Quantum Gravity from Integration over Dirac ensembles

by John W. Barrett

QNCG talk Page 1

Outline

I Spectral triples - Commutative - Non-commutative Quantum models Random Dirác ensembles - Finite spectral triples - dim 3 results

QNCG talk Page 2

I: Commutative spectral triples

$(\mathcal{A}, \mathcal{H}, D)$

- *A*: commutative *-algebra
- \mathcal{H} : Hilbert space with action of \mathcal{A} and commuting action of $\gamma, \gamma^2 = 1$

• D:
$$\mathcal{H} \to \mathcal{H}$$

 $D\gamma = -\gamma D$ (s even)
 $+\gamma D$ (s odd)
 $[[D,a],b] = 0$ for all $a, b \in \mathcal{A}$

Manifolds

M oriented Spin-C compact

$$(M, g_{\mu\nu}) \leftrightarrow (\mathcal{A}, \mathcal{H}, D)$$

• $\mathcal{A} = C^{\infty}(M, \mathbb{C})$

•
$$(*f)(x) = \overline{f}(x)$$

• $\mathcal{H} = L^2(S, dV)$,

• γ = chirality of *S*

•
$$D = e_a^{\mu}(x)\gamma^a \nabla_{\!\!\mu}$$
,

$$e^2 = g$$

Regularity h~ n'a Hochschild cycle

Connes reconstruction: given dimension d, conditions on $(\mathcal{A}, \mathcal{H}, D)$ such that it is a d-manifold.

Hochschild cycle $\sum a_0[D,a_1][D,a_2] - [D,a_d] = \gamma$

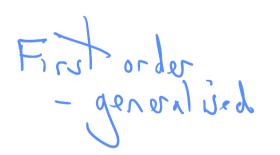
NC spectral triple

$(\mathcal{A}, \mathcal{H}, D)$

- *A*: *-algebra
- \mathcal{H} : Hilbert space, bimodule over \mathcal{A} and commuting action of $\gamma, \gamma^2 = 1$

• D:
$$\mathcal{H} \to \mathcal{H}$$

 $D\gamma = -\gamma D \text{ (s even)}$
 $+\gamma D \text{ (s odd)}$
 $[[D, a \rhd], \lhd b] = 0 \text{ for all } a, b \in \mathcal{A}$



Real structure

 $J: \mathcal{H} \to \mathcal{H}$, antilinear

•
$$J^2 = \pm 1$$

• $JD = \pm'DJ$
• $J\gamma = \pm''\gamma J$

Signs $\leftrightarrow s \in \mathbb{Z}/8$

Commutative case $Ja^*J^{-1} = a$ *M*: spin manifold

Non-commutative case $\triangleleft a = J(a^* \rhd)J^{-1}$

SM internal space

particle left action right action $(\mathcal{A}_F, \mathcal{H}_F, D_F)$ finite real spectral triple, s = 6 l_L q $\overline{\lambda}$ e_R • $\mathcal{A} = M_3(\mathbb{C}_{\mathbb{R}}) \oplus \mathbb{H} \oplus \mathbb{C}_{\mathbb{R}} = \{(m, q, \lambda)\}$ q m^T 1 q_l d_R $\overline{\lambda}$ m^T -1 u_R λ m^T -1 $ar{l}_L$ λ q^T -1 $ar{z}_L$ λ λ $\overline{\lambda}$ • $Jf = \overline{f}, \ J\overline{f} = f$ \overline{e}_R • JJ = J, JJ - J• $D_F = \begin{pmatrix} 0 & M & G & 0 \\ M^* & 0 & 0 & H \\ G^* & 0 & 0 & \overline{M} \\ 0 & H^* & M^T & 0 \end{pmatrix}$ • $D_{F} = \begin{pmatrix} 0 & M & G & 0 \\ M^* & 0 & 0 & \overline{M} \\ 0 & H^* & M^T & 0 \end{pmatrix}$ • $D_{F} = \begin{pmatrix} 0 & M & G & 0 \\ M^* & 0 & 0 & \overline{M} \\ 0 & H^* & M^T & 0 \end{pmatrix}$ • $D_{F} = \begin{pmatrix} 0 & M & G & 0 \\ M^* & 0 & 0 & \overline{M} \\ 0 & H^* & M^T & 0 \end{pmatrix}$ \overline{q}_{l} m \overline{d}_R m \overline{u}_R m λ u_R $\overline{
u}_R$ λ basis $(f_L, f_R, \overline{f}_L, \overline{f}_R)$

 γ_F

1

-1

1

-1

1

1

-1

1

λ

 q^T

 $\overline{\lambda}$

 λ

λ

 λ

 λ

Vacuum of SM

 $(\mathcal{A}_M, \mathcal{H}_M, D_M) =$ spacetime

 $(\mathcal{A}, \mathcal{H}, D_0) = (\mathcal{A}_M \otimes \mathcal{A}_F, \mathcal{H}_M \otimes \mathcal{H}_F, D_M \otimes 1 + \gamma_M \otimes D_F)$

 D_0 is the vacuum of SM for the spacetime. Physical fermion fields are in \mathcal{H}_+ : $\gamma_M \otimes \gamma_F = 1$

All bosonic fields: $D = D_0 + \sum_i a_i [D_0, b_i], \quad a_i, b_i \in \mathcal{A}$

II: Quantum models

Partition function for
$$QG + SM$$
:
 $Z(F) = \int e^{-S(D) + i \langle J\Psi, D\Psi \rangle} f(D, \Psi) dD d\Psi$
 $D \in G, \Psi \in \mathcal{H}_{+}$
Grassman

integration

Issues:

- What is *G*?
- Is D_F fixed?
- What is S?
- Are any axioms just e.o.m.?
- Functional integration?

III: Random Dirac models

Quantum models simplified:

- Assume fermions integrated already
- Fix $\mathcal H$, $\mathcal A$ finite dimensional and NC
- G = all D satisfying real spectral triple axioms
- $S(D) = \operatorname{tr} V(D)$, bounded below
- \int is ordinary integration on vector space \mathcal{G}

$$Z(f) = \int_{\mathcal{G}} e^{-S(D)} f(D) \, dD$$

Fuzzy spaces

$$(\gamma^{i})^{2} = \pm 1$$
 $\# + 1 = p$
 $\# - 1 = g$

 $M(n) = n \times n$ matrices

V = module for Cliff(p,q)

 $s=q-p \pmod{8}$

- $\mathcal{A} = M(n, \mathbb{C}), M(n, \mathbb{R}) \text{ or } M(n/2, \mathbb{H})$
- $\mathcal{H} = V \otimes M(n, \mathbb{C})$
- $\langle v \otimes m, v' \otimes m' \rangle = (v, v') \operatorname{Tr} m^* m'$
- $\rho(a)(v \otimes m) = v \otimes (am)$
 - $\Gamma(v\otimes m) = \gamma v\otimes m$
 - $J(v\otimes m) = Cv\otimes m^*$

Random : H, L free data

- Type (0,0)
- Type (1,0)
- Type (0,1)
- Type (2,0)
- Type (1,1)
- Type (0,2)

D = 0

$$D = \{H, \cdot\} + \gamma^1 \otimes \{H_1, \cdot\}$$

$$D = [H, \cdot] + \gamma^1 \otimes [L_1, \cdot]$$

 $D = \gamma^1 \otimes \{H_1, \cdot\} + \gamma^2 \otimes \{H_2, \cdot\}$

$$D = \gamma^1 \otimes \{H, \cdot\} + \gamma^2 \otimes [L, \cdot]$$

$$D = \gamma^1 \otimes [L_1, \cdot] + \gamma^2 \otimes [L_2, \cdot]$$

Phase transition

 $S(D) = \operatorname{tr} V(D)$ $V(D) = D^4 + g_2 D^2$

$$S = \sum_{\lambda} \lambda^4 + g_2 \lambda^2$$

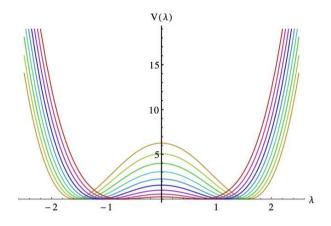
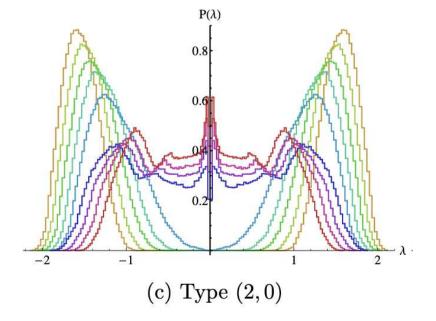


Figure 11: The potential $V = \lambda^4 + g_2 \lambda^2$ for $g_2 = -1, -1.5, -2, -2.5, -3, -3.5, -4, -4.5, -5$. The lines are coloured from red $(g_2 = -1)$ through to yellow $(g_2 = -5)$.



Monte Carlo Eigenvalue distribution

JWB + L. Glaser 2016

3d models

Numerical simulation of random

Dirac operators

$$\mathbf{T}_{i} \quad \text{Pauli}$$

$$\text{Type } (p,q) = (3,0):$$

$$D = 1 \otimes [m_{0},\cdot] + \sum_{1}^{3} \sigma_{i} \otimes \{m_{i},\cdot\}$$

Thesis submitted to the University of Nottingham for the degree of

Doctor of Philosophy, March 2022.

Mauro D'Arcangelo 14302771

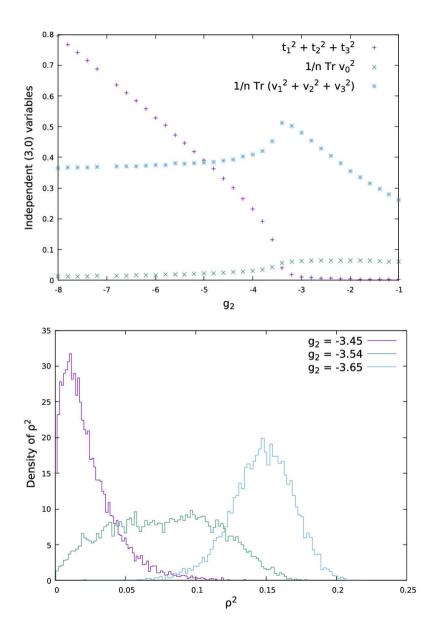
Supervised by

John W. Barrett Sven Gnutzmann Type (p,q) = (0,3): $D = 1 \otimes \{m_0,\cdot\} + \sum_{i=1}^{3} \sigma_i \otimes [m_i,\cdot]$

Decompose
$$m_{\mu} = t_{\mu}1 + v_{\mu}$$

with tr $v_{\mu} = 0$

Type (3,0)



$$D = 1 \otimes [m_0, \cdot] + \sum_{1}^{3} \sigma_i \otimes \{m_i, \cdot\}$$

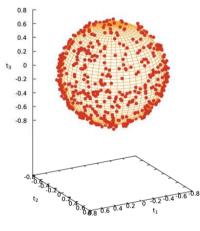
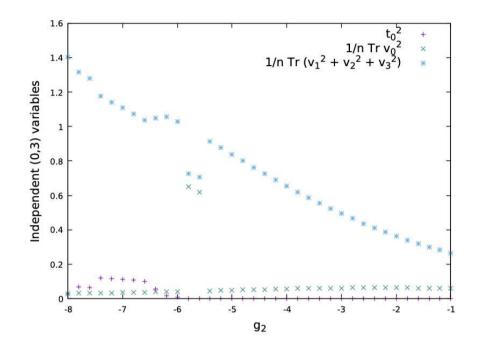


Figure 6.8: Monte Carlo history of t_1 , t_2 and t_3 in region II of the (3,0) model at $g_2 = -6$, n = 8. The solid orange sphere is a guide for the eyes.

2nd order transition to commutative phase

Type (0,3)



Fuzzy sphere $v_a = Rl_a$, a = 1,2,3

$$[l_a, l_b] = \sum_c i \epsilon_{abc} l_c, \text{ irreducible}$$
$$\frac{1}{n} \operatorname{Tr} v_c^2 = -\frac{g_2}{8} \frac{n^2 - 1}{2n^2 - 1} \approx -\frac{g_2}{16}, \quad c = 1, 2, 3$$

$$D = 1 \otimes \{m_0, \cdot\} + \sum_{1}^{3} \sigma_a \otimes [m_a, \cdot]$$

g_2	Chain 1	Chain 2	Chain 3	Chain 4	Fuzzy	$-g_2/16$
					sphere	
-300	18.6946(3)	18.6946(2)	18.6945(2)	18.6946(2)	18.6951	18.75
-150	9.3465(3)	9.3740(3)	9.3465(2)	9.3739(2)	9.3476	9.375
-100	6.2301(2)	6.2301(3)	6.2301(2)	6.2301(3)	6.2317	6.25

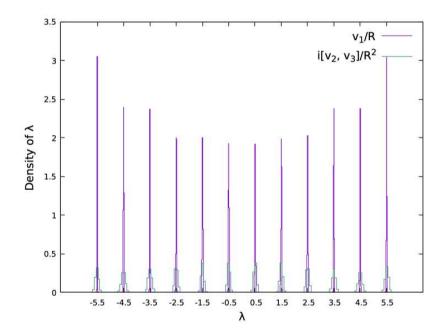


Figure 6.6: Model (0,3), eigenvalue density of v_1/R (purple) and $i[v_2, v_3]/R^2$ (green) for n = 12, $g_2 = -300$. The spectrum is compatible with an su(2) solution.

Conclusion

- Would like to model (Euclidean) quantum spacetime with a random Dirac model.
- This supposes spacetime has some NC structure. If it does, there is a good explanation of the Planck scale.
- Understanding the vacuum in such models is crucial to explaining the physical picture.