Bootstrapping Dirac Ensembles

Hamed Hessam ${ }^{1}$
Joint work with Masoud Khalkhali, and Nathan Pagliaroli
Western University

Workshop on Noncommutative Geometry, Free Probability Theory and Random Matrix Theory (June 16th, 2022)

Real Spectral Triples

- A finite real spectral triple is composed of
- a finite dimensional Hilbert space \mathcal{H}
- an algebra \mathcal{A}
- a chirality operator Γ
- an antilinear real structure J
- a self adjoint Dirac operator D

Real Spectral Triples

- A finite real spectral triple is composed of
- a finite dimensional Hilbert space \mathcal{H}
- an algebra \mathcal{A}
- a chirality operator Γ
- an antilinear real structure J
- a self adjoint Dirac operator D
- We are interested in when \mathcal{A} is the space of $\mathrm{M}_{N}(\mathbb{C})$ and $\mathcal{H}=\mathbb{C}^{k} \otimes \mathrm{M}_{N}(\mathbb{C})$.

Real Spectral Triples

- A finite real spectral triple is composed of
- a finite dimensional Hilbert space \mathcal{H}
- an algebra \mathcal{A}
- a chirality operator Γ
- an antilinear real structure J
- a self adjoint Dirac operator D
- We are interested in when \mathcal{A} is the space of $\mathrm{M}_{N}(\mathbb{C})$ and $\mathcal{H}=\mathbb{C}^{k} \otimes \mathrm{M}_{N}(\mathbb{C})$.
- Let all of the above objects besides D be fixed and Dirac operator D can vary.

Real Spectral Triples

- Barret solved the axioms of spectral triples to give formulas for the Dirac operator on matrix geometries in terms of Hermitian and anti-Hermitian matrices.

Real Spectral Triples

- Barret solved the axioms of spectral triples to give formulas for the Dirac operator on matrix geometries in terms of Hermitian and anti-Hermitian matrices.
- Signature one models
- Type $(1,0), D=\{H, \cdot\} \quad H$ is Hermitian
- Type $(0,1), D=-i[L, \cdot] \quad L$ is skew-Hermitian

Real Spectral Triples

- Barret solved the axioms of spectral triples to give formulas for the Dirac operator on matrix geometries in terms of Hermitian and anti-Hermitian matrices.
- Signature one models
- Type $(1,0), D=\{H, \cdot\} \quad H$ is Hermitian
- Type $(0,1), D=-i[L, \cdot] \quad L$ is skew-Hermitian
- Signature two models
- Type (2,0), $D=\gamma^{1} \otimes\left\{H_{1}, \cdot\right\}+\gamma^{2} \otimes\left\{H_{2}, \cdot\right\}$
- Type (1,1), $D=\gamma^{1} \otimes\left\{H_{1}, \cdot\right\}+\gamma^{2} \otimes\left[L_{2}, \cdot\right]$
- Type $(0,2), D=\gamma^{1} \otimes\left[L_{1}, \cdot\right]+\gamma^{2} \otimes\left[L_{2}, \cdot\right]$

Ensembles of Dirac Operators

- The partition function of a Dirac ensemble is

$$
Z=\int_{\mathcal{G}} e^{-S(D)} d D
$$

where S can be expressed as the trace of a polynomial in $D \in \mathcal{G}$.

- The partition function of a Dirac ensemble is

$$
Z=\int_{\mathcal{G}} e^{-S(D)} d D
$$

where S can be expressed as the trace of a polynomial in $D \in \mathcal{G}$.

- We are interested in solving these models in the large N limit for different potential $S(D)$.

Consider the type (1,0) Dirac Ensembles

$$
\begin{gathered}
D=\{H, \cdot\}=H \otimes I+I \otimes H^{t}, \\
\operatorname{Tr} D^{\ell}=\sum_{k=0}^{\ell}\binom{\ell}{k} \operatorname{Tr} H^{\ell-k} \operatorname{Tr} H^{k} .
\end{gathered}
$$

Consider the type (1,0) Dirac Ensembles

$$
\begin{gathered}
D=\{H, \cdot\}=H \otimes I+I \otimes H^{t} \\
\operatorname{Tr} D^{\ell}=\sum_{k=0}^{\ell}\binom{\ell}{k} \operatorname{Tr} H^{\ell-k} \operatorname{Tr} H^{k} .
\end{gathered}
$$

For instance, if

$$
S(D)=g \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}
$$

Type $(1,0)$ Dirac Ensembles

Consider the type (1,0) Dirac Ensembles

$$
\begin{gathered}
D=\{H, \cdot\}=H \otimes I+I \otimes H^{t}, \\
\operatorname{Tr} D^{\ell}=\sum_{k=0}^{\ell}\binom{\ell}{k} \operatorname{Tr} H^{\ell-k} \operatorname{Tr} H^{k} .
\end{gathered}
$$

For instance, if

$$
S(D)=g \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}
$$

then

$$
\begin{aligned}
S(D) & =g\left(2 N \operatorname{Tr} H^{2}+2 \operatorname{Tr} H \operatorname{Tr} H\right) \\
& +\left(2 N \operatorname{Tr} H^{4}+8 \operatorname{Tr} H \operatorname{Tr} H^{3}+6 \operatorname{Tr} H^{2} \operatorname{Tr} H^{2}\right)
\end{aligned}
$$

- The partition function of a Dirac ensemble can be written in terms of a random $N \times N$ Hermitian matrix variable H :

$$
Z=\int_{\mathcal{H}_{N}} e^{-\tilde{S}(H)} d H
$$

Type (1,0) Dirac Ensembles

- The partition function of a Dirac ensemble can be written in terms of a random $N \times N$ Hermitian matrix variable H :

$$
Z=\int_{\mathcal{H}_{N}} e^{-\tilde{S}(H)} d H
$$

- We are mainly concerned with finding the moments of these models in the large N limit.

$$
\begin{aligned}
& m_{k}=\lim _{N \rightarrow \infty}\left\langle\frac{1}{N} \operatorname{Tr} H^{k}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{N} \frac{1}{Z} \int_{\mathcal{H}_{N}} \operatorname{Tr} H^{k} e^{-\tilde{S}(H)} d H . \\
& d_{k}=\lim _{N \rightarrow \infty}\left\langle\frac{1}{N^{2}} \operatorname{Tr} D^{k}\right\rangle=\lim _{N \rightarrow \infty} \frac{1}{N^{2}} \frac{1}{Z} \int_{\mathcal{G}} \operatorname{Tr} D^{k} e^{-S(D)} d D .
\end{aligned}
$$

Bootstrapping Random Matrix Models

H. Lin introduced bootstrap method to find the moments of a matrix model.

Bootstrapping Random Matrix Models

H. Lin introduced bootstrap method to find the moments of a matrix model.

Bootstrapping contains following three steps:

Bootstrapping Random Matrix Models

H. Lin introduced bootstrap method to find the moments of a matrix model.

Bootstrapping contains following three steps:

- Step 1: Find the Schwinger-Dyson equations (SDEs) of the model.

Bootstrapping Random Matrix Models

H. Lin introduced bootstrap method to find the moments of a matrix model.

Bootstrapping contains following three steps:

- Step 1: Find the Schwinger-Dyson equations (SDEs) of the model.
- Step 2: Find the dimension of the search space.

Bootstrapping Random Matrix Models

H. Lin introduced bootstrap method to find the moments of a matrix model.

Bootstrapping contains following three steps:

- Step 1: Find the Schwinger-Dyson equations (SDEs) of the model.
- Step 2: Find the dimension of the search space.
- Step 3: Apply positivity constraint with a cutoff.

Hamburger Moment Problem

Hamburger Moment Problem

Given a sequence of numbers $\left(m_{0}, m_{1}, m_{2}, \ldots\right)$, does there exist a positive Borel measure μ on the real line such that

$$
m_{n}=\int_{\mathbb{R}} x^{n} d \mu(x) ?
$$

Hamburger Moment Problem

Hamburger Moment Problem

Given a sequence of numbers $\left(m_{0}, m_{1}, m_{2}, \ldots\right)$, does there exist a positive Borel measure μ on the real line such that

$$
m_{n}=\int_{\mathbb{R}} x^{n} d \mu(x) ?
$$

The Hamburger moment problem is solvable if and only if the corresponding Hankel matrix is positive semi-definite.

$$
\left[\begin{array}{lllll}
m_{0} & m_{1} & m_{2} & m_{3} & \cdots \\
m_{1} & m_{2} & m_{3} & m_{4} & \cdots \\
m_{2} & m_{3} & m_{4} & m_{5} & \cdots \\
m_{3} & m_{4} & m_{5} & m_{6} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] \geq 0
$$

Schwinger-Dyson Equations

- In general, the Schwinger-Dyson equations come from the following integral.

$$
\sum_{i, j=1}^{N} \int_{\mathcal{H}_{N}^{m}} \frac{\partial}{\partial\left(H_{q}\right)_{i j}}\left(W_{i j} e^{-\tilde{S}\left(H_{1}, H_{2}, \ldots, H_{m}\right)}\right) d H_{1} \ldots d H_{m}=0
$$

Schwinger-Dyson Equations

- In general, the Schwinger-Dyson equations come from the following integral.

$$
\sum_{i, j=1}^{N} \int_{\mathcal{H}_{N}^{m}} \frac{\partial}{\partial\left(H_{q}\right)_{i j}}\left(W_{i j} e^{-\tilde{S}\left(H_{1}, H_{2}, \ldots, H_{m}\right)}\right) d H_{1} \ldots d H_{m}=0
$$

- The above equation generates the following SDEs in single matrix model.

$$
\sum_{k=0}^{\ell-1}\left\langle\operatorname{Tr} H_{1}^{\ell-1-k} \operatorname{Tr} H_{1}^{k}\right\rangle=\left\langle\operatorname{Tr} H_{1}^{\ell} \tilde{S}^{\prime}\left(H_{1}\right)\right\rangle
$$

Quartic Dirac Ensemble of Type $(1,0)$

- Consider the Dirac ensemble of type $(1,0)$ with the potential function

$$
S(D)=g \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}
$$

Quartic Dirac Ensemble of Type $(1,0)$

- Consider the Dirac ensemble of type $(1,0)$ with the potential function

$$
S(D)=g \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}
$$

- The potential function in terms of a random Hermitian matrix

$$
\begin{aligned}
\tilde{S}(H) & =g\left(2 N \operatorname{Tr} H^{2}+2 \operatorname{Tr} H \operatorname{Tr} H\right) \\
& +\left(2 N \operatorname{Tr} H^{4}+8 \operatorname{Tr} H \operatorname{Tr} H^{3}+6 \operatorname{Tr} H^{2} \operatorname{Tr} H^{2}\right)
\end{aligned}
$$

Quartic Dirac Ensemble of Type $(1,0)$

- Consider the Dirac ensemble of type $(1,0)$ with the potential function

$$
S(D)=g \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}
$$

- The potential function in terms of a random Hermitian matrix

$$
\begin{aligned}
\tilde{S}(H) & =g\left(2 N \operatorname{Tr} H^{2}+2 \operatorname{Tr} H \operatorname{Tr} H\right) \\
& +\left(2 N \operatorname{Tr} H^{4}+8 \operatorname{Tr} H \operatorname{Tr} H^{3}+6 \operatorname{Tr} H^{2} \operatorname{Tr} H^{2}\right)
\end{aligned}
$$

- Step 1: The SDEs

$$
m_{2 \ell+2}=\frac{1}{8} \sum_{k=0}^{2 \ell-2} m_{k} m_{2 \ell-k-2}-\frac{1}{2} g m_{2 \ell}-3 m_{2} m_{2 \ell}
$$

Quartic Dirac Ensemble of Type $(1,0)$

- Consider the Dirac ensemble of type $(1,0)$ with the potential function

$$
S(D)=g \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}
$$

- The potential function in terms of a random Hermitian matrix

$$
\begin{aligned}
\tilde{S}(H) & =g\left(2 N \operatorname{Tr} H^{2}+2 \operatorname{Tr} H \operatorname{Tr} H\right) \\
& +\left(2 N \operatorname{Tr} H^{4}+8 \operatorname{Tr} H \operatorname{Tr} H^{3}+6 \operatorname{Tr} H^{2} \operatorname{Tr} H^{2}\right)
\end{aligned}
$$

- Step 1: The SDEs

$$
m_{2 \ell+2}=\frac{1}{8} \sum_{k=0}^{2 \ell-2} m_{k} m_{2 \ell-k-2}-\frac{1}{2} g m_{2 \ell}-3 m_{2} m_{2 \ell}
$$

- Step 2: The dimension of the search space is 1 .

Positivity Constraints

Positivity Constraints

The existence of a eigenvalue density function $\rho(x)$, gives us constraints on moments.

Positivity Constraints

Positivity Constraints

The existence of a eigenvalue density function $\rho(x)$, gives us constraints on moments.

- Take a real polynomial $f(x)=\sum c_{j} x^{j}$. Then the positivity of the integral $\int_{\mathbb{R}} f(x)^{2} \rho(x) d x$ implies the positive semi-definiteness of the Hankel matrix of moments

$$
\mathcal{M}=\left[\begin{array}{ccccc}
1 & m_{1} & m_{2} & m_{3} & \cdots \\
m_{1} & m_{2} & m_{3} & m_{4} & \cdots \\
m_{2} & m_{3} & m_{4} & m_{5} & \cdots \\
m_{3} & m_{4} & m_{5} & m_{6} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

Positivity Constraints

Positivity Constraints

The existence of a eigenvalue density function $\rho(x)$, gives us constraints on moments.

- Take a real polynomial $f(x)=\sum c_{j} x^{j}$. Then the positivity of the integral $\int_{\mathbb{R}} f(x)^{2} \rho(x) d x$ implies the positive semi-definiteness of the Hankel matrix of moments

$$
\mathcal{M}=\left[\begin{array}{ccccc}
1 & m_{1} & m_{2} & m_{3} & \cdots \\
m_{1} & m_{2} & m_{3} & m_{4} & \cdots \\
m_{2} & m_{3} & m_{4} & m_{5} & \cdots \\
m_{3} & m_{4} & m_{5} & m_{6} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right]
$$

- These positivity constraints can be applied to both the moments of the matrix ensemble and the Dirac ensemble.

The Solution of Quartic Dirac Ensemble

Figure: The approximate relation between m_{2} and g, with g varying from -2.5 to 1.5 . The different coloured regions denote different constraints applied. The more constraints the smaller the region. The relationship found is very close to the analytic relationship.

The Solution of Quartic Dirac Ensemble

Figure: The approximate relation between m_{2} and g, with g varying from -5 to -2.5 .

- Now consider the partition function of the cubic Dirac ensemble

$$
Z=\int_{\mathcal{G}} e^{-S(D)} d D
$$

with

$$
S(D)=\frac{1}{4} \operatorname{Tr} D^{2}+\frac{g}{6} \operatorname{Tr} D^{3} .
$$

- Now consider the partition function of the cubic Dirac ensemble

$$
Z=\int_{\mathcal{G}} e^{-S(D)} d D
$$

with

$$
S(D)=\frac{1}{4} \operatorname{Tr} D^{2}+\frac{g}{6} \operatorname{Tr} D^{3} .
$$

$$
\tilde{S}(H)=\frac{1}{2}\left(N \operatorname{Tr} H^{2}+(\operatorname{Tr} H)^{2}\right)+\frac{g}{3}\left(N \operatorname{Tr} H^{3}+3 \operatorname{Tr} H^{2} \operatorname{Tr} H\right)
$$

Type $(1,0)$ Cubic Dirac Ensemble

- Now consider the partition function of the cubic Dirac ensemble

$$
Z=\int_{\mathcal{G}} e^{-S(D)} d D
$$

with

$$
S(D)=\frac{1}{4} \operatorname{Tr} D^{2}+\frac{g}{6} \operatorname{Tr} D^{3} .
$$

$$
\tilde{S}(H)=\frac{1}{2}\left(N \operatorname{Tr} H^{2}+(\operatorname{Tr} H)^{2}\right)+\frac{g}{3}\left(N \operatorname{Tr} H^{3}+3 \operatorname{Tr} H^{2} \operatorname{Tr} H\right)
$$

The loop equations of the model are the following equations:
$\sum_{k=0}^{\ell-1} m_{k} m_{\ell-k-1}=m_{\ell+1}+m_{1} m_{\ell}+g\left(m_{\ell+2}+2 m_{1} m_{\ell+1}+m_{2} m_{\ell}\right)$.

The Solution of Cubic Dirac Ensemble

Figure: The search space region for the $(1,0)$ cubic model. Each colour corresponds to the positivity of different number of constraints derived from principal minors. The solution space narrows as the number of constraints increases. Notice that in this example increasing the number of constraints seems to show that there exists a nonlinear relationship between g and m_{1}.

- Recall type $(2,0)$ random geometries

$$
D=\gamma^{1} \otimes\{A, \cdot\}+\gamma^{2} \otimes\{B, \cdot\}
$$

with

$$
\gamma^{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \gamma^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where A and B are Hermitian matrices.

- Recall type $(2,0)$ random geometries

$$
D=\gamma^{1} \otimes\{A, \cdot\}+\gamma^{2} \otimes\{B, \cdot\}
$$

with

$$
\gamma^{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \gamma^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

where A and B are Hermitian matrices.

- We consider the quartic Dirac ensemble with the partition function

$$
Z=\int_{\mathcal{G}} e^{-S(D)} d D
$$

where

$$
S(D)=g \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}
$$

$$
\operatorname{Tr} D^{2}=4 N \operatorname{Tr} A^{2}+4 N \operatorname{Tr} B^{2}+4(\operatorname{Tr} A)^{2}+4(\operatorname{Tr} B)^{2}
$$

$\operatorname{Tr} D^{4}=4 N \operatorname{Tr} A^{4}+4 N \operatorname{Tr} B^{4}+16 N \operatorname{Tr} A^{2} B^{2}-8 N \operatorname{Tr} A B A B$

$$
+16 \operatorname{Tr} A \operatorname{Tr} A^{3}+16 \operatorname{Tr} A \operatorname{Tr} B^{2} A+16 \operatorname{Tr} B \operatorname{Tr} B^{3}
$$

$$
+16 \operatorname{Tr} B \operatorname{Tr} A^{2} B+16(\operatorname{Tr} A B)^{2}+12\left(\operatorname{Tr} A^{2}\right)^{2}
$$

$$
+12\left(\operatorname{Tr} B^{2}\right)^{2}+8 \operatorname{Tr} A^{2} \operatorname{Tr} B^{2}
$$

$$
\operatorname{Tr} D^{2}=4 N \operatorname{Tr} A^{2}+4 N \operatorname{Tr} B^{2}+4(\operatorname{Tr} A)^{2}+4(\operatorname{Tr} B)^{2}
$$

$$
\begin{aligned}
\operatorname{Tr} D^{4} & =4 N \operatorname{Tr} A^{4}+4 N \operatorname{Tr} B^{4}+16 N \operatorname{Tr} A^{2} B^{2}-8 N \operatorname{Tr} A B A B \\
& +16 \operatorname{Tr} A \operatorname{Tr} A^{3}+16 \operatorname{Tr} A \operatorname{Tr} B^{2} A+16 \operatorname{Tr} B \operatorname{Tr} B^{3} \\
& +16 \operatorname{Tr} B \operatorname{Tr} A^{2} B+16(\operatorname{Tr} A B)^{2}+12\left(\operatorname{Tr} A^{2}\right)^{2} \\
& +12\left(\operatorname{Tr} B^{2}\right)^{2}+8 \operatorname{Tr} A^{2} \operatorname{Tr} B^{2} .
\end{aligned}
$$

- The partition function of a Dirac ensemble can be written in terms of random Hermitian $N \times N$ matrices variable A and B :

$$
Z=\int_{\mathcal{H}_{N} \times \mathcal{H}_{N}} e^{-\tilde{S}(A, B)} d A d B
$$

SDEs of Type $(2,0)$ Dirac Ensemble

- The SDE of this model with respect to word A^{ℓ} comes from

$$
\sum_{i, j=1}^{N} \int_{\mathcal{H}_{N}^{2}} \frac{\partial}{\partial(A)_{i j}}\left(\left(A^{\ell}\right)_{i j} e^{-\left(g \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}\right)}\right) d A d B=0
$$

SDEs of Type $(2,0)$ Dirac Ensemble

- The SDE of this model with respect to word A^{ℓ} comes from

$$
\sum_{i, j=1}^{N} \int_{\mathcal{H}_{N}^{2}} \frac{\partial}{\partial(A)_{i j}}\left(\left(A^{\ell}\right)_{i j} e^{-\left(g \operatorname{Tr} D^{2}+\operatorname{Tr} D^{4}\right)}\right) d A d B=0
$$

- Notation

$$
m_{a, b, c, d}=\lim _{N \rightarrow \infty} \frac{1}{N}\left\langle\operatorname{Tr} A^{a} B^{b} A^{c} B^{d}\right\rangle
$$

$$
\begin{aligned}
\sum_{k=0}^{\ell-1} m_{k} m_{\ell-k-1} & =\left(8 g+64 m_{2}\right) m_{\ell+1}+16 m_{\ell+3} \\
& -16 m_{\ell, 1,1,1}+32 m_{\ell+1,2}
\end{aligned}
$$

SDEs of Type $(2,0)$ Dirac Ensemble

- When $\ell<9$: In the left hand side, there is no term that is product of moments that come from degree four words or higher.
For instance, $m_{2,2} m_{4}$ cannot be found.
- When $\ell<9$: In the left hand side, there is no term that is product of moments that come from degree four words or higher.
For instance, $m_{2,2} m_{4}$ cannot be found.
- SDE's of words with length less than 9 can be seen as the system of linear equations and that can be solved in terms of g and m_{2}.
- When $\ell<9$: In the left hand side, there is no term that is product of moments that come from degree four words or higher.
For instance, $m_{2,2} m_{4}$ cannot be found.
- SDE's of words with length less than 9 can be seen as the system of linear equations and that can be solved in terms of g and m_{2}.

Lemma

The number of non-trivial moments (up to cyclic permutation and symmetry) that appear in the loop equations of words with length $\ell \geq 9$ is less than the number of non-zero loop equations.

The Solution for the Type(2,0) Model

Corollary

The dimension of the search space of the model is 1 .

The Solution for the Type(2,0) Model

Corollary

The dimension of the search space of the model is 1 .

- By generating all the loop equations for words up to order ten, we found remarkable formulas for moments up to order eight in terms of g and the second moment m_{2}.

$$
\begin{gathered}
m_{4}=-\frac{1}{8} g m_{2}+\frac{1}{64} \\
m_{2,2}=-\frac{1}{8} g m_{2}-m_{2}^{2}+\frac{1}{64} \\
m_{1,1,1,1}=\frac{g m_{2}}{8}+2 m_{2}^{2}-\frac{1}{64}, \\
m_{6}=\frac{g^{2} m_{2}}{64}-\frac{g}{512}-\frac{g m_{2}^{2}}{8}+\frac{3 m_{2}}{64}-\frac{5 m_{2}^{3}}{4}
\end{gathered}
$$

The Solution for the Type(2,0) Model

$$
\begin{gathered}
m_{4,2}=\frac{g^{2} m_{2}}{64}+\frac{g m_{2}^{2}}{8}-\frac{g}{512}-\frac{m_{2}^{3}}{4}+\frac{m_{2}}{64} \\
m_{3,1,1,1}=-\frac{g^{2} m_{2}}{64}-\frac{3 g m_{2}^{2}}{8}-\frac{7 m_{2}^{3}}{4}+\frac{g}{512}+\frac{m_{2}}{64} \\
m_{2,1,2,1}=\frac{g^{2} m_{2}}{64}+\frac{3 g m_{2}^{2}}{8}-\frac{g}{512}+\frac{11 m_{2}^{3}}{4}-\frac{m_{2}}{64} \\
m_{8}=-\frac{g m_{2}}{64}+\frac{m_{2}^{4}}{4}+\frac{g^{2}}{4096}+\frac{m_{2}^{2}}{256}+\frac{3}{4096}-\frac{g^{3} m_{2}}{512}+\frac{3 g^{2} m_{2}^{2}}{64}+\frac{g m_{2}^{3}}{2}
\end{gathered}
$$

The Solution for the Type(2,0) Model

- First three nonzero moments of the signature two Dirac ensemble

$$
\begin{gathered}
d_{2}=8 m_{2}, \\
d_{4}=-4 g m_{2}+\frac{1}{2}, \\
d_{6}=-160 m_{2}^{3}-16 g m_{2}^{2}+6 m_{2}+2 g^{2} m_{2}-\frac{1}{4} g .
\end{gathered}
$$

Positivity Constraints of Multimatrix Model

Consider the space of words with letters A and B, and index them in the following manner.

$$
\mathcal{W}=\left\{\mathcal{W}_{0}=\emptyset, \mathcal{W}_{1}=A, \mathcal{W}_{2}=B, A A, A B, B A, B B, \cdots\right\}
$$

Positivity Constraints of Multimatrix Model

Consider the space of words with letters A and B, and index them in the following manner.

$$
\mathcal{W}=\left\{\mathcal{W}_{0}=\emptyset, \mathcal{W}_{1}=A, \mathcal{W}_{2}=B, A A, A B, B A, B B, \cdots\right\}
$$

Let

$$
\mathcal{O}=\sum_{p=1}^{k} a_{p} \mathcal{W}_{p}
$$

Then

$$
\frac{1}{N}\left\langle\operatorname{Tr} \mathcal{O}^{t} \mathcal{O}\right\rangle=\sum_{p, q=1}^{k} a_{p} a_{q} \mathcal{M}_{p, q} \geq 0
$$

where

$$
\mathcal{M}_{p, q}=\frac{1}{N}\left\langle\operatorname{Tr} \mathcal{W}_{p}^{*} \mathcal{W}_{q}\right\rangle
$$

i.e.

$$
\mathcal{M}=\left(\mathcal{M}_{p, q}\right) \geq 0
$$

Positivity Constraints of Multimatrix Model

- For instance, with the following sequence of words $\emptyset, A, B, A A, A B, B B, \cdots$ we can enforce positivity of the matrix

$$
\left[\begin{array}{cccccc}
1 & m_{A} & m_{B} & m_{A A} & m_{A B} & m_{B B} \\
m_{A} & m_{A A} & m_{A B} & m_{A A A} & m_{A A B} & m_{A B B} \\
m_{B} & m_{B A} & m_{B B} & m_{B A A} & m_{B A B} & m_{B B B} \\
m_{A A} & m_{A A A} & m_{A A B} & m_{A A A A} & m_{A A A B} & m_{A A B B} \\
m_{B A} & m_{B A A} & m_{B A B} & m_{B A A A} & m_{B A A B} & m_{B A B B} \\
m_{B B} & m_{B B A} & m_{B B B} & m_{B B A A} & m_{B B A B} & m_{B B B B}
\end{array}\right] .
$$

The Solution for the Type $(2,0)$ Model

Figure: The search space region for the $(2,0)$ quartic model where the relationship between g and m_{2} is nonlinear. The different coloured regions denote different constraints applied. The more constraints the smaller the region.

The Solution for the Type $(2,0)$ Model

Figure: The search space region for the $(2,0)$ quartic model where the relationship between g and m_{2} becomes linear.

Bootstrap Method

We can observe the bootstrap method as a semi-definite programming (SDP):

Bootstrap Method

We can observe the bootstrap method as a semi-definite programming (SDP):

Minimize

$$
\sum_{i} c_{i} \mathcal{W}_{i}
$$

c_{i} 's are fixed,

Bootstrap Method

We can observe the bootstrap method as a semi-definite programming (SDP):

Minimize
$\sum_{i} c_{i} \mathcal{W}_{i}$
c_{i} 's are fixed,
subject to $\quad \sum_{i, j} \mathcal{W}_{i} A_{i j}^{(k)} \mathcal{W}_{j}=\sum_{i} B_{i}^{(k)} \mathcal{W}_{i} \quad k$ 'th loop equation,

Bootstrap Method

We can observe the bootstrap method as a semi-definite programming (SDP):

Minimize

$$
\sum_{i} c_{i} \mathcal{W}_{i}
$$

c_{i} 's are fixed,
subject to $\quad \sum_{i, j} \mathcal{W}_{i} A_{i j}^{(k)} \mathcal{W}_{j}=\sum_{i} B_{i}^{(k)} \mathcal{W}_{i} \quad k$ 'th loop equation,

$$
\mathcal{M} \geq 0
$$

positivity constraint.

Relaxing Bootstrap

Recently, V. Kazakov and Z. Zheng, developed the idea of bootstrap and relaxed the non-linear equations to the linear ones.

Relaxing Bootstrap

Recently, V. Kazakov and Z. Zheng, developed the idea of bootstrap and relaxed the non-linear equations to the linear ones.

They treated $X_{i j}=\mathcal{W}_{i} \mathcal{W}_{j}$ appears in the left hand side of the loop equations as independent variables, and relaxed it to the positivity of the matrix

$$
\mathcal{R}=\left[\begin{array}{ccccc}
1 & \mathcal{W}_{1} & \mathcal{W}_{2} & \mathcal{W}_{3} & \cdots \\
\mathcal{W}_{1} & X_{11} & X_{12} & X_{13} & \cdots \\
\mathcal{W}_{2} & X_{21} & X_{22} & X_{23} & \cdots \\
\mathcal{W}_{3} & X_{31} & X_{32} & X_{33} & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}\right] \geq 0
$$

Relaxing Bootstrap

Relaxing bootstrap method as a semi-definite programming (SDP):

Relaxing Bootstrap

Relaxing bootstrap method as a semi-definite programming (SDP):

Minimize

$$
\begin{gathered}
\sum_{i} c_{i} \mathcal{W}_{i} \\
\left(c_{i}^{\prime}\right. \text { 's are fixed) }
\end{gathered}
$$

Relaxing Bootstrap

Relaxing bootstrap method as a semi-definite programming (SDP):

Minimize

$$
\begin{gathered}
\sum_{i} c_{i} \mathcal{W}_{i} \\
\left(c_{i}^{\prime}\right. \text { s are fixed) }
\end{gathered}
$$

subject to

$$
\sum_{i, j} A_{i j}^{(k)} X_{i j}=\sum_{i} B_{i}^{(k)} \mathcal{W}_{i}
$$

(k^{\prime} 'th loop equation with $\mathcal{W}_{i} \mathcal{W}_{j} \rightarrow X_{i j}$)

$$
\begin{gathered}
\mathcal{R} \geq 0 \\
\text { (positivity of relaxation matrix) }
\end{gathered}
$$

Relaxing Bootstrap

Relaxing bootstrap method as a semi-definite programming (SDP):

Minimize

$$
\begin{gathered}
\sum_{i} c_{i} \mathcal{W}_{i} \\
\left(c_{i}^{\prime}\right. \text { s are fixed) }
\end{gathered}
$$

subject to

$$
\sum_{i, j} A_{i j}^{(k)} X_{i j}=\sum_{i} B_{i}^{(k)} \mathcal{W}_{i}
$$

(k'th loop equation with $\mathcal{W}_{i} \mathcal{W}_{j} \rightarrow X_{i j}$)

$$
\mathcal{R} \geq 0
$$

(positivity of relaxation matrix)

$$
\mathcal{M} \geq 0
$$

(positivity of correlation matrix)

Conclusion and Future Work

- Bootstrap offers a never before opportunity to study Dirac and random matrix ensembles, since Monte Carlo simulations are severely limit of matrix size and known analytic results do not extend to geometries with signature of two or higher.

Conclusion and Future Work

- Bootstrap offers a never before opportunity to study Dirac and random matrix ensembles, since Monte Carlo simulations are severely limit of matrix size and known analytic results do not extend to geometries with signature of two or higher.
- Applying bootstrap to a more complicated potential function or geometries such as signature 3 in hopes of finding more information about these models.

Conclusion and Future Work

- Bootstrap offers a never before opportunity to study Dirac and random matrix ensembles, since Monte Carlo simulations are severely limit of matrix size and known analytic results do not extend to geometries with signature of two or higher.
- Applying bootstrap to a more complicated potential function or geometries such as signature 3 in hopes of finding more information about these models.
- Reconstructing the eigenvalue distributions of both the Dirac and random matrix ensembles.

Conclusion and Future Work

- Bootstrap offers a never before opportunity to study Dirac and random matrix ensembles, since Monte Carlo simulations are severely limit of matrix size and known analytic results do not extend to geometries with signature of two or higher.
- Applying bootstrap to a more complicated potential function or geometries such as signature 3 in hopes of finding more information about these models.
- Reconstructing the eigenvalue distributions of both the Dirac and random matrix ensembles.
- Find SDEs strictly in terms of Dirac moments for any random geometry.

References

1. J. W. Barrett and L. Glaser. Monte Carlo Simulations of Random Non-commutative Geometries. J. Phys. A, 49(24): 245001, 2016.
2. H. W. Lin. Bootstraps to strings: solving random matrix models with positivity. J. JHEP, 06: 090, 2020.
3. M. Khalkhali and N. Pagliaroli. Phase transition in random noncommutative geometries J. Math. Phys., 54(3): 035202, 2020.
4. V. Kazakov and Z. Zheng. Analytic and Numerical Bootstrap for One-Matrix Model and "Unsolvable" Two-Matrix Model. arXiv:2108.04830, 2021.
5. C. I. Perez-Sanchez. Computing the spectral action for fuzzy geometries: from random noncommutatative geometry to bi-tracial multimatrix models. arXiv:1912.13288, 2019.
6. H. Hessam, M. Khalkhali and N. Pagliaroli. Bootstrapping Dirac Ensembles. Journal of Physics A: Mathematical and Theoretical J. Phys. A: Math. Theor. 550152032022.

Questions

Thanks for your attention.

