

Combinatorial algebraic remarks on Dirac ensembles and related matrix models

Noncommutative Geometry, Free Probability Theory and Random Matrix Theory, Western University, June 13-17, 2022

Carlos Pérez-Sánchez ITP, University of Heidelberg

perez@thphys.uni-heidelberg.de

Based on 1912.13288*; 2007.10914*; 2102.06999*; 2105.01025*,[†]; 2111.02858[†],* * TEAM Fundacja na Rzecz Nauiki Polskiej (Poland), † ERC, <u>indirectly</u> & DFG-Structures Excellence Cluster (Germany) Thanks to: M. Khalkhali, A. Sitarz, L Glaser, D. Benedetti, R. Gurðu,

A. Schenkel, O. Arizmendi, for discussion, comments and/or bibliography.

Outline

this talk	noncomm.	random matrix				
\downarrow	geometry	prob.	theory			
motivation	no	no	no			
introduction	yes	no	no			
fuzzy geometries	yes	Ś	yes			
Dirac ensembles	yes	no	yes			
renormalisation ੪ free algebra	no	some	yes			
gauge theories*	yes	no	after 'quantisation'			
outlook	yes	hopefully	yes			

Motivation

• From physics to NCG: The Standard Model from the Spectral Action

 $-\frac{1}{2}\partial_{\nu}g^a_{\mu}\partial_{\nu}g^a_{\mu} - g_s f^{abc}\partial_{\mu}g^a_{\nu}g^b_{\mu}g^c_{\nu} - \frac{1}{4}g^2_s f^{abc}f^{ade}g^b_{\mu}g^c_{\nu}g^d_{\mu}g^e_{\nu} +$ $\frac{1}{2}ig_s^2(\overset{*}{\bar{q}}_i^\sigma\gamma^\mu q_j^\sigma)g_\mu^a + \bar{G}^a\partial^2 G^a + g_s f^{abc}\partial_\mu \bar{G}^a G^b g_\mu^c - \partial_\nu W_\mu^+ \partial_\nu W_\mu^- M^2 W^+_{\mu} W^-_{\mu} - \frac{1}{2} \partial_{\nu} Z^0_{\mu} \partial_{\nu} Z^0_{\mu} - \frac{1}{2\epsilon^2} M^2 Z^0_{\mu} Z^0_{\mu} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} -$ $\frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - M^{2}\phi^{-} - M^{2}$ $\frac{1}{2c^2}M\phi^0\phi^0 - \beta_h [\frac{2M^2}{a^2} + \frac{2M}{a}H + \frac{1}{2}(H^2 + \phi^0\phi^0 + 2\phi^+\phi^-)] + \frac{2M^4}{a^2}\alpha_h \begin{array}{l} \overset{(*w)}{=} w_{0} Z_{0}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + \\ Z_{0}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}) - A_{\nu}(W_{\mu}^{+}\partial_{\mu}W_{\mu}^{-}) - A_{\nu}($ $W^{-}_{\nu}\partial_{\nu}W^{+}_{\mu})] - \frac{1}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{i}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu} + \frac{i}{2}g^{2}W^{+}_{\mu}W^{-}_{\nu}W^{+}_{\nu}W^{-}_{\nu}$ $q^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\mu}^{0}W_{\nu}^{-}-Z_{\mu}^{0}Z_{\mu}^{0}W_{\mu}^{+}W_{\nu}^{-})+q^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} A_{\mu}A_{\mu}W^{+}_{\nu}W^{-}_{\nu}) + g^{2}s_{w}c_{w}[A_{\mu}Z^{0}_{\nu}(W^{+}_{\mu}W^{-}_{\nu} - W^{+}_{\nu}W^{-}_{\nu}) 2A_{\mu}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{2}g^{2}\alpha_{h}[H^{4} +$ $(\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}]$ $gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})$ ghosts $W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}\phi^{0})]+\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H) W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g^{-1}_{c}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)$ shouldnt $ig \frac{s_w^2}{2} M Z_u^0 (W_u^+ \phi^- - W_u^- \phi^+) + ig s_w M A_u (W_u^+ \phi^- - W_u^- \phi^+)$ be $ig \frac{1-2c_w^2}{2s} Z_u^0(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^- \phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^- \phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^- \phi^- \phi^- \partial_\mu \phi^- \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^- \phi^- \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^- \phi^- \phi^- \partial_\mu \phi^- \phi^- \partial_\mu \phi^+) + igs_w A_\mu(\phi^- \phi^- \phi^- \partial_\mu \phi^- \phi^- \partial_\mu \phi^-) + igs_w A_\mu(\phi^- \phi^- \phi^- \partial_\mu \phi^- \phi^- \partial_\mu \phi^-) + igs_w A_\mu(\phi^- \phi^- \phi^- \partial_\mu \phi^- \phi^- \partial_\mu \phi^-) + igs_w A_\mu(\phi^- \phi^- \phi^- \partial_\mu \phi^- \phi^- \partial_\mu \phi^-) + igs_w A_\mu(\phi^- \phi^- \phi^- \partial_\mu \phi^- \phi^- \phi^- \partial_\mu \phi^-) + igs_w A_\mu(\phi^- \phi^- \phi^- \phi^-) + igs_w A_\mu(\phi^- \phi^- \phi^-) + igs_w A_\mu($ nere $\frac{1}{4}g^{2}W_{\nu}^{+}W_{\nu}^{-}[H^{2}+(\phi^{0})^{2}+2\phi^{+}\phi^{-}]-\frac{1}{4}g^{2}\frac{1}{2}Z_{\nu}^{0}Z_{\nu}^{0}[H^{2}+(\phi^{0})^{2}+$ $2(2s_w^2-1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{2}Z_u^0\phi^0(W_u^+\phi^-+W_u^-\phi^+) -$

$$\begin{split} & \frac{1}{2} i g^2 \frac{e_w}{e_w} Z_\mu^\mu H(W_\mu^+ \phi^- - W_\mu^- \phi^+) + \frac{1}{2} g^2 s_w A_\mu \phi^0(W_\mu^+ \phi^- + W_\mu^- \phi^+) - g^2 \frac{e_w}{2} (2 \frac{e_w}{e_\mu} - 1) Z_\mu^0 A_\mu \phi^+ \phi^- - g^+ s_w^2 A_\mu A_\mu \phi^+ \phi^- - - V_\mu^- \phi^+) - m_\lambda^\lambda (2 \frac{e_w}{e_\mu} - 2 \frac{$$

...this 'fits' in $\mathrm{Tr}(f(D/\Lambda)) + \frac{1}{2} \langle J\tilde{\xi}, D_A \tilde{\xi} \rangle$

Num. of generations and $\mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}) \rightarrow$

 \rightarrowtail Classical Lagrangian of the Standard Model

[Chamseddine-Connes-Marcolli ATMP '07 (Euclidean); J. Barrett J. Math. Phys. '07 (Lorenzian)]

NCG

Motivation

• From physics to NCG: The Standard Model from the Spectral Action

Num. of generations and $\mathbb{C} \oplus \mathbb{H} \oplus M_3(\mathbb{C}) \rightarrowtail$ NCG

 \rightarrowtail Classical Lagrangian of the Standard Model

[Chamseddine-Connes-Marcolli ATMP '07 (Euclidean); J. Barrett J. Math. Phys. '07 (Lorenzian)]

Towards a quantum theory of noncommutative spaces

K The far distant goal is to set up a functional integral evaluating spectral

observables
$$\mathscr{S} \quad \langle \mathscr{S} \rangle = \int \mathscr{S} e^{-\operatorname{Tr} f(D/\Lambda) - \frac{1}{2} \langle J\psi, D\psi \rangle + \rho(e,D)} de d\psi dD \implies$$

$$\int_{\text{metric}} e^{-\frac{1}{\hbar} S_{\text{EH}}[g]} dg \xrightarrow{\text{Einstein-Hilbert} \to \text{spectral}} \int_{\text{Dirac}} e^{-\frac{1}{\hbar} \text{Tr} f(D)} dD$$

(hard to define for manifolds)

 $f: \mathbb{R} \to \mathbb{R}$ with $f(D) \to \infty$ at large argument

• Possible application to (Euclidean) quantum gravity

Quantum superposition of geometries

Towards a quantum theory of noncommutative spaces

« The far distant goal is to set up a functional integral evaluating spectral

observables
$$\mathscr{S} \quad \langle \mathscr{S} \rangle = \int \mathscr{S} e^{-\operatorname{Tr} f(D/\Lambda) - \frac{1}{2} \langle J\psi, D\psi \rangle + \rho(e,D)} de d\psi dD \implies$$

$$\int_{\text{metric}} e^{-\frac{1}{\hbar} S_{\text{EH}}[g]} dg \xrightarrow{\text{Einstein-Hilbert} \to \text{spectral}} \int_{\text{Dirac}} e^{-\frac{1}{\hbar} \operatorname{Tr} f(D)} dD$$

(hard to define for manifolds)

 $f:\mathbb{R}\to\mathbb{R}$ with $f(D)\to\infty$ at large argument

• Possible application to (Euclidean) quantum gravity

Origin of noncommutative topology

Connes' noncommutative (nc) geometry = nc topology [Gelfand, Najmark Mat. Shornik '43] + metric [A. Connes, NCG '94] {compact Hausdorff topological spaces} \simeq {unital commutative C*-algebras} {'noncommutative topological spaces'} \simeq {unital commutative C*-algebras}

• arguably, the 1st NCG-theorem is *Weyl's law* (1911) on the rate of growth of the Laplace spectrum (ordered $\lambda_0 \leq \lambda_1 \leq \lambda_2 \dots$) of $\Omega \subset \mathbb{R}^d$

$$\#\{i:\lambda_i\leqslant\Lambda\}=\frac{\operatorname{vol}(\mathsf{unit ball})}{(2\pi)^d}\operatorname{vol}\Omega\cdot\Lambda^{d/2}+\operatorname{o}(\Lambda^d)$$

0=n/6 2

From this, you cannot answer positively Marek Kac' 1966-question. But you can 'hear the shape of Ω ' knowing a *spectral triple*. [A, Connes, JNCG 2013] (and from it [Connes-van Suijlekom, CMP 2021] can hear an MP3; our story today is not entirely unrelated.)

$$\inf_{\gamma \text{ as above}} \{ \int_{\gamma} \mathrm{d}s \} = d(x,y)$$

|f(x) - f(y)|

 $\sup_{f\in \mathcal{C}^{\infty}(\mathcal{M})}\{|f(x)-f(y)| : ||D_{\mathcal{M}}f-fD_{\mathcal{M}}|| \leq 1\}$

 $\inf_{\gamma \text{ as above}} \{ \int_{\gamma} \mathrm{d}s \} = d(x, y) = \sup_{f \in \mathcal{C}^{\infty}(\mathcal{M})} \{ |f(x) - f(y)| : ||D_{\mathcal{M}}f - fD_{\mathcal{M}}|| \leq 1 \}$

Commutative spectral triples

A spin manifold ${\cal M}$ yields $({\it A}_{{\it M}},{\it H}_{{\it M}},{\it D}_{{\it M}})$

- $A_M = C^{\infty}(M)$ is a comm. *-algebra
- $H_{\mathcal{M}}:=L^2(\mathcal{M},\mathbb{S})$ a repr. of $A_{\mathcal{M}}$
- $D_{\mathcal{M}} = -\mathrm{i}\gamma^{\mu}(\partial_{\mu}+\omega_{\mu})$ is self-adjoint
- for each $a \in A_M$, $[D_M, a]$ is bounded, and in fact $[D_M, x^\mu] = -i\gamma^\mu$
- D_M has compact resolvent . . .

Commutative spectral triples

A spin manifold M yields (A_M, H_M, D_M)

- $A_{\mathcal{M}} = C^{\infty}(\mathcal{M})$ is a comm. *-algebra
- $H_{\mathcal{M}}:=L^2(\mathcal{M},\mathbb{S})$ a repr. of $A_{\mathcal{M}}$
- ${\cal D}_{\cal M}=-{
 m i}\gamma^\mu(\partial_\mu+\omega_\mu)$ is self-adjoint
- for each $a \in A_M$, $[D_M, a]$ is bounded, and in fact $[D_M, x^\mu] = -i\gamma^\mu$
- D_M has compact resolvent . . .

A spectral triple (A, H, D) consists of

- a *-algebra A
- a representation H of A
- a self-adjoint operator D on H with compact resolvent and such that [D, a] is bounded for each a ∈ A

Commutative spectral triples

A spin manifold M yields (A_M, H_M, D_M)

- $A_{\mathcal{M}} = C^{\infty}(\mathcal{M})$ is a comm. *-algebra
- $H_{\mathcal{M}}:=L^2(\mathcal{M},\mathbb{S})$ a repr. of $A_{\mathcal{M}}$
- ${\it D}_{\it M}=-{\rm i}\gamma^{\mu}(\partial_{\mu}+\omega_{\mu})$ is self-adjoint
- for each $a \in A_M$, $[D_M, a]$ is bounded, and in fact $[D_M, x^\mu] = -i\gamma^\mu$
- D_M has compact resolvent . . .

A spectral triple (A, H, D) consists of

- a *-algebra A
- a representation H of A
- a self-adjoint operator D on H with compact resolvent and such that [D, a] is bounded for each a ∈ A

II. Fuzzy Geometries and Multimatrix Models

A *fuzzy geometry* of signature (p, q), so $\eta = \text{diag}(+_p, -_q)$, consists of

- $A = M_N(\mathbb{C})$
- $H = \mathbb{S} \otimes M_N(\mathbb{C})$, with \mathbb{S} a $\mathbb{C}\ell(p,q)$ -module

... (axioms for D omitted, go to axioms \bigtriangledown)...

• Fixing conventions for γ 's, characterisation of D in even dimensions:

$$D = \sum_{J} \Gamma_{\text{s.a.}}^{J} \otimes \{H_{J}, \cdot\} + \sum_{J} \Gamma_{\text{anti.}}^{J} \otimes [L_{J}, \cdot]$$

multi-index J monot. increasing, |J| odd [J. Barrett, J. Math. Phys. 2015], $H_J^* = H_J$, $L_J^* = -L_J$

• Examples: [J. Barrett, L. Glaser, J. Phys. A 2016]

-
$$D_{(1,1)} = \gamma^1 \otimes [L, \cdot] + \gamma^2 \otimes \{H, \cdot\}$$

$$- D_{(0,4)} = \sum_{\mu} \gamma^{\mu} \otimes [L_{\mu}, \cdot] + \gamma^{\hat{\mu}} \otimes \{H_{\hat{\mu}}, \cdot\}$$

so we will get double traces from $Tr_H = Tr_{\mathbb{S}} \otimes Tr_{M_N(\mathbb{C})} = Tr_{\mathbb{S}} \otimes Tr_N^{\otimes 2}$

Notation: $\operatorname{Tr}_V X$ is the trace on operators $X : V \to V$, $\operatorname{Tr}_V 1 = \dim V$. So $\operatorname{Tr}_N 1 = N$ but $\operatorname{Tr}_{\mathcal{M}_N(\mathbb{C})}(1) = N^2$.

• A tool to organize the fuzzy spectral action is chord diagrams:

• for dimension-d geometries, the combinatorial formula [CP 19] reads

$$\frac{1}{\dim \mathbb{S}} \operatorname{Tr}(D^{2t}) = \sum_{\substack{h, \dots, h_{2t} \in \Lambda_{d}^{-}, \, dx^{-} \neq 0 \text{ on } \mathbb{R}^{d} \\ h, \dots, h_{2t} \in \Lambda_{d}^{-} \\ \chi \in \operatorname{CD}_{2n} \\ 2n = \sum_{i} |h_{i}| \\ \times \left(\sum_{\Upsilon \in \mathscr{P}_{2t}} \operatorname{sgn}(h_{\Upsilon}) \times \operatorname{Tr}_{N}(K_{h_{\Upsilon}c}) \times \operatorname{Tr}_{N}\left[(K^{T})_{h_{\Upsilon}}\right]\right)\right) \xrightarrow{\mu_{1}} K_{I_{1}} \\ = (\mu_{1}, \mu_{2}, \mu_{3}) \\ K_{I_{1}} \\ \mu_{1} \\ \mu_{2} \\ \mu_{3} \\ \mu_{4} \\ \mu_{5} \\ \mu_{5} \\ \mu_{6} \\ \mu_{7} \\ \mu_{7} \\ \mu_{6} \\ \mu_{7} \\ \mu_{7} \\ \mu_{6} \\ \mu_{7} \\ \mu_{8} \\ \mu_{7} \\ \mu_{7} \\ \mu_{8} \\ \mu_{8} \\ \mu_{8} \\ \mu_{7} \\ \mu_{8} \\ \mu_{8} \\ \mu_{8} \\ \mu_{7} \\ \mu_{8} \\ \mu_{8} \\ \mu_{7} \\ \mu_{8} \\ \mu_{8} \\ \mu_{7} \\ \mu_{8} \\ \mu_{8}$$

• A tool to organize the fuzzy spectral action is chord diagrams:

• for dimension-d geometries, the combinatorial formula [CP 19] reads

Warning: These chord diagrams are **not** Feynman diagrams, they just determine the classical action.

Warning: These chord diagrams are **not** Feynman diagrams, they just determine the classical action.

Let's go to the quantum theory, but before some remarks...

Multimatrix models with multitraces & ribbon graphs

• The chord-diagram description holds in general dimension and signature [CP 19]

$$\begin{split} \mathcal{Z} &= \int_{\text{Dirac}} e^{-\operatorname{Tr}_H f(D)} \mathrm{d}D \quad (\hbar = 1) \\ &= \int_{\mathcal{M}_{p,q}} e^{-N\operatorname{Tr}_N P - \operatorname{Tr}_N^{\otimes 2}(\mathcal{Q}_{(1)} \otimes \mathcal{Q}_{(2)})} \mathrm{d}\mathbb{X}_{\text{Leb}} \end{split}$$

- $\mathbb{X} \in \mathcal{M}_{p,q} = \text{products of } \mathfrak{su}(N) \text{ and } \mathcal{H}_N$
- $\mathrm{d}\mathbb{X}_{\mathsf{Leb}}$ is the Lebesgue measure on $\mathcal{M}_{p,q}$
- P, $Q_{(i)}$ are certain nc-polynomials

 $\bar{g}_2 \operatorname{Tr}_N^{\otimes 2}(AABABA \otimes AA)$

.

- $\mathcal{Z}_{\text{formal}}$ is the gen. func. of colored ribbon graphs (maps)

$$\bar{g}_1 \operatorname{Tr}_N(ABBBAB) \quad \leftrightarrow$$

- Multitrace random matrices:
 - 'touching interactions' [Klebanov, PRD '95]
 - wormholes [Ambjørn-Jurkiewicz-Loll-Vernizzi, JHEP '01]
 - stuffed maps [G. Borot AHP-D '14]
 - trace polynomials [G. Cébron, J.Funct.Anal. '13]
 [D. Jekel-W. Li-D. Shlyakhtenko, 2021; A. Guionnet...,]
 AdS/CET. number of the consent
 - AdS/CFT [Witten, hep-th/0112258]
- Ribbon graphs: Enumeration of maps [Brezin, Itzykson, Parisi, Zuber, CMP '78], here 'face-worded'

11

III. Functional renormalisation in random matrices

Motivation from '2D-Quantum Gravity'

discrete surfaces	\leftrightarrow	matrix integrals $\mathcal{Z}(\lambda)$ [B. Eynard, Counting Surfaces [16]	* ItG-flaw
smooth surface	\leftrightarrow	$\begin{array}{l} \langle {\rm area} \rangle \mbox{ finite} \\ {\rm transformations} \mbox{ infinitesimal mesh } {\rm a} \\ \langle {\rm area} \rangle_g \sim \frac{{\rm a}^2(2-2g)}{\lambda/\lambda_{\rm c}-1} \end{array}$	296 Symmetry preserving by personne
all topologies ↑	\leftrightarrow	$\mathcal{Z}(\lambda) = \sum_{g} N^{2-2g} \mathcal{Z}_{g}(\lambda)$ $\stackrel{\wr}{\underset{(\lambda_{c} - \lambda)^{(2-2g)/\theta}}{\wr}}$	"Theory space" g_{+}
double-scaling limit		$N(\lambda_{ m c}-\lambda)^{1/ heta}=C$	Chosen bare action $S = \Gamma_{N=\Lambda}$ Full effective action $\Gamma = \Gamma_{N=\Lambda}$
lin. RG-flow near a fixed point	\leftrightarrow	$\begin{split} \lambda(N) &= \lambda_{\rm c} + (N/\mathcal{C})^{-\theta} \\ \theta &= -(\partial\beta/\partial\lambda) _{\lambda_{\rm c}} \\ \text{[Eichhorn-Koslowski, PRD, 13]} \end{split}$	• Interpolating action $\Gamma_{N=\Lambda-\rho}$ (projected & truncated) \longrightarrow RG-flow with truncation and projection

[CP 20] →

Homogeneisation of notation

• Let's write $\mathbb{E}[\bullet]$ for $\langle \bullet \rangle$. Wick's theorem [L. Isserlis Biometrika 1918]: for zero-mean x_i 's, ...

$$\mathbb{E}[\mathbf{x}_{j_1}\cdots\mathbf{x}_{j_{2n}}] = \sum_{\substack{\pi \in P_2(2n) \\ (pairings)}} \prod_{(p,q) \in \pi} \mathbb{E}[\mathbf{x}_{j_p}\mathbf{x}_{j_q}]$$

- k the number of Hermitian matrices of size $N, X_1^{(N)}, \ldots, X_k^{(N)}$ [Piotr Śniady's notation]
- Ribbon graphs. For $\mathbb{E}[(X_{\mu}^{(N)})_{i,j}(X_{\rho}^{(N)})_{I,m}] = \delta_{\mu\rho}\delta_{im}\delta_{jl}$ $\mu, \rho = 1, \dots, k; i, \dots, m = 1, \dots, N$ $(gN) \cdot \mathbb{E}\Big[\operatorname{Tr}_{N} \left(X_{1}^{(N)} X_{2}^{(N)} X_{1}^{(N)} X_{2}^{(N)} X_{3}^{(N)} X_{4}^{(N)} X_{3}^{(N)} X_{4}^{(N)} \right) \Big] =$ $\sim N^{-2}$

• Some Feynman graphs of multimatrix ϕ^4 -theory... Several-loop graph

Wast to the top of top of the top of top of

[pic by 'Princi19skydiver', Wikipedia]

One-loop graph

[pic by 'Wojciech Kielar', Wikipedia]

foot-foot, foot-hand, ok. but letters must coincide! (ignore-the head) - Some Feynman graphs of multimatrix ϕ^4 -theory... Several-loop graph

with the set

One-loop graph

[pic by 'Wojciech Kielar', Wikipedia]

- [pic by 'Princi19skydiver', Wikipedia]
- advantage of functional renormalisation: 1-loops only

- Some Feynman graphs of multimatrix $\phi^4\text{-theory...}$

Several-loop graph

[pic by 'Princi19skydiver', Wikipedia]

One-loop graph

[pic by 'Wojciech Kielar', Wikipedia]

• advantage of functional renormalisation: 1-loops only

Question (sloppy version): Given an operator Tr_N w, in w ∈ C^(N)_{⟨k⟩}, find (up to given degree in the couplings) all 1-loops it might come from, in the above example sense

Functional Renormalisation for k-matrix models (w/multitrace-measures)

Quantum theories 'flow' with energy, here in RG-time $t = \log N$, $1 \ll N < \mathcal{N}$. E.g. for k = 2 and with bare action

$$S[A, B] = \mathscr{N} \operatorname{Tr}_{\mathscr{N}} \left\{ \frac{1}{2} A^2 + \frac{1}{2} B^2 + g_{A^4} \frac{1}{4} A^4 + g_{B^4} \frac{1}{4} B^4 + \frac{1}{2} g_{ABAB} ABAB \right\}$$

radiative corrections 'generate' *effective vertices*. For instance \bigotimes generates \mathscr{N} Tr $_{\mathscr{N}}$ (*ABBA*).

$$\Gamma_{N}[A,B] = \operatorname{Tr}_{N} \left\{ \underbrace{\frac{Z_{A}}{2}A^{2} + \frac{Z_{B}}{2}B^{2} + \bar{g}_{A^{4}}\frac{1}{4}A^{4} + \bar{g}_{B^{4}}\frac{1}{4}B^{4} + \frac{1}{2}\bar{g}_{ABAB}ABAB}_{ABAB} + \underbrace{\frac{1}{2}\bar{g}_{ABBA}ABBA}_{2} + \underbrace{\frac{1}{2}\bar{g}_{AB}ABBA}_{2} + \underbrace{\frac{1}{2}\bar{g}_{A}ABBA}_{2} + \underbrace{\frac{1}{2}\bar{g}_{A}ABB}_{2} + \underbrace{\frac{1}{2}\bar{g}_{$$

We are interested in *one-loop graphs*. The *effective* vertex O_G^{eff} of such a graph is formed by reading off each word w_i traveling around all ribbon edges (propagators) by both sides:

$$O_{G}^{\text{eff}} = \frac{\text{from vertices contracted with propagators}}{\text{Tr}_{N}(w_{1}) \times \text{Tr}_{N}(w_{2}) \times \cdots \times \text{Tr}_{N}(w_{s})} \times \frac{\text{Tr}_{N}(U_{1}) \times \text{Tr}_{N}(U_{2}) \ldots \times \text{Tr}_{N}(U_{r})}{\text{form vertices vertices verticed with propagators}}$$

from vertices uncontracted with propagators

So the actual question is: find the pre-image of the map

Two steps

1. Understanding the Func. Renormalisation Eq.

[CP 2007.10914, Ann. Henri Poincaré 2021]

- prove Wetterich Equation, or FRGE; its proof determines the algebra that governs geometric series in the Hessian of Γ
- [A. Eichhorn, T. Koslowski, *Phys. Rev. D* '13] oriented us, but the proof of the FRGE dictates an algebra not reported there
- β -equations found for a sextic truncation (48 running operators). For the unique real solution g^* leading to a single relevant direction (positive e.v. of $-(\partial \beta_i/\partial g_i)_{i,j}|_{g^*})$ yields an R_N -dependent

 $g^*_{A^4} = 1.002{ imes}ig(g^*_{A^4}|_{ ext{[Kazakov-Zinn-Justin, Nucl. Phys. B '99]}ig)$

2. Unicity (using a ribbon graph argument) [CP 2111.02858 Lett. Math. Phys. 2022]

- write down Wetterich Equation " $\dot{\Gamma} = \frac{1}{2} \operatorname{Tr}_{M_k(\mathcal{A})} \left\{ \dot{R}_N / [\Gamma^{(2)} + R_N] \right\}$ "
- assume an expansion of its rhs in unitary-invariant operators (≠ exact RG)
- impose the one-loop structure and solve for the algebra $\mathcal{A} = \mathcal{A}_{k,N}$
- determine from it the algebra that computes Wetterich equation; it is unique and the one reported in [CP 2007.10914]

• *nc-derivative* $\partial_A : \mathbb{C}_{\langle k \rangle} \to \mathbb{C}_{\langle k \rangle}^{\otimes 2}$ sums over 'replacements of A by \otimes '

$$\partial_A(PAAR) = P \otimes AR + PA \otimes R$$
, but
 $\partial_A(ALGEBRA) = 1 \otimes LGEBRA + ALGEBR \otimes 1$

 parenthetically, nc-derivatives allow to compactly write loop-equations (or Dyson-Schwinger eqs.) in random matrix theory

$$\mathbb{E}\left[\left(\frac{1}{N}\operatorname{Tr}_{N}\otimes\frac{1}{N}\operatorname{Tr}_{N}\right)(\partial_{X}P)\right] = \mathbb{E}\left[P \underbrace{\mathscr{D}_{X}}_{\checkmark}V\right] \qquad P \in \mathbb{C}_{\langle k \rangle}$$

 $\mathcal{D}_{X} P = \partial_{X} \operatorname{Tr}_{Y} P \qquad P \in \mathcal{C}_{M}^{(\omega)}$

[J. Mingo, R. Speicher Probab. Math. Stat. 2013] [A. Guionnet Jpn. J. Math. 2016] K. S. Azarfar and N. Pagliaroli's talks)

• $W \in \mathbb{C}_{\langle k \rangle}$, the *nc-Hessian* Hess $\operatorname{Tr}_N W \in M_k(\mathbb{C}_{\langle k \rangle} \otimes \mathbb{C}_{\langle k \rangle})$ has entries are Hess_{b,a} Tr $W = (\partial_{X_b} \circ \partial_{X_a}) \operatorname{Tr}_N W$. Are computed by 'cuts': e.g. W = ABAABABB [CP [21]

19

• products of traces \Rightarrow extend by \boxtimes , $\mathcal{A}_k = (\mathbb{C}_{\langle k \rangle} \otimes \mathbb{C}_{\langle k \rangle}) \oplus (\mathbb{C}_{\langle k \rangle} \boxtimes \mathbb{C}_{\langle k \rangle})$

 $\operatorname{Hess}_{a,b}(\operatorname{Tr} P \cdot \operatorname{Tr} Q) = \operatorname{Tr} P \cdot \operatorname{Hess}_{a,b}[\operatorname{Tr} Q] + (\partial_{X_a} \operatorname{Tr} P) \boxtimes (\partial_{X_b} \operatorname{Tr} Q) + (P \leftrightarrow Q)$

• Wetterich Eq. governs the functional RG $t = \log N$ $\eta_j = -\partial_t \log(Z_j)$

• products of traces \Rightarrow extend by \boxtimes , $\mathcal{A}_k = (\mathbb{C}_{\langle k \rangle} \otimes \mathbb{C}_{\langle k \rangle}) \oplus (\mathbb{C}_{\langle k \rangle} \boxtimes \mathbb{C}_{\langle k \rangle})$

 $\operatorname{Hess}_{a,b}(\operatorname{Tr} P \cdot \operatorname{Tr} Q) = \operatorname{Tr} P \cdot \operatorname{Hess}_{a,b}[\operatorname{Tr} Q] + (\partial_{X_a} \operatorname{Tr} P) \boxtimes (\partial_{X_b} \operatorname{Tr} Q) + (P \leftrightarrow Q)$

• Wetterich Eq. governs the functional RG $t = \log N$

Thm. [CP '22] If the RG-flow is computable in terms of U(N)-invariants, the algebra of Functional Renormalisation is $\mathcal{M}_k(\mathcal{A}_{k,N}, \star)$ where

$$\mathcal{A}_{k,N} = (\mathbb{C}_{\langle k \rangle}^{(N)} \otimes \mathbb{C}_{\langle k \rangle}^{(N)}) \oplus (\mathbb{C}_{\langle k \rangle}^{(N)} \boxtimes \mathbb{C}_{\langle k \rangle}^{(N)})$$

whose product in hom. elements reads:

 $\begin{array}{l} (U \otimes W) \star (P \otimes Q) = PU \otimes WQ, \\ (U \boxtimes W) \star (P \otimes Q) = U \boxtimes PWQ, \\ (U \otimes W) \star (P \boxtimes Q) = WPU \boxtimes Q, \\ (U \boxtimes W) \star (P \boxtimes Q) = \operatorname{Tr}_{N}(WP)U \boxtimes Q, \\ \text{ and traces } \operatorname{Tr}_{k} \otimes \operatorname{Tr}_{A_{k}} \\ \operatorname{Tr}_{\mathcal{A}_{k}}(P \otimes Q) = \operatorname{Tr}_{N}P \cdot \operatorname{Tr}_{N}Q, \\ \operatorname{Tr}_{\mathcal{A}_{k}}(P \boxtimes Q) = \operatorname{Tr}_{N}(PQ). \end{array}$

Remark: To be more precise, any occurrence of the free algebra in $A_{k,N}$ should be replaced by the algebra of 'trace polynomials' (e.g. $Tr_N(X_1X_3)X_2 + N Tr_N(X_2^2)$) [D. Jekel-W. Li-D. Shlyakhtenko, '21]

$$\operatorname{Hess}_{I,J} O_{I} = \delta_{I}^{J} \delta_{I}^{A} \overline{g}_{I} \{ \underbrace{\operatorname{Tr}_{N} (A^{2}/2) \cdot [\mathbb{1}_{N} \otimes \mathbb{1}_{N}]}_{\swarrow} + \underbrace{A \boxtimes A}_{\checkmark} \},$$

where a 'filled ribbon' means contracted in the one-loop graph, and 'white ribbon' uncontracted.

Example: A Hermitian 3-matrix model. Consider
$$O_1 = \frac{\bar{g}_1}{2} [\operatorname{Tr}_N(\frac{A^2}{2})]^2$$
 and $O_2 = \bar{g}_2 \operatorname{Tr}_N(ABC)$.
 $A \ B \ C$
Hess_{1,1} $O_1 = \delta_1^J \delta_1^A \bar{g}_1 \{ \underbrace{\operatorname{Tr}_N(A^2/2) \cdot [1_N \otimes 1_N]}_{\swarrow} + \underbrace{A \boxtimes A}_{\checkmark} \},$
 $(v_1 \leftarrow v_1 \leftarrow v_2 \leftarrow v_3 \leftarrow v_3 \leftarrow v_4 \leftarrow v_4 \leftarrow v_5 \leftarrow v_4 \leftarrow v_4 \leftarrow v_4 \leftarrow v_4 \leftarrow v_5 \leftarrow v_4 \leftarrow$

where a 'filled ribbon' means contracted in the one-loop graph, and 'white ribbon' uncontracted.

$$\operatorname{Hess}_{I,J} O_{1} = \delta_{I}^{J} \delta_{I}^{A} \overline{g}_{1} \{ \underbrace{\operatorname{Tr}_{N} \left(A^{2}/2 \right) \cdot \left[\mathbf{1}_{N} \otimes \mathbf{1}_{N} \right]}_{\mathbf{X}} + \underbrace{A \boxtimes A}_{\mathbf{X}} \},$$

 $\begin{array}{l} (U \otimes W) \star (P \otimes Q) = PU \otimes WQ \,, \\ (U \boxtimes W) \star (P \otimes Q) = U \boxtimes PWQ \,, \\ (U \otimes W) \star (P \boxtimes Q) = WPU \boxtimes Q \,, \\ (U \boxtimes W) \star (P \boxtimes Q) = \operatorname{Tr}(WP)U \boxtimes Q \,. \end{array}$

where a 'filled ribbon' means contracted in the one-loop graph, and 'white ribbon' uncontracted.

$$\operatorname{Hess} O_{2} = \overline{g}_{2} \begin{bmatrix} 0 & C \otimes 1_{N} & B \otimes 1_{N} \\ 1_{N} \otimes C & 0 & A \otimes 1_{N} \\ 1_{N} \otimes B & 1_{N} \otimes A & 0 \end{bmatrix} \Rightarrow [\operatorname{Hess} O_{2}]^{\star 2} = \overline{g}_{2}^{2} \begin{bmatrix} \overline{C \otimes C} + \overline{B \otimes B} & B \otimes A & C \otimes A \\ A \otimes B & A \otimes A + C \otimes C & C \otimes B \\ A \otimes C & B \otimes C & B \otimes B + A \otimes A \end{bmatrix}$$

Extracting coefficients

$$\left[\bar{g}_{1}\bar{g}_{2}^{2}\right]\operatorname{Tr}_{\mathcal{M}_{3}(\mathcal{A})}\left\{\operatorname{Hess}\mathcal{O}_{1}\star\left[\operatorname{Hess}\mathcal{O}_{2}\right]^{\star2}\right\}=\operatorname{Tr}_{\mathcal{N}}\left(\mathcal{A}^{2}/2\right)\times\left[\left(\operatorname{Tr}_{\mathcal{N}}\mathcal{C}\right)^{2}+\left(\operatorname{Tr}_{\mathcal{N}}\mathcal{B}\right)^{2}\right]+\operatorname{Tr}_{\mathcal{N}}\left(\mathcal{ACAC}+\mathcal{ABAB}\right),$$

which are effective vertices of the four one-loop graphs that can be formed with the contractions of (the filled ribbon half-edges of) any of $\{\neg \downarrow \downarrow, \neg \downarrow \downarrow\}$ with any of $\{\swarrow, \swarrow\}$.

$$\operatorname{Hess}_{I,J} O_{1} = \delta_{I}^{J} \delta_{I}^{A} \overline{g}_{1} \{ \underbrace{\operatorname{Tr}_{N} \left(A^{2}/2 \right) \cdot \left[\mathbf{1}_{N} \otimes \mathbf{1}_{N} \right]}_{\mathbf{X}} + \underbrace{A \boxtimes A}_{\mathbf{X}} \},$$

 $\begin{array}{l} (U \otimes W) \star (P \otimes Q) = PU \otimes WQ \,, \\ (U \boxtimes W) \star (P \otimes Q) = U \boxtimes PWQ \,, \\ (U \otimes W) \star (P \boxtimes Q) = WPU \boxtimes Q \,, \\ (U \boxtimes W) \star (P \boxtimes Q) = \operatorname{Tr}(WP)U \boxtimes Q \,. \end{array}$

where a 'filled ribbon' means contracted in the one-loop graph, and 'white ribbon' uncontracted.

$$\operatorname{Hess} O_{2} = \overline{g}_{2} \begin{bmatrix} 0 & C \otimes 1_{N} & B \otimes 1_{N} \\ 1_{N} \otimes C & 0 & A \otimes 1_{N} \\ 1_{N} \otimes B & 1_{N} \otimes A & 0 \end{bmatrix} \Rightarrow [\operatorname{Hess} O_{2}]^{\star 2} = \overline{g}_{2}^{2} \begin{bmatrix} \overline{C \otimes C} + \overline{B \otimes B} & B \otimes A & C \otimes A \\ A \otimes B & A \otimes A + C \otimes C & C \otimes B \\ A \otimes C & B \otimes C & B \otimes B + A \otimes A \end{bmatrix}$$

Extracting coefficients

$$\left[\bar{g}_{1}\bar{g}_{2}^{2}\right]\operatorname{Tr}_{\mathcal{M}_{3}(\mathcal{A})}\left\{\operatorname{Hess}\mathcal{O}_{1}\star\left[\operatorname{Hess}\mathcal{O}_{2}\right]^{\star2}\right\}=\operatorname{Tr}_{\mathcal{N}}\left(\mathcal{A}^{2}/2\right)\times\left[\left(\operatorname{Tr}_{\mathcal{N}}\mathcal{C}\right)^{2}+\left(\operatorname{Tr}_{\mathcal{N}}\mathcal{B}\right)^{2}\right]+\operatorname{Tr}_{\mathcal{N}}\left(\mathcal{ACAC}+\mathcal{ABAB}\right),$$

which are effective vertices of the four one-loop graphs that can be formed with the contractions of (the filled ribbon half-edges of) any of $\{-, +\}$ with any of $\{-, +\}$ with any of $\{-, +\}$

$$\operatorname{Hess}_{I,J} O_{1} = \delta_{I}^{J} \delta_{I}^{A} \overline{g}_{1} \{ \underbrace{\operatorname{Tr}_{N} \left(A^{2}/2 \right) \cdot \left[\mathbf{1}_{N} \otimes \mathbf{1}_{N} \right]}_{\mathbf{X}} + \underbrace{A \boxtimes A}_{\mathbf{X}} \},$$

where a 'filled ribbon' means contracted in the one-loop graph, and 'white ribbon' uncontracted.

$$\operatorname{Hess} O_{2} = \overline{g}_{2} \begin{bmatrix} 0 & C \otimes 1_{N} & B \otimes 1_{N} \\ 1_{N} \otimes C & 0 & A \otimes 1_{N} \\ 1_{N} \otimes B & 1_{N} \otimes A & 0 \end{bmatrix} \Rightarrow [\operatorname{Hess} O_{2}]^{\star 2} = \overline{g}_{2}^{2} \begin{bmatrix} \overline{C \otimes C} + \overline{B \otimes B} & B \otimes A & C \otimes A \\ A \otimes B & A \otimes A + C \otimes C & C \otimes B \\ A \otimes C & B \otimes C & B \otimes B + A \otimes A \end{bmatrix}$$

Extracting coefficients

$$\left[\bar{g}_1\bar{g}_2^2\right]\operatorname{Tr}_{\mathcal{M}_3(\mathcal{A})}\left\{\operatorname{Hess} O_1 \star \left[\operatorname{Hess} O_2\right]^{\star 2}\right\} = \operatorname{Tr}_{\mathcal{N}}(\mathcal{A}^2/2) \times \left[\left(\operatorname{Tr}_{\mathcal{N}} C\right)^2 + \left(\operatorname{Tr}_{\mathcal{N}} B\right)^2\right] + \operatorname{Tr}_{\mathcal{N}}(\mathcal{A}C\mathcal{A}C + \mathcal{A}B\mathcal{A}B),$$

which are effective vertices of the four one-loop graphs that can be formed with the contractions of (the filled ribbon half-edges of) any of $\{-+, -+\}$ with any of $\{-, -+\}$

Why not using graphs? Soon, nc-Hessians get bulky: In [CP '20] 48 such operators run

Operator Its nc-Hessian $(\operatorname{Tr}(A) \mathbb{1} \otimes (ABB) + \operatorname{Tr}(A) \mathbb{1} \otimes (BBA) +$ $Tr(A)(1 \otimes (AAB) + (BAA) \otimes 1 + A \otimes$ $Tr(A)(ABB) \otimes 1 + Tr(A)(BBA) \otimes 1 + 1 \times$ $1 \boxtimes (A^3 B) + 1 \boxtimes (BA^3)$ $(AABB) + 1 \boxtimes (ABBA) + 1 \boxtimes (BBAA) +$ $(AABB) \boxtimes 1 + (ABBA) \boxtimes 1 + (BBAA) \boxtimes$ $1 + \operatorname{Tr}(A)A \otimes B^2 + \operatorname{Tr}(A)B^2 \otimes A$ $\operatorname{Tr} A \operatorname{Tr}(AAABB)$ $\begin{array}{l} \mathsf{Tr}(A)(1\otimes (BAA) + (AAB)\otimes 1 + A\otimes \\ BA + B\otimes A^2 + A^2\otimes B + AB\otimes A) + \\ (A^3B)\boxtimes 1 + (BA^3)\boxtimes 1 \end{array}$ $\operatorname{Tr}(A)(1 \otimes (A^3) + (A^3) \otimes 1)$ empty => alive Table: Some Hessians. Here $Tr = Tr_N$.

III. Matrix gauge theory

True, but I didn't mention this in the actual talk

Definition [CP 2105.01025] We define a *gauge matrix spectral triple* $G_{f} \times F$ as the spectral triple product of a fuzzy geometry G_{f} with a finite geometry $F = (A_F, H_F, D_F)$, dim $A_F < \infty$.

Lemma-Definition [CP 2105.01025] Consider a gauge matrix spectral triple $G_{f} \times F$ with

$$F = (\mathcal{M}_n(\mathbb{C}), \mathcal{M}_n(\mathbb{C}), D_F)$$

and G_{ℓ} Riemannian (d = 4) fuzzy geometry on $\mathcal{M}_{N}(\mathbb{C})$, whose fluctuated Dirac op is

d "

$$D_{\omega} = \sum_{\mu=0}^{3} \overbrace{\gamma^{\mu} \otimes (\ell_{\mu} + a_{\mu}) + \gamma^{\hat{\mu}} \otimes (x_{\mu} + s_{\mu})}^{D_{\text{Higgs}}} + \overbrace{\gamma \otimes \Phi}^{D_{\text{Higgs}}}, \qquad a_{\mu} = \text{'gauge potential'}, x_{\mu} = \text{spin connection?}$$

The *field strength* is given by

$$\mathscr{F}_{\mu\nu} := [\mathscr{\ell}_{\mu} + a_{\mu}, \mathscr{\ell}_{\nu} + a_{\nu}] =: [\mathsf{F}_{\mu\nu}, \cdot]$$

Lemma The gauge group $G(A) \cong PU(N) \times PU(n)$ acts as follows

$$\mathsf{F}_{\mu
u}\mapsto\mathsf{F}^{\upsilon}_{\mu
u}=\mathit{\upsilon}\mathsf{F}_{\mu
u}\mathit{\upsilon}^*$$
 for all $\mathit{\upsilon}\in\mathsf{G}(A)$

The content of the Spectral Action ...

Meaning	Random matrix case, flat $d = 4$ Riem. Tr = trace of ops. $M_N \otimes M_n \rightarrow M_N \otimes M_n$	Smooth operator				
Derivation	$\mathscr{C}_{\mu} = [\mathcal{L}_{\mu} \otimes 1_{n}, \ \cdot \]$	∂_i				
Gauge potential	$a_{\mu}=[extsf{A}_{\mu}, \ \cdot \]$	\mathbb{A}_i				
Covariant derivative	${d}_\mu = \ell_\mu + a_\mu$	$\mathbb{D}_i = \partial_i + \mathbb{A}_i$				
Field strength	$\begin{bmatrix} d_{\mu}, d_{\nu} \end{bmatrix} = \begin{bmatrix} \ell_{\mu}, \ell_{\nu} \end{bmatrix} + \\ \begin{bmatrix} \ell_{\mu}, a_{\nu} \end{bmatrix} - \begin{bmatrix} \ell_{\nu}, a_{\mu} \end{bmatrix} + \begin{bmatrix} a_{\mu}, a_{\nu} \end{bmatrix}$	$\begin{bmatrix} \mathbb{D}_i, \mathbb{D}_j \end{bmatrix} = \overbrace{\begin{bmatrix} \partial_i, \partial_j \end{bmatrix}}^{\equiv 0} + \\ \partial_i \mathbb{A}_j - \partial_j \mathbb{A}_i + \begin{bmatrix} \mathbb{A}_i, \mathbb{A}_j \end{bmatrix}$				
Yang-Mills action	$-rac{1}{4}\operatorname{Tr}(\mathscr{F}_{\mu u}\mathscr{F}^{\mu u})$	$-rac{1}{4}\int_{\mathcal{M}}Tr_{\mathfrak{su}(n)}(\mathbb{F}_{ij}\mathbb{F}^{ij})\mathrm{vol}$				
Higgs field	Φ	h				
Higgs potential	$Tr(f_2\Phi^2+f_4\Phi^4)$	$\int_{\mathcal{M}} \left(f_2 h ^2 + f_4 h ^4 \right) \mathrm{vol}$				
Gauge-Higgs coupling	$-\operatorname{Tr}(\mathscr{d}_{\mu}\Phi\mathscr{d}^{\mu}\Phi)$	$-\int_{\mathcal{M}} \mathbb{D}_i h ^2 \mathrm{vol}$				
Propagators and $\sim (\ell_{\mu})_{ij}(\ell_{\nu})_{jm}(\ell^{\mu})_{ml}(\ell^{\nu})_{li} \leftrightarrow \iota_{\nu_{0}} = \int_{\nu_{0}}^{\nu_{0}} (\ell_{\nu})_{\nu_{0}} d\nu_{\nu_{0}} d\nu_{$						

Conclusion

- spectral triple \equiv spin manifold mod. commutativity of the 'algebra of functions'
- spin M × {finite spectral triple} ≡ almost-commutative (reproduces classical Standard Model, but hard to quantize)
- $G_{f} \times F$ = fuzzy \times finite = gauge matrix spectra triple is $\operatorname{PU}(n)$ -Yang-Mills-Higgs-like if F is over $\mathcal{M}_n(\mathbb{C})$; Small step towards [Connes Marcolli, NCG. QFT and matrices, '07, next sceenshot]

The far distant goal is to set up a functional integral evaluating spectral observables S as (1.892) $\langle S \rangle = \mathcal{N} \int S e^{-\operatorname{Tr}(f(D/\Lambda))} -\frac{1}{2} \langle J\psi, D\psi \rangle - \rho(e,D) \mathcal{D}[\psi] \mathcal{D}[D] \mathcal{D}[e], \qquad \gg$

• The matrix algebra $\mathcal{M}_k(\mathcal{A}_{k,N})$ where functional renormalisation for random matrices (k-martix model) takes place was provided. $\mathcal{A}_{k,N}$ is a bigger relative of $\mathbb{C}_{\langle k \rangle}^{(N)}$

Conclusion

- spectral triple \equiv spin manifold mod. commutativity of the 'algebra of functions'
- spin M × {finite spectral triple} ≡ almost-commutative (reproduces classical Standard Model, but hard to quantize)

• $G_{f} \times F =$ fuzzy \times finite = gauge matrix spectra triple True but I didn't talk about this (no time) is PU(n)-Yang-Mills-Higgs-like if F is over $\mathcal{M}_{n}(\mathbb{C})$; Small step towards

[Connes Marcolli, NCG, QFT and motives, '07, next sceenshot]

The far distant goal is to set up a functional integral evaluating spectral observables S as \ll (1.892) $\langle S \rangle = \mathcal{N} \int S e^{-\text{Tr}(f(D/\Lambda)) - \frac{1}{2} \langle J\psi, D\psi \rangle - \rho(e,D)} \mathcal{D}[\psi] \mathcal{D}[D] \mathcal{D}[e], \qquad \gg$

• The matrix algebra $\mathcal{M}_k(\mathcal{A}_{k,N})$ where functional renormalisation for random matrices (*k*-martix model) takes place was provided. $\mathcal{A}_{k,N}$ is a bigger relative of $\mathbb{C}^{(N)}_{\langle k \rangle}$ thank you!

Sort of appendix, which wasn't needed

NCG toolkit in high energy physics

• On a spectral triple (A, H, D) the (bosonic) classical action is given by

 $S(D)={
m Tr}_{H}\,f(D/\Lambda)$ [Chamseddine-Connes CMP '97]

for a bump function f, Λ a scale. It's computed with heat kernel expansion [P. Gilkey, J. Diff. Geom. 75]

- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple $(C^{\infty}(A_F), H_M \otimes H_F, D_M \otimes 1_F + \gamma_5 \otimes D_F)$
- applications require (A, H, D) to have a *reality* $J : H \rightarrow H$ antiunitary *axioms*, implementing a right A-action on H

Sort of appendix, which wasn't needed

NCG toolkit in high energy physics

• On a spectral triple (A, H, D) the (bosonic) classical action is given by

 $S(D)={
m Tr}_H\,f(D/\Lambda)$ [Chamseddine-Connes CMP '97]

for a bump function f, Λ a scale. It's computed with heat kernel expansion [P. Gilkey, J. Diff. Geom. '75]

- Realistic, classical models come from almost-commutative manifolds $M \times F$, where F is a finite-dim. spectral triple $(C^{\infty}(A_F), H_M \otimes H_F, D_M \otimes 1_F + \gamma_5 \otimes D_F)$
- applications require (A, H, D) to have a *reality* $J : H \to H$ antiunitary ^{axioms}, implementing a right A-action on H

• let's sketch *connections*: if S^G is a *G*-invariant functional on *M* $S^G \rightsquigarrow S^{\operatorname{Maps}(M,G)}$ $d \rightsquigarrow d + A \quad A \in \Omega^1(M) \otimes \mathfrak{g}$ $A' = uAu^{-1} + udu^{-1} \quad u \in \operatorname{Maps}(M,G)$

NCG toolkit in high energy physics

• On a spectral triple (A, H, D) the (bosonic) classical action is given by

 $S(D)={
m Tr}_H\,f(D/\Lambda)$ [Chamseddine-Connes CMP '97]

for a bump function f, Λ a scale. It's computed with heat kernel expansion [P. Gilkey, J. Diff. Geom. 75]

- Realistic, classical models come from *almost-commutative manifolds* $M \times F$, where F is a finite-dim. spectral triple $(C^{\infty}(A_F), H_M \otimes H_F, D_M \otimes 1_F + \gamma_5 \otimes D_F)$
- applications require (A, H, D) to have a *reality* $J : H \to H$ antiunitary ^{axioms}, implementing a right A-action on H

- let's sketch *connections*: if S^G is a *G*-invariant functional on *M* $S^G \rightsquigarrow S^{\operatorname{Maps}(M,G)}$ $d \rightsquigarrow d + A \quad A \in \Omega^1(M) \otimes \mathfrak{g}$ $A' = uAu^{-1} + udu^{-1} \quad v \in \operatorname{Maps}(M,G)$
- given (A, H, D) and a Morita equivent algebra *B* (i.e. End_A(*E*) \cong *B*) yields new $(B, E \otimes_A H, D')$. For A = B, in fact a tower

$$\left\{ (A, H, D + \omega \pm J\omega J^{-1}) \right\}_{\omega \in \Omega^1_D(A)}$$

 $\begin{array}{l} D_{\omega} \mapsto \operatorname{Ad}(\upsilon) D_{\omega} \operatorname{Ad}(\upsilon)^{*} = D_{\omega_{\upsilon}} \\ \omega \mapsto \omega_{\upsilon} = \upsilon \omega \upsilon^{*} + \upsilon [D, \upsilon^{*}] \quad \upsilon \in \mathcal{U}(A) \text{ skip cube} \end{array}$

Organisation

- 1 Matrix Geometries [J. Barrett, J. Math. Phys. 2015]
- 2 Dirac ensembles [J. Barrett, L. Glaser, J. Phys. A 2016] and how to compute the spectral action [CP 1912.13288]
- 3 Gauge matrix spectral triples (this talk) [CP 2105.01025]
- 4 Functional Renormalisation [CP 2007.10914] and [CP 2111.02858]

Sort of appendix, which wasn't needed

β -functions of NCG two-matrix models, signature $\eta = \text{diag}(e_1, e_2)$

$$\begin{aligned} & 2h_1(a_4 + c_{22} + 2d_{2|02} + 6d_{2|2}) = \eta_a \\ & 2h_1(b_4 + c_{22} + 6d_{02|02} + 2d_{2|02}) = \eta_b \\ & -h_1[e_a(a_4 - c_{111}) + 2d_{1|12} + 6d_{1|3}] + d_{1|1}(\eta + 1) = \beta(d_{1|1}) \\ & -h_1[e_b(b_4 - c_{111}) + 6d_{01|03} + 2d_{01|21}] + d_{01|01}(\eta + 1) = \beta(d_{01|01}) \end{aligned}$$

Sort of appendix, which wasn't needed

The next block encompasses the connected quartic couplings:

$$\begin{split} h_2 (4a_4^2 + 4c_{22}^2) + a_4 (2\eta + 1) \\ -h_1 (24a_6e_a + 4c_{42}e_b + 4d_{02|4}e_b + 4d_{2|4}e_a) &= \beta(a_4) \\ h_2 (4b_4^2 + 4c_{22}^2) + b_4 (2\eta + 1) \\ -h_1 (24b_6e_b + 4c_{24}e_a + 4d_{02|04}e_b + 4d_{2|04}e_a) &= \beta(b_4) \\ -h_1 (2e_ac_{1212} + e_b 2c_{2121} + 3e_ac_{24} + 3e_bc_{42} + e_ad_{02|22} + e_bd_{2|22}) \\ +h_2 (2a_4c_{22} + 2b_4c_{22} + 2e_ae_bc_{111}^2 + 2e_ae_bc_{22}^2) + c_{22}(2\eta + 1) &= \beta(c_{22}) \\ & 8e_ae_bc_{111}c_{22}h_2 + c_{111}(2\eta + 1) \\ +h_1 (4e_ac_{1311} + 4e_bc_{3111} + 2e_ad_{02|111} + 2e_bd_{2|111}) &= \beta(c_{1111}) \end{split}$$

back to main presentation 🛹

Matrix or Fuzzy Geometries GO TO characterization and

Definition ("condensed" from []. Barrett, J. Math. Phys. 2015]). A fuzzy geometry of signature $(p, q) \in \mathbb{Z}_{\geq 0}^2$ is given by

- a simple matrix algebra $\mathcal A$ we take always $\mathcal A = \mathcal M_N(\mathbb C)$
- a Hermitian $\mathbb{C}\ell(p, q)$ -module \mathbb{S} with a *chirality* γ . That is a linear map $\gamma : \mathbb{S} \to \mathbb{S}$ satisfying $\gamma^* = \gamma$ and $\gamma^2 = 1$
- a Hilbert space $\mathcal{H} = \mathbb{S} \otimes \mathcal{M}_N(\mathbb{C})$ with inner product $\langle v \otimes R, w \otimes S \rangle = (v, w) \operatorname{Tr}_N(R^*S)$ for each $R, S \in \mathcal{M}_N(\mathbb{C})$, being (\cdot, \cdot) the inner product of \mathbb{S}
- a left- \mathcal{A} representation $\rho(a)(v \otimes R) = v \otimes (aR)$ on \mathcal{H} , $a \in \mathcal{A}$ and $v \otimes R \in \mathcal{H}$

• three signs $\epsilon, \epsilon', \epsilon'' \in \{-1, +1\}$ determined through s := q - p by the following table:

$s \equiv q - p \pmod{8}$	0	1	2	3	4	5	6	7
ϵ	+	+	_	_	_	_	+	+
ϵ'	$^+$	_	$^+$	$^+$	$^+$	_	$^+$	+
ϵ''	$^+$	$^+$	_	$^+$	$^+$	$^+$	_	+

- a real structure $J = C \otimes *$, where * is complex conjugation and C is an anti-unitarity on \mathbb{S} satisfying $C^2 = \epsilon$ and $C\gamma^{\mu} = \epsilon'\gamma^{\mu}C$ for all the gamma matrices $\mu = 1, \dots, p + q$.
- a self-adjoint operator *D* on *H* satisfying the *order-one condition*

 $\left[\left[D, \rho(a)\right], J\rho(b)J^{-1}\right] = 0$ for all $a, b \in \mathcal{A}$

• a chirality $\Gamma = \gamma \otimes 1_{\mathcal{A}}$ for \mathcal{H} , where γ is the chirality of S. The signs above impose: