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Real Spectral Triples

A finite real spectral triple is composed of

a finite dimensional Hilbert space H
an algebra A
a chirality operator Γ
an antilinear real structure J
a self adjoint Dirac operator D

We are interested in when A is the space of MN(C) and
H = Ck ⊗MN(C).

Let all of the above objects besides D be fixed and Dirac
operator D can vary.
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Real Spectral Triples

Barret solved the axioms of spectral triples to give formulas
for the Dirac operator on matrix geometries in terms of
Hermitian and anti-Hermitian matrices.

Signature one models

Type (1, 0), D = {H, ·} H is Hermitian

Type (0, 1), D = −i [L, ·] L is skew-Hermitian

Signature two models

Type (2, 0), D = γ1 ⊗ {H1, ·}+ γ2 ⊗ {H2, ·}

Type (1, 1), D = γ1 ⊗ {H1, ·}+ γ2 ⊗ [L2, ·]

Type (0, 2), D = γ1 ⊗ [L1, ·] + γ2 ⊗ [L2, ·]
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Ensembles of Dirac Operators

The partition function of a Dirac ensemble is

Z =

∫
G
e−S(D)dD,

where S can be expressed as the trace of a polynomial in
D ∈ G.

We are interested in solving these models in the large N limit
for different potential S(D).
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Type (1,0) Dirac Ensembles

Consider the type (1,0) Dirac Ensembles

D = {H, ·} = H ⊗ I + I ⊗ Ht ,

TrDℓ =
ℓ∑

k=0

(
ℓ

k

)
TrHℓ−k TrHk .

For instance, if
S(D) = g TrD2 + TrD4,

then

S(D) = g(2N TrH2 + 2TrH TrH)

+ (2N TrH4 + 8TrH TrH3 + 6TrH2 TrH2).
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Type (1,0) Dirac Ensembles

The partition function of a Dirac ensemble can be written in
terms of a random N × N Hermitian matrix variable H:

Z =

∫
HN

e−S̃(H)dH.

We are mainly concerned with finding the moments of these
models in the large N limit.

mk = lim
N→∞

⟨ 1
N

TrHk⟩ = lim
N→∞

1

N

1

Z

∫
HN

TrHke−S̃(H)dH.

dk = lim
N→∞

⟨ 1

N2
TrDk⟩ = lim

N→∞

1

N2

1

Z

∫
G
TrDke−S(D)dD.

Hamed Hessam, hhessam@uwo.ca Bootstrapping Dirac Ensembles



Type (1,0) Dirac Ensembles

The partition function of a Dirac ensemble can be written in
terms of a random N × N Hermitian matrix variable H:

Z =

∫
HN

e−S̃(H)dH.

We are mainly concerned with finding the moments of these
models in the large N limit.

mk = lim
N→∞

⟨ 1
N

TrHk⟩ = lim
N→∞

1

N

1

Z

∫
HN

TrHke−S̃(H)dH.

dk = lim
N→∞

⟨ 1

N2
TrDk⟩ = lim

N→∞

1

N2

1

Z

∫
G
TrDke−S(D)dD.

Hamed Hessam, hhessam@uwo.ca Bootstrapping Dirac Ensembles



Bootstrapping Random Matrix Models

H. Lin introduced bootstrap method to find the moments of a
matrix model.

Bootstrapping contains following three steps:

Step 1: Find the Schwinger-Dyson equations (SDEs) of the
model.

Step 2: Find the dimension of the search space.

Step 3: Apply positivity constraint with a cutoff.
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Hamburger Moment Problem

Hamburger Moment Problem

Given a sequence of numbers (m0,m1,m2, ...), does there exist a
positive Borel measure µ on the real line such that

mn =

∫
R
xn dµ(x)?

The Hamburger moment problem is solvable if and only if the
corresponding Hankel matrix is positive semi-definite.

m0 m1 m2 m3 · · ·
m1 m2 m3 m4 · · ·
m2 m3 m4 m5 · · ·
m3 m4 m5 m6 · · ·
· · · · · · · · · · · · · · ·

 ≥ 0
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Schwinger-Dyson Equations

In general, the Schwinger-Dyson equations come from the
following integral.

N∑
i ,j=1

∫
Hm

N

∂

∂(Hq)ij

(
Wij e

−S̃(H1,H2,...,Hm)
)
dH1...dHm = 0.

The above equation generates the following SDEs in single
matrix model.

ℓ−1∑
k=0

⟨TrHℓ−1−k
1 TrHk

1 ⟩ = ⟨TrHℓ
1S̃

′(H1)⟩.
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Quartic Dirac Ensemble of Type (1,0)

Consider the Dirac ensemble of type (1,0) with the potential
function

S(D) = g TrD2 + TrD4.

The potential function in terms of a random Hermitian matrix

S̃(H) = g(2N TrH2 + 2TrH TrH)

+ (2N TrH4 + 8TrH TrH3 + 6TrH2 TrH2).

Step 1: The SDEs

m2ℓ+2 =
1

8

2ℓ−2∑
k=0

mkm2ℓ−k−2 −
1

2
gm2ℓ − 3m2m2ℓ.

Step 2: The dimension of the search space is 1.
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Positivity Constraints

Positivity Constraints

The existence of a eigenvalue density function ρ(x), gives us
constraints on moments.

Take a real polynomial f (x) =
∑

cjx
j . Then the positivity of

the integral
∫
R f (x)2ρ(x)dx implies the positive

semi-definiteness of the Hankel matrix of moments

M =


1 m1 m2 m3 · · ·
m1 m2 m3 m4 · · ·
m2 m3 m4 m5 · · ·
m3 m4 m5 m6 · · ·
· · · · · · · · · · · · · · ·


These positivity constraints can be applied to both the
moments of the matrix ensemble and the Dirac ensemble.
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The Solution of Quartic Dirac Ensemble
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Figure: The approximate relation between m2 and g , with g varying from
−2.5 to 1.5. The different coloured regions denote different constraints
applied. The more constraints the smaller the region. The relationship
found is very close to the analytic relationship.
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The Solution of Quartic Dirac Ensemble
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Figure: The approximate relation between m2 and g , with g varying from
−5 to −2.5.
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Type (1,0) Cubic Dirac Ensemble

Now consider the partition function of the cubic Dirac
ensemble

Z =

∫
G
e−S(D)dD

with

S(D) =
1

4
TrD2 +

g

6
TrD3.

S̃(H) =
1

2

(
N TrH2 + (TrH)2

)
+
g

3

(
N TrH3 + 3TrH2 TrH

)
.

The loop equations of the model are the following equations:

ℓ−1∑
k=0

mkmℓ−k−1 = mℓ+1 +m1mℓ + g (mℓ+2 + 2m1mℓ+1 +m2mℓ) .
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The Solution of Cubic Dirac Ensemble

Figure: The search space region for the (1,0) cubic model. Each colour
corresponds to the positivity of different number of constraints derived
from principal minors. The solution space narrows as the number of
constraints increases. Notice that in this example increasing the number
of constraints seems to show that there exists a nonlinear relationship
between g and m1.
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Type (2,0) Dirac Ensemble

Recall type (2,0) random geometries

D = γ1 ⊗ {A, ·}+ γ2 ⊗ {B, ·},

with

γ1 =

(
1 0
0 −1

)
γ2 =

(
0 1
1 0

)
,

where A and B are Hermitian matrices.

We consider the quartic Dirac ensemble with the partition
function

Z =

∫
G
e−S(D)dD,

where
S(D) = g TrD2 + TrD4.
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Type (2,0) Dirac Ensemble

TrD2 = 4N TrA2 + 4N TrB2 + 4(TrA)2 + 4(TrB)2

TrD4 = 4N TrA4 + 4N TrB4 + 16N TrA2B2 − 8N TrABAB

+ 16TrATrA3 + 16TrATrB2A+ 16TrB TrB3

+ 16TrB TrA2B + 16(TrAB)2 + 12(TrA2)2

+ 12(TrB2)2 + 8TrA2 TrB2.

The partition function of a Dirac ensemble can be written in
terms of random Hermitian N × N matrices variable A and B:

Z =

∫
HN×HN

e−S̃(A,B)dAdB.
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SDEs of Type (2,0) Dirac Ensemble

The SDE of this model with respect to word Aℓ comes from

N∑
i ,j=1

∫
H2

N

∂

∂(A)ij

(
(Aℓ)ij e

−(g TrD2+TrD4)
)
dAdB = 0,

Notation

ma,b,c,d = lim
N→∞

1

N
⟨TrAaBbAcBd⟩.

ℓ−1∑
k=0

mkmℓ−k−1 = (8g + 64m2)mℓ+1 + 16mℓ+3

− 16mℓ,1,1,1 + 32mℓ+1,2,
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SDEs of Type (2,0) Dirac Ensemble

When ℓ < 9: In the left hand side, there is no term that is
product of moments that come from degree four words or
higher.
For instance, m2,2m4 cannot be found.

SDE’s of words with length less than 9 can be seen as the
system of linear equations and that can be solved in terms of
g and m2.

Lemma

The number of non-trivial moments (up to cyclic permutation and
symmetry) that appear in the loop equations of words with length
ℓ ≥ 9 is less than the number of non-zero loop equations.
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The Solution for the Type(2,0) Model

Corollary

The dimension of the search space of the model is 1.

By generating all the loop equations for words up to order ten,
we found remarkable formulas for moments up to order eight
in terms of g and the second moment m2.

m4 = −1

8
gm2 +

1

64
,

m2,2 = −1

8
gm2 −m2

2 +
1

64
,

m1,1,1,1 =
gm2

8
+ 2m2

2 −
1

64
,

m6 =
g2m2

64
− g

512
− gm2

2

8
+

3m2

64
− 5m2

3

4
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The Solution for the Type(2,0) Model

m4,2 =
g2m2

64
+

gm2
2

8
− g

512
− m2

3

4
+

m2

64

m3,1,1,1 = −g2m2

64
− 3 gm2

2

8
− 7m2

3

4
+

g

512
+

m2

64

m2,1,2,1 =
g2m2

64
+

3 gm2
2

8
− g

512
+

11m2
3

4
− m2

64

m8 = −gm2

64
+
m2

4

4
+

g2

4096
+
m2

2

256
+

3

4096
−g3m2

512
+
3 g2m2

2

64
+
gm2

3

2
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The Solution for the Type(2,0) Model

First three nonzero moments of the signature two Dirac
ensemble

d2 = 8m2,

d4 = −4 gm2 +
1

2
,

d6 = −160m2
3 − 16 gm2

2 + 6m2 + 2 g2m2 −
1

4
g .
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Positivity Constraints of Multimatrix Model

Consider the space of words with letters A and B, and index them
in the following manner.

W = {W0 = ∅,W1 = A,W2 = B,AA,AB,BA,BB, · · · }

Let

O =
k∑

p=1

apWp.

Then

1

N
⟨TrOtO⟩ =

k∑
p,q=1

apaqMp,q ≥ 0,

where

Mp,q =
1

N
⟨TrW∗

pWq⟩.

i.e.
M = (Mp,q) ≥ 0.
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Positivity Constraints of Multimatrix Model

For instance, with the following sequence of words
∅,A,B,AA,AB,BB, · · · we can enforce positivity of the
matrix

1 mA mB mAA mAB mBB

mA mAA mAB mAAA mAAB mABB

mB mBA mBB mBAA mBAB mBBB

mAA mAAA mAAB mAAAA mAAAB mAABB

mBA mBAA mBAB mBAAA mBAAB mBABB

mBB mBBA mBBB mBBAA mBBAB mBBBB

 .

Hamed Hessam, hhessam@uwo.ca Bootstrapping Dirac Ensembles



The Solution for the Type (2,0) Model
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Figure: The search space region for the (2,0) quartic model where the
relationship between g and m2 is nonlinear. The different coloured
regions denote different constraints applied. The more constraints the
smaller the region.
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The Solution for the Type (2,0) Model
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Figure: The search space region for the (2,0) quartic model where the
relationship between g and m2 becomes linear.
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Bootstrap Method

We can observe the bootstrap method as a semi-definite
programming (SDP):

Minimize
∑

i ciWi ci ’s are fixed,

subject to
∑

i ,j WiA
(k)
ij Wj =

∑
i B

(k)
i Wi k ’th loop equation,

M ≥ 0, positivity constraint.
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Relaxing Bootstrap

Recently, V. Kazakov and Z. Zheng, developed the idea of
bootstrap and relaxed the non-linear equations to the linear ones.

They treated Xij = WiWj appears in the left hand side of the loop
equations as independent variables, and relaxed it to the positivity
of the matrix

R =


1 W1 W2 W3 · · ·
W1 X11 X12 X13 · · ·
W2 X21 X22 X23 · · ·
W3 X31 X32 X33 · · ·
· · · · · · · · · · · · · · ·

 ≥ 0.
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Relaxing Bootstrap

Relaxing bootstrap method as a semi-definite programming (SDP):

Minimize
∑

i ciWi

(ci ’s are fixed)

subject to
∑

i ,j A
(k)
ij Xij =

∑
i B

(k)
i Wi ,

(k ’th loop equation with WiWj → Xij)

R ≥ 0,

(positivity of relaxation matrix)

M ≥ 0.

(positivity of correlation matrix)
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Conclusion and Future Work

Bootstrap offers a never before opportunity to study Dirac
and random matrix ensembles, since Monte Carlo simulations
are severely limit of matrix size and known analytic results do
not extend to geometries with signature of two or higher.

Applying bootstrap to a more complicated potential function
or geometries such as signature 3 in hopes of finding more
information about these models.

Reconstructing the eigenvalue distributions of both the Dirac
and random matrix ensembles.

Find SDEs strictly in terms of Dirac moments for any random
geometry.
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Questions

Thanks for your attention.
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