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Theorem

Cochains of class FC1 admit the following lower estimate:

|F | � exp(−Cξ) on (R+,∞)

for some C > 0.

Yu. Ilyashenko FINITENESS THEOREMS FOR LIMIT CYCLES



Example

How the multiple exponentials occur? Consider a composition

ln ◦(id + ϕ) ◦ exp, ϕ = exp(−ξ).

We have:

ln(exp ζ + exp(− exp ζ)) = ζ + ln(1 + exp(−expζ − ζ))

= ζ + Σ
(−1)k−1

k
exp(−k exp ζ − kζ)

= ζ + Σ(−1)k−1 exp(−kζ)

k
exp(−k exp ζ).

Where is the exponent and where is the coefficient?
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STAR-1: first steps of the definition

STAR-1 has the form

Σ = Σ∞1 aj exp ej , (1)

where ej are exponents, and aj are coefficients, all to be
defined. A STAR-1 has an index: a finite subset of (0, 1). The
index is not uniquely defined: the same series may have
different representations, and the index depends on the
representation.
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Exponents and coefficients

The set of exponents is denoted by E 1, the set of coefficients
is K1.
The coefficients have non-negative rank. The set of all the
coefficients of rank r is denoted by K1,r .
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Exponents of class 1

Definition (exponents and principal exponents)

The set E 1 of exponents of the series of class 1 does not
depend on the rank. It is a special set of all partial sums of
the generalized exponential Dulac series with non-negative
exponents no greater than 1. Namely,

E 1 = {e | e =
∑

Pj(ζ) expµjζ},

where the sum is finite, Pj are real polynomials, and
µj ∈ [0, 1]. Moreover, if µj = 1, then Pj = const. The
principal exponent of the term exp e is the limit

ν(e) = lim
(R+,∞)

e(ξ)

exp ξ
.

This limit exists by definition of E 1.
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Coefficients and series of class 1,0

Definition

K1,0 = FC0, ind (a ∈ K1,0) = ∅.

Definition
E1,0 is a set of all STAR-(1,0):

(Σ ∈ E1,0) = Σaj exp ej , ej ∈ E 1, aj ∈ K1,0
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Standard domains of class 1 and decomposability

Definition

Standard domain of class 1 is a domain of the form

ΩC = ΦC (C+
C ),

where

ΦC : ζ → ζ(1 +
C

ln ζ
), = C+ \ KC , Kc = {ζ||ζ| ≤ C}

The set of all such domains is denoted by Ω1.
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LET-1,0 for FC1,0

Definition (plus-decomposability)

A sectorial cochain F is plus-decomposable in a STAR-(1,0) Σ
provided that there exist a standard domain Ω of class 1 and
ε > 0 such that for any ν > 0 there exists a partial sum ΣN of
Σ that approximates F ◦ exp with an accuracy exp(−ν exp ξ):

|F ◦ exp−ΣN | ≺ exp(−ν exp ξ) (2)

in the intersection lnΩ ∩Hε. Here Hε is the ε-neighborhood
of the upper half-plane.
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Theorem

Cochains of class FC1,0 admit the following lower estimate:

|F | � exp(−Cξ) on (R+,∞)

for some C > 0.

Proof.

Take F ∈ FC1,0. Let Σ be an asymptotic series for F . We
may assume that the exponents ej have no terms αζ + β or
else they will be absorbed by the coefficients:

bj = aj exp(αζ + β), aj ∈ FC0 =⇒ bj ∈ FC0.
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Proof.
Take a partial sum ΣN of Σ that approximates F with the
accuracy R rapidly decreasing. Let h be the maximal exponent
of ΣN . For any other exponent e,

e− h
ξ
→ −∞ on (R+,∞) (3)

Then
ΣN = exph(a + R1),

R1 = Σaj exp(ej − h)
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Proof.
By (3), R decreases on (R+,∞) faster than any exponent,
because aj grows no more than exponentially. The same holds
for exp(ej − h). By LET for FC0,
|a1| � exp(−Cξ) on (R+,∞) for some C > 0. Hence,

ΣN � exp(ν − ε) exp ξ,

where ν is the principle exponent of h, ε > 0 is arbitrary.
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Plan of the definition of FC1,r

This definition is given by induction in r . Base of induction
and the step from 0 to 1 are already done.

Given the set K1,r (coefficients of class 1 and rank r) we define
the set E1,r of STAR-(1,r) as the set of series of the form

Σ = aj exp ej , ej ∈ E 1, aj ∈ K1,r .

Given the set E1,r we define the set F1,r .

Given the set F1,r we define the set K1.r+1, and thus complete
the induction step.
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The set F1,r

Definition (plus-decomposability)

A sectorial cochain F is plus-decomposable in a STAR-(1,0) Σ
provided that there exist a standard domain Ω of class 1 and
ε > 0 such that for any ν > 0 there exists a partial sum ΣN of
Σ that approximates F ◦ exp with an accuracy exp(−ν exp ξ):

|F ◦ exp−ΣN | ≺ exp(−ν exp ξ) (4)

in the intersection lnΩ ∩Hε. Here Hε is the ε-neighborhood
of the upper half-plane.
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The sets K1,r , E1,FC1

Definition
Set

K1,r+1 = K1,r ∪µ∈(0,1) FC1,r ◦ exp ◦µ. (5)

Thus, by induction in r we defined the series and cochains of
classes E1,r , FC1,r respectively for all r ∈ Z+. Equalities

E1 = ∪∞0 E1,r , FC1 = ∪∞0 FC1,r

complete the definitions of series of class STAR-1 and
cochains of class FC1.
This completes the definition of the class FC1, modulo the
definition of index.
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Index

A typical coefficient a of a STAR-1 is

a = F ◦ exp ◦µ, µ ∈ (0, 1), F ∈ FC 1.

The index of a partial sum of a STAR-1 takes care of all the
µ’s that occur in the coefficients of this sum. But some µ’s
are hidden in F .
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Definition of the index

It is given by induction in r .

Definition

(base of induction) Let F ∈ FC1,0. Then ind F = ∅.

Definition
(induction step) Let ind be defined on K1,r . Let us define it
on E1,r . Let Σ = Σaj exp ej , aj ∈ K1,r . Then

ind Σ = ∪ind aj .
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Definition of the index of a cochain

Definition

Let F ∈ FC1,r , and Σ ∈ E1,r be an asymptotic series for
F ◦ exp. Then

ind F = ind Σ.

Remark
An asymptotic series for F ◦ exp is not uniquely defined. So in
fact we define an index of a pair F ,Σ. Yet we write ind F for
simplicity.
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Definition of the index for K1,r+1

Definition
Let a ∈ K1,r+1. Then either a ∈ K1,r (and then ind a is
defined by the induction assumption) or

a = F ◦ exp ◦µ, F ∈ FC1,r , µ ∈ (0, 1).

Then
ind a = (ind F ) · µ ∪ {µ},

This completes the induction step in the definition of the
index.
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Principle representation theorem

Theorem

Let ΣN be a non-zero non-contructable partial sum of a
STAR-1 with an index

ind ΣN = (µ1, . . . , µi), µk ∈ (0, 1), µk ↘,

Then ΣN admits the following representation:

ΣN = exph1(exph2(. . . exphi+1(a + Ri+1) . . . ) + R1),

where a ∈ FC0,
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Theorem

h1 ∈ E 1, hk ∈ E 1 ◦ µk−1, (6)

and either hk ≡ 0, or

hk

exp ◦µk
→∞ on (R+,∞), k = 1, . . . , i ,

hi+1

ξ
→∞ on (R+,∞).

The reminder terms are partial sums of STAR-1 and satisfy
the relations

|Rk | � exp(−ν exp ◦µk)∀ ν > 0 on (R+,∞), k = 1, . . . , i ,

|Ri+1| � exp(−νξ) ∀ν > 0 on (R+,∞).
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Lower estimate theorem LET

Theorem

Cochains of class FC1,0 admit the following lower estimate:

|F | � exp(−Cξ) on (R+,∞)

for some C > 0.

Proof.
Let us take a partial sum of a STAR-1 ΣN that approximates
F ◦ exp. Suppose that

ind ΣN = (µ1, ..., µi).

By the previous theorem

ΣN = exph1(exph2(. . . exphi+1(a + Ri+1) . . . ) + R1),
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Base of induction

Proof.
Let

Sk−1 = exphk(exphk+1(. . . exphi+1(a + Ri+1) . . . ) + Rk),

Then ΣN = S0, Si = exphi+1(a + Ri+1).
We will prove the theorem by the inverse induction in k :

|Sk−1| � exp(−C exp ◦µk−1) on (R+,∞), µ0 = 1.

Base of induction: |Si | � exp(−C exp ◦µi).

hi+1 ∈ E 1 ◦ µi =⇒ hi+1 � −C exp(µiξ) =⇒

| exphi+1(a + Ri+1)| � exp(−C exp ◦µi). (7)
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Induction step

Proof.
Induction assumption:

|Sk | � exp(−C exp ◦µk) on (R+,∞). (8)

We want to prove:

|Sk−1| � exp(−C exp ◦µk−1) on (R+,∞). (9)

We have:
Sk−1 = exphk(Sk + Rk).

By (8) Rk = o(Sk).
Together with relation hk ∈ E 1 ◦ µk−1 this implies (9).
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General outlook

Figure 1: Graph of the characteristic of a composition
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