma}^0+rac{1}{2}\sum_{i,j=1}^3[L_{ij},\,\cdot\,]\otimes\widehat{\gamma}^0\,\widehat{\gamma}^i\,\widehat{\gamma}^j$ with $L_{ij}=rac{1}{\lambda_N^2}\left[X_i,X_j
 ight]$
- For more details, see [J. Barrett '15]

Random NCG and the path integral

Consider fermion space $\mathcal{A}=\mathrm{Mat}_{\mathcal{N}}(\mathbb{C}),\ \mathcal{H}=\mathcal{A}\otimes V,\ \Gamma$ and J

- Finite dimensional space $\mathcal D$ of Dirac operators \leftrightarrow Space of geometries/Dirac ensemble
- Partition function $Z = \int_{D \in \mathcal{D}} e^{-S(D)} dD$, action $S : \mathcal{D} \to \mathbb{R}$
- Expectation value of $\mathcal{O}: \mathcal{D} \to \mathbb{C}$:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int_{D \in \mathcal{D}} \mathcal{O}(D) e^{-S(D)} dD$$

Random NCG: previous works

- Numerical: J. Barrett, L Glaser, M. D'Arcangelo, P. Druce
- Analytical: M. Khalkhali, S. Azarfar, H. Hessam,
 N. Pagliaroli, C. Perez-Sanchez

The following is from [J. Barrett and L Glaser '16].

Comparison with results from random matrix theory: Wigner semicircle law

Figure 3: The semicircle law is compared with the density of states for H or L.

Comparison with results from random matrix theory: Phase transition

Consider action $S(g_2 D^2 + D^4)$ with $g_2 < 0$

Figure 11: The potential $V = \lambda^4 + g_2\lambda^2$ for $g_2 = -1, -1.5, -2, -2.5, -3, -3.5, -4, -4.5, -5$. The lines are coloured from red $(g_2 = -1)$ through to yellow $(g_2 = -5)$.

Known: Random matrix model with this kind of potential leads to a phase transition

Numerical evidence of phase transitions

Figure 12: The eigenvalues of $S={\rm Tr}\,(D^4+g_2D^2)$ for n=10 and $g_2=-1,$ -1.5, -2, -2.5, -3, -3.5, -4, -4.5, -5. The lines are coloured from red $(g_2=-1)$ through to yellow $(g_2=-5)$.

Diffeomorphism symmetries?

- ullet Overcounting problem: integration over $\mathcal{D}/\text{automorphisms}$
- So far ignored in literature
- Our attempt: [J. Gaunt, H. N. and A. Schenkel '22]
- Implementation: homological methods
 - Path integral determined by cohomology of a certain complex
 - → Batalin-Vilkovisky (BV) formalism
- (Toy-)model for quantum gravity

NC diffeomorphisms

Automorphism of (p, q)-fermion space $(A, \mathcal{H}; \Gamma, J)$?

- Pair $(\varphi: \mathcal{A} \to \mathcal{A}, \Phi: \mathcal{H} \to \mathcal{H})$ with
 - $\varphi \in \operatorname{Aut}(\mathcal{A}) \cong PU(N) := U(N)/U(1)$ NC diffeomorphism group
 - $\Phi(m \otimes v) = \varphi(m) \otimes T(v)$ where $T \in Aut(V)$
 - $\langle T(v), T(v') \rangle_V = \langle v, v' \rangle_V$, $T \gamma = \gamma T$ and T C = C T
 - Group K ⊂ Aut(V) of such T global transformations of spinors
- $\mathcal{G} := PU(N) \times K$ gauge group of (p, q)-fermion space

Gauge transformations

- Left \mathcal{G} -action on (p,q)-fermion space
 - $\rho_{\mathcal{A}}: \mathcal{G} \times \mathcal{A} \to \mathcal{A}$, $\rho_{\mathcal{A}}(\varphi, T)(m) = \varphi(m)$
 - $\rho_{\mathcal{H}}: \mathcal{G} \times \mathcal{H} \to \mathcal{H}$, $\rho_{\mathcal{H}}(\varphi, T)(m \otimes v) = \varphi(m) \otimes T(v)$
 - \leadsto Induced left adjoint action on space of Dirac operators ${\mathcal D}$

$$\rho_{\mathcal{D}}: \mathcal{G} \times \mathcal{D} \to \mathcal{D}, \quad \rho_{\mathcal{D}}(\varphi, T)(D) = \rho_{\mathcal{H}}(\varphi, T) \circ D \circ \rho_{\mathcal{H}}(\varphi^{-1}, T^{-1})$$

- Infinitesimal gauge transformations: $\mathfrak{g} = \mathfrak{su}(N) \oplus \mathfrak{k}$
 - $\rho_{\mathcal{A}}(\epsilon \oplus k)(m) = [\epsilon, m]_{\mathcal{A}}$
 - $\rho_{\mathcal{H}}(\epsilon \oplus k)(m \otimes v) = [\epsilon, m]_{\mathcal{A}} \otimes v + m \otimes k(v)$
 - $\rho_{\mathcal{D}}(\epsilon \oplus k)(D) = [\rho_{\mathcal{H}}(\epsilon \oplus k), D]_{\mathrm{End}(\mathcal{H})}$

Perturbations

Goal: compute path integral $\langle \mathcal{O} \rangle = \frac{1}{Z} \int_{D \in \mathcal{D}/\mathcal{G}} \mathcal{O}(D) \, e^{-S(D)} \, \mathrm{d}D$ with \mathcal{G} -invariant $(S : \mathcal{D} \to \mathbb{R}) \in \mathrm{Sym} \, D^{\vee}$ and polynomial \mathcal{O} .

- Formal perturbations $D = D_0 + \lambda D$ where $D \in \mathcal{D}$ and D_0 exact solution of Euler-Lagrange (EL) eqn of S
- Infinitesimal gauge transformation on perturbation:

$$\widetilde{\rho}_{\mathcal{D}}(\epsilon \oplus k)(\widetilde{D}) = \boxed{[\rho_{\mathcal{H}}(\epsilon \oplus k), D_0]_{\mathrm{End}(\mathcal{H})}} + \lambda [\rho_{\mathcal{H}}(\epsilon \oplus k), \widetilde{D}]_{\mathrm{End}(\mathcal{H})}$$

- Induced action: $\widetilde{S}(\widetilde{D}) := \frac{1}{\lambda^2} \left(S(D_0 + \lambda \, \widetilde{D}) S(D_0) \right)$
- \sim Compute path integral perturbatively around D_0 up to gauge transformations

BV-formalism

- Homological method to compute path integrals where the action S has gauge symmetries: $\frac{1}{Z} \int_{D \in \mathcal{D}/\mathcal{G}} \mathcal{O}(D) e^{-S(D)} dD$
- However: **Cannot** take naive quotient \mathcal{D}/\mathcal{G}

- BV-formalism: assign dg-algebra to every gauge invariant S.
 Two parts: Classical BV-formalism and BV-quantisation
 Modern formulation by [K. Costello and O. Gwilliam '16]
- Computation: homological perturbation theory

Classical BV formalism

Input data:

- vector space \mathcal{D} of perturbations \widetilde{D} of $D_0 \leftarrow$ exact solution of EL-eqn of action S
- infinitesimal gauge symmetries by $\mathfrak{g} = \mathfrak{su}(N) \oplus \mathfrak{k}$, acting on \mathcal{D}
- g-invariant action $\widetilde{S}:=rac{1}{\lambda^2}\left(S(D_0+\lambda\,\widetilde{D})-S(D_0)
 ight)$

Output cochain complex:

ullet Classical observables $\mathrm{Obs^{cl}} := \mathrm{Sym}(\mathcal{L})$ where

$$\mathcal{L} := \mathfrak{g}[2] \oplus \mathcal{D}[1] \oplus \mathcal{D}^{\vee} \oplus \mathfrak{g}^{\vee}[-1]$$

• Differential $d: Obs^{cl} \to Obs^{cl}$ determined by EL-eqns and infinitesimal gauge transformations

Shifted Poisson structure

Consider dual pair of bases

$$\left\{ e_{a} \in \mathcal{D} \right\}_{a=1}^{\dim \mathcal{D}} , \quad \left\{ f^{a} \in \mathcal{D}^{\vee} \right\}_{a=1}^{\dim \mathcal{D}} ,$$

$$\left\{ t_{i} \in \mathfrak{g} \right\}_{i=1}^{\dim \mathfrak{g}} , \quad \left\{ \theta^{i} \in \mathfrak{g}^{\vee} \right\}_{i=1}^{\dim \mathfrak{g}}$$

Canonical (-1)-shifted symplectic structure

$$\omega = \mathrm{d}^{\mathrm{dR}} e_{\mathsf{a}} \wedge \mathrm{d}^{\mathrm{dR}} f^{\mathsf{a}} - \mathrm{d}^{\mathrm{dR}} t_{\mathsf{i}} \wedge \mathrm{d}^{\mathrm{dR}} \theta^{\mathsf{i}}$$

- Hamiltonian vector field ${}_{a}H$: $\mathrm{d}^{\mathrm{dR}}a=\iota_{{}_{a}H}\,\omega$
 - $ightharpoonup shifted Poisson bracket/antibracket: <math>\{a,b\} := \iota_{aH} \, \iota_{bH} \, \omega$ for all $a,b \in \mathrm{Obs^{cl}}$
- Antibracket {·,·} satisfies graded antisymmetry, graded
 Jacobi identity, derivation property and compatibility with d.

BV quantisation

So far: from classical BV formalism, obtained

$$(\mathrm{Sym}(\mathcal{L}),\mathrm{d},\{\,\cdot\,,\,\cdot\,\}) \text{ with } \mathcal{L}:=\mathfrak{g}[2]\oplus\mathcal{D}[1]\oplus\mathcal{D}^\vee\oplus\mathfrak{g}^\vee[-1]$$

- Quantum BV formalism: Use antibracket to deform differential
 - BV Laplacian: $\Delta_{\rm BV}: {\rm Obs}^{\rm cl} \to {\rm Obs}^{\rm cl}$

$$egin{aligned} \Delta_{\mathrm{BV}}(arphi_1 \cdots arphi_n) &= \sum_{i < j} (-1)^{\sum_{k=1}^i |arphi_k| + |arphi_j| \sum_{k=i+1}^{j-1} |arphi_k|} \ & imes \{arphi_i, arphi_i\} \ arphi_1 \cdots reve{arphi}_i \cdots reve{arphi}_i \cdots reve{arphi}_i \cdots reve{arphi}_j \end{aligned}$$

with $\varphi_i \in \text{Sym}(\mathcal{L})$ homogeneous.

cochain complex of quantum observables

$$\mathrm{Obs}^{\mathrm{qu}} := \left(\mathrm{Sym}(\mathcal{L}), \mathrm{d}^{\mathrm{qu}} := \mathrm{d} + \hbar \, \Delta_{\mathrm{BV}} \right)$$

Computing the path integral

- Path integral $\langle \mathcal{O} \rangle = \frac{1}{Z} \int_{D \in \mathcal{D}/\mathcal{G}} \mathcal{O}(D) \, e^{-S(D)} \, \mathrm{d}D$ determined by cohomology of $\mathrm{Obs^{qu}} := \left(\mathrm{Sym}(\mathcal{L}), \mathrm{d^{qu}} := \mathrm{d} + \hbar \, \Delta_{\mathrm{BV}}\right)$
- ullet Computed perturbatively in λ using homological perturbation theory
 - ightsquigarrow Split quantum differential $\mathrm{d}^{\mathrm{qu}} = \mathrm{d}^{\mathrm{free}} + \lambda \, \mathrm{d}^{\mathrm{int}} + \hbar \, \Delta_{\mathrm{BV}}$
- Starting point: $\mathrm{Obs^{free}} := \left(\mathrm{Sym}(\mathcal{L}), \mathrm{d^{free}}\right) = \mathrm{Sym}\left(\mathcal{L}, \mathrm{d^{free}}\right)$ where

$$(\mathcal{L},\mathrm{d}^{\mathrm{free}}) \,=\, \left(\,\,\mathfrak{g}\text{[2]} \xrightarrow{\mathrm{gauge}} \mathcal{D}\text{[1]} \xrightarrow{\mathrm{EL}} \mathcal{D}^{\vee} \xrightarrow{\mathrm{gauge}} \mathfrak{g}^{\vee}\text{[-1]}\,\,\right)$$

Homological perturbation

Next: Choose strong deformation retract (SDR)

$$(\mathrm{H}^{\bullet}(\mathcal{L}, \mathrm{d}^{\mathrm{free}}), 0) \xrightarrow{\pi} (\mathcal{L}, \mathrm{d}^{\mathrm{free}}) \nearrow h$$

→ SDR

$$\left(\operatorname{Sym} \operatorname{H}^{\bullet}(\mathcal{L}, \operatorname{d}^{\operatorname{free}}), 0\right) \xrightarrow{\Pi} \operatorname{Obs}^{\operatorname{free}} \nearrow H \tag{*}$$

Homological perturbation lemma: Let $\delta:=\lambda\,\mathrm{d}^{\mathrm{int}}+\hbar\,\Delta_{\mathrm{BV}}.$ There exists a deformation of (*) into a SDR

$$(\operatorname{Sym} H^{\bullet}(\mathcal{L}, \operatorname{d}^{\operatorname{free}}), \widetilde{\delta}) \xrightarrow{\widetilde{I}} \operatorname{Obs}^{\operatorname{qu}} \widetilde{I}$$

Correlation functions

In particular:

n-point correlation function

$$\begin{split} \langle \varphi_1 \cdots \varphi_n \rangle &= \widetilde{\Pi}(\varphi_1 \cdots \varphi_n) \\ &= \sum_{k=0}^{\infty} \Pi((\delta H)^k (\varphi_1 \cdots \varphi_n)) \in \operatorname{Sym} H^{\bullet}(\mathcal{L}, \operatorname{d}^{\operatorname{free}}) \end{split}$$

for all
$$\varphi_1,\dots,\varphi_n\in\mathcal{L}$$
 and $\delta=\lambda\,\mathrm{d}^\mathrm{int}+\hbar\,\Delta_\mathrm{BV}$

- Computes $\frac{1}{Z} \int_{D \in \mathcal{D}/\mathcal{G}} \varphi_1 \cdots \varphi_n e^{-S(D)} dD$
- Feynman diagrams

Framework done. Next: Investigate if gauge symmetry contributes to correlation functions.

Two cases:

- $D_0 = 0$
- $D_0 \neq 0$

Case 1: $D_0 = 0$

- Action $S(D) = \frac{g_2}{2} \operatorname{Tr}_{\operatorname{End}(\mathcal{H})}(D^2) + S^{\operatorname{int}}(D),$ $S^{\operatorname{int}}(D)$ sum of monomials of degree ≥ 3 .
- $\bullet \ (\mathcal{L}, \mathrm{d}^{\mathrm{free}}) \, = \, \left(\ \mathfrak{g}[2] \stackrel{0}{\longrightarrow} \mathcal{D}[1] \stackrel{\mathrm{EL}}{\longrightarrow} \mathcal{D}^{\vee} \stackrel{0}{\longrightarrow} \mathfrak{g}^{\vee}[-1] \ \right)$
- $\bullet \ \mathrm{H}^{\bullet}(\mathcal{L}, \mathrm{d}^{\mathrm{free}}) = \mathfrak{g}[2] \oplus \mathfrak{g}^{\vee}[-1]$

Graphical calculus: denote elements $\varphi_1 \cdots \varphi_n \in \operatorname{Sym}(\mathcal{L})$ by n vertical lines with

$$\left\{ \in \mathfrak{g}[2] \ , \ \left\{ \in \mathcal{D}[1] \ , \ \left| \in \mathcal{D}^{\vee} \ , \ \left| \in \mathfrak{g}^{\vee}[-1] \ . \right. \right. \right. \right\}$$

Case 1: $D_0 = 0$, quartic interaction

- $S = \operatorname{Tr}_{\operatorname{End}(\mathcal{H})}(\frac{g_2}{2} D^2 + \frac{g_4}{4!} D^4)$
- 2-point correlation function: $\varphi_1, \varphi_2 \in \mathcal{L}^0 = \mathcal{D}^\vee$

$$\langle \varphi_1 \varphi_2 \rangle = \hbar \left\{ 1 + \frac{\hbar^2 \lambda^2}{2} \right\} + \mathcal{O}(\lambda^3)$$

• Observe: no contribution from lines in $\mathfrak{g}[2]$ and $\mathfrak{g}^{\vee}[-1]!$

In fact:

In the
$$D_0=0$$
 case, for $\varphi_1,\ldots,\varphi_n\in\mathcal{L}^0=\mathcal{D}^\vee$, $\langle\varphi_1\cdots\varphi_n\rangle$ receive **no** contribution from lines in $\mathfrak{g}[2]$ and $\mathfrak{g}^\vee[-1]$.

In other words: no contributions from gauge symmetry in $\langle \varphi_1 \cdots \varphi_n \rangle$ in the $D_0 = 0$ case!

Case 2: $D_0 \neq 0$, quartic (0,1)-model

- $S = \operatorname{Tr}_{\operatorname{End}(\mathcal{H})}(-\frac{1}{2}D^2 + \frac{g_4}{4!}D^4)$ with $g_4 \ge 0$
 - (0,1) geometry: $D=-i[L,\,\cdot\,]$ with L trace-free Hermitian $N\times N$ -matrix
- $\bullet \ (\mathcal{L}, \mathrm{d}^{\mathrm{free}}) \, = \, \left(\ \mathfrak{g}[2] \xrightarrow{\mathrm{gauge}} \mathcal{D}[1] \xrightarrow{\mathrm{EL}} \mathcal{D}^{\vee} \xrightarrow{\mathrm{gauge}} \mathfrak{g}^{\vee}[-1] \ \right)$
- $\mathrm{H}^{ullet}(\mathcal{L},\mathrm{d}^{\mathrm{free}}) = \mathfrak{g}_0[2] \oplus \mathfrak{g}_0[-1]$ with $\mathfrak{g}_0 \subset \mathfrak{g}$ Lie subalgebra stabilizing $D_0 \leadsto \mathsf{Symmetry}$ broken!

Graphical calculus:

Case 2: $D_0 \neq 0$, quartic (0, 1)-model, 2-point correlator

Contributions from lines in $\mathfrak{g}[2]$ and $\mathfrak{g}^{\vee}[-1]!$

Analogy: Higgs mechanism

Summary

- Fuzzy spectral triples: $\mathcal{A} = \operatorname{Mat}_{\mathcal{N}}(\mathbb{C})$, $\mathcal{H} = \mathcal{A} \otimes \mathbb{C}^k$. Dirac operator encodes geometry.
- Dirac operators fully classified Random NCG
- Numerical evidence of certain properties from random matrix theory also in randon NCG, e.g. phase transitions
- Overcounting problem: path integral \mathcal{D}/gauge symmetries?
- Homological methods: BV formalism and homological perturbation
- *n*-point correlation functions
 - $D_0 = 0$: gauge symmetry does **not** contribute!
 - $D_0 \neq 0$: gauge symmetry contributes (symmetry breaking)!

Thank you for your attention!