FINITENESS THEOREMS FOR LIMIT CYCLES

Yu. Ilyashenko

National Research University Higher School of Economy Independent University of Moscow

Yu. Ilyashenko FINITENESS THEOREMS FOR LIMIT CYCLES

- Definition of STAR-1
- 2 Definition of index
- Output Content (LET)

Theorem

Cochains of class \mathcal{FC}^1 admit the following lower estimate:

$$|F| \succ \exp(-C\xi)$$
 on (\mathbb{R}^+, ∞)

for some C > 0.

Example

How the multiple exponentials occur? Consider a composition

$$\ln \circ (id + arphi) \circ \exp, \ arphi = \exp(-\xi).$$

We have:

$$\begin{aligned} \ln(\exp\zeta + \exp(-\exp\zeta)) &= \zeta + \ln(1 + \exp(-\exp\zeta - \zeta)) \\ &= \zeta + \Sigma \frac{(-1)^{k-1}}{k} \exp(-k \exp\zeta - k\zeta) \\ &= \zeta + \Sigma (-1)^{k-1} \frac{\exp(-k\zeta)}{k} \exp(-k \exp\zeta). \end{aligned}$$

Where is the exponent and where is the coefficient?

STAR-1 has the form

$$\Sigma = \Sigma_1^\infty a_j \exp \mathbf{e}_j, \tag{1}$$

where \mathbf{e}_i are exponents, and a_j are coefficients, all to be defined. A STAR-1 has an index: a finite subset of (0, 1). The index is not uniquely defined: the same series may have different representations, and the index depends on the representation.

- The set of exponents is denoted by E^1 , the set of coefficients is \mathcal{K}^1 .
- The coefficients have non-negative rank. The set of all the coefficients of rank r is denoted by $\mathcal{K}^{1,r}$.

Definition (exponents and principal exponents)

The set E^1 of exponents of the series of class 1 does not depend on the rank. It is a special set of all partial sums of the generalized exponential Dulac series with non-negative exponents no greater than 1. Namely,

$$E^1 = \{ \mathbf{e} \mid \mathbf{e} = \sum P_j(\zeta) \exp \mu_j \zeta \},$$

where the sum is finite, P_j are real polynomials, and $\mu_j \in [0, 1]$. Moreover, if $\mu_j = 1$, then $P_j = \text{const.}$ The principal exponent of the term $\exp e$ is the limit

$$u(\mathbf{e}) = \lim_{(\mathbb{R}^+,\infty)} \frac{\mathbf{e}(\xi)}{\exp \xi}.$$

This limit exists by definition of E^1 .

Yu. Ilyashenko

FINITENESS THEOREMS FOR LIMIT CYCLES

200

Coefficients and series of class 1,0

Definition

$$\mathcal{K}^{1,0} = \mathcal{FC}^0$$
, ind $(a \in \mathcal{K}^{1,0}) = \emptyset$.

Definition

 $\mathcal{E}^{1,0}$ is a set of all STAR-(1,0):

$$(\Sigma \in \mathcal{E}^{1,0}) = \Sigma a_j \exp \mathbf{e}_j, \,\, \mathbf{e}_j \in E^1, \,\, a_j \in \mathcal{K}^{1,0}$$

Yu. Ilyashenko FINITENESS THEOREMS FOR LIMIT CYCLES

Standard domains of class 1 and decomposability

Definition

Standard domain of class 1 is a domain of the form

 $\Omega_{\mathcal{C}} = \Phi_{\mathcal{C}}(\mathbb{C}_{\mathcal{C}}^+),$

where

$$\Phi_{\mathcal{C}}: \zeta \to \zeta (1 + \frac{\mathcal{C}}{\ln \zeta}), \ = \mathbb{C}^+ \setminus \mathcal{K}_{\mathcal{C}}, \ \mathcal{K}_{\mathcal{C}} = \{\zeta | |\zeta| \le \mathcal{C}\}$$

The set of all such domains is denoted by Ω_1 .

Definition (plus-decomposability)

A sectorial cochain F is plus-decomposable in a STAR-(1,0) Σ provided that there exist a standard domain Ω of class 1 and $\varepsilon > 0$ such that for any $\nu > 0$ there exists a partial sum Σ_N of Σ that approximates $F \circ \exp$ with an accuracy $\exp(-\nu \exp \xi)$:

$$|F \circ \exp{-\Sigma_N}| \prec \exp(-\nu \exp{\xi})$$
 (2)

in the intersection $\ln \Omega \cap \mathbb{H}^{\varepsilon}$. Here \mathbb{H}^{ε} is the ε -neighborhood of the upper half-plane.

Theorem

Cochains of class $\mathcal{FC}^{1,0}$ admit the following lower estimate:

$$|F| \succ \exp(-C\xi)$$
 on (\mathbb{R}^+,∞)

for some C > 0.

Proof.

Take $F \in \mathcal{FC}^{1,0}$. Let Σ be an asymptotic series for F. We may assume that the exponents \mathbf{e}_j have no terms $\alpha \zeta + \beta$ or else they will be absorbed by the coefficients:

$$b_j = a_j \exp(lpha \zeta + eta), a_j \in \mathcal{FC}^0 \Longrightarrow b_j \in \mathcal{FC}^0.$$

Proof.

Take a partial sum Σ_N of Σ that approximates F with the accuracy R rapidly decreasing. Let **h** be the maximal exponent of Σ_N . For any other exponent **e**,

$$rac{\mathbf{e}-\mathbf{h}}{\xi}
ightarrow -\infty ext{ on } (\mathbb{R}^+,\infty)$$
 (3)

Then

$$\Sigma_N = \exp \mathbf{h}(a+R_1),$$

 $R_1 = \Sigma a_j \exp(\mathbf{e}_j - \mathbf{h})$

Proof.

By (3), *R* decreases on (\mathbb{R}^+, ∞) faster than any exponent, because a_j grows no more than exponentially. The same holds for $\exp(\mathbf{e}_j - \mathbf{h})$. By LET for \mathcal{FC}^0 , $|a_1| \succ \exp(-C\xi)$ on (\mathbb{R}^+, ∞) for some C > 0. Hence,

$$\Sigma_N \succ \exp(\nu - \varepsilon) \exp \xi$$
,

where ν is the principle exponent of $\mathbf{h}, \varepsilon > 0$ is arbitrary.

This definition is given by induction in r. Base of induction and the step from 0 to 1 are already done.

Given the set $\mathcal{K}^{1,r}$ (coefficients of class 1 and rank r) we define the set $\mathcal{E}^{1,r}$ of STAR-(1,r) as the set of series of the form

$$\Sigma = a_j \exp \mathbf{e}_j, \mathbf{e}_j \in E^1, \ a_j \in \mathcal{K}^{1,r}.$$

Given the set $\mathcal{E}^{1,r}$ we define the set $\mathcal{F}^{1,r}$.

Given the set $\mathcal{F}^{1,r}$ we define the set $\mathcal{K}^{1,r+1}$, and thus complete the induction step.

Definition (plus-decomposability)

A sectorial cochain F is plus-decomposable in a STAR-(1,0) Σ provided that there exist a standard domain Ω of class 1 and $\varepsilon > 0$ such that for any $\nu > 0$ there exists a partial sum Σ_N of Σ that approximates $F \circ \exp$ with an accuracy $\exp(-\nu \exp \xi)$:

$$|F \circ \exp{-\Sigma_N}| \prec \exp(-\nu \exp{\xi})$$
 (4)

in the intersection $\ln \Omega \cap \mathbb{H}^{\varepsilon}$. Here \mathbb{H}^{ε} is the ε -neighborhood of the upper half-plane.

The sets $\mathcal{K}^{1,r}, \mathcal{E}^1, \mathcal{FC}^1$

Definition

Set

$$\mathcal{K}^{1,r+1} = \mathcal{K}^{1,r} \cup_{\mu \in (0,1)} \mathcal{FC}^{1,r} \circ \exp \circ \mu.$$
(5)

Thus, by induction in r we defined the series and cochains of classes $\mathcal{E}^{1,r}$, $\mathcal{FC}^{1,r}$ respectively for all $r \in \mathbb{Z}^+$. Equalities

$$\mathcal{E}^1 = \cup_0^\infty \mathcal{E}^{1,r}, \,\, \mathcal{FC}^1 = \cup_0^\infty \mathcal{FC}^{1,r}$$

complete the definitions of series of class STAR-1 and cochains of class $\mathcal{FC}^1.$

This completes the definition of the class \mathcal{FC}^1 , modulo the definition of index.

A typical coefficient a of a STAR-1 is

$$a = F \circ \exp \circ \mu, \ \mu \in (0,1), \ F \in FC^1.$$

The index of a partial sum of a STAR-1 takes care of all the μ 's that occur in the coefficients of this sum. But some μ 's are hidden in F.

It is given by induction in r.

Definition

(base of induction) Let $F \in \mathcal{FC}^{1,0}$. Then ind $F = \emptyset$.

Definition

(induction step) Let ind be defined on $\mathcal{K}^{1,r}$. Let us define it on $\mathcal{E}^{1,r}$. Let $\Sigma = \Sigma a_j \exp \mathbf{e}_j$, $a_j \in \mathcal{K}^{1,r}$. Then

ind $\Sigma = \cup$ ind a_j .

Definition of the index of a cochain

Definition

Let $F \in \mathcal{FC}^{1,r}$, and $\Sigma \in \mathcal{E}^{1,r}$ be an asymptotic series for $F \circ exp$. Then

ind $F = ind \Sigma$.

Remark

An asymptotic series for $F \circ \exp$ is not uniquely defined. So in fact we define an index of a pair F, Σ . Yet we write ind F for simplicity.

Definition

Let $a \in \mathcal{K}^{1,r+1}$. Then either $a \in \mathcal{K}^{1,r}$ (and then ind a is defined by the induction assumption) or

$$a = F \circ \exp \circ \mu, \ F \in \mathcal{FC}^{1,r}, \ \mu \in (0,1).$$

Then

ind
$$a = (ind F) \cdot \mu \cup \{\mu\},\$$

This completes the induction step in the definition of the index.

Theorem

W

Let Σ_N be a non-zero non-contructable partial sum of a STAR-1 with an index

ind
$$\Sigma_N = (\mu_1, \ldots, \mu_i), \ \mu_k \in (0, 1), \ \mu_k \searrow$$
,

Then Σ_N admits the following representation:

$$\Sigma_N = \exp h_1(\exp h_2(\ldots \exp h_{i+1}(a+R_{i+1})\ldots)+R_1),$$

here $a \in \mathcal{FC}_0$,

$$\mathbf{h}_1 \in E^1, \ \mathbf{h}_k \in E^1 \circ \mu_{k-1},$$

and either $\mathbf{h}_k \equiv 0$, or

$$rac{\mathbf{h}_k}{\exp\circ\mu_k}
ightarrow\infty$$
 on $(\mathbb{R}^+,\infty),\,\,k=1,\ldots,i,$

The reminder terms are partial sums of STAR-1 and satisfy the relations

$$\begin{split} |R_k| \leq \exp(-\nu \exp \circ \mu_k) \forall \ \nu > 0 \quad on \ (\mathbb{R}^+, \infty), \ k = 1, \dots, i, \\ |R_{i+1}| \leq \exp(-\nu\xi) \ \forall \nu > 0 \quad on \ (\mathbb{R}^+, \infty). \end{split}$$

(6)

э

Lower estimate theorem LET

Theorem

Cochains of class $\mathcal{FC}^{1,0}$ admit the following lower estimate:

$$|{\sf F}|\succ \exp(-C\xi)$$
 on $({\mathbb R}^+,\infty)$

for some C > 0.

Proof.

Let us take a partial sum of a STAR-1 Σ_N that approximates $F \circ exp.$ Suppose that

ind
$$\Sigma_N = (\mu_1, ..., \mu_i).$$

By the previous theorem

 $\Sigma_N = \exp h_1(\exp h_2(\ldots \exp h_{i+1}(a+R_{i+1})\ldots)+R_1),$

Base of induction

Proof.

Let

$$S_{k-1} = \exp \mathbf{h}_k(\exp \mathbf{h}_{k+1}(\ldots \exp \mathbf{h}_{i+1}(a+R_{i+1})\ldots) + R_k),$$

Then $\Sigma_N = S_0$, $S_i = \exp \mathbf{h}_{i+1}(a + R_{i+1})$. We will prove the theorem by the inverse induction in k:

$$|\mathcal{S}_{k-1}|\succ \exp(- ext{C}\exp\circ\mu_{k-1}) ext{ on } (\mathbb{R}^+,\infty), \ \mu_0=1.$$

Base of induction: $|S_i| \succ \exp(-C \exp \circ \mu_i)$.

$$\mathbf{h}_{i+1} \in E^1 \circ \mu_i \Longrightarrow \mathbf{h}_{i+1} \succ -C \exp(\mu_i \xi) \Longrightarrow$$
$$|\exp \mathbf{h}_{i+1}(a + R_{i+1})| \succ \exp(-C \exp \circ \mu_i).$$

(7)

Proof.

Induction assumption:

$$|S_k| \succ \exp(-C \exp \circ \mu_k) \text{ on } (\mathbb{R}^+, \infty).$$
 (8)

We want to prove:

$$|S_{k-1}| \succ \exp(-C \exp \circ \mu_{k-1}) \text{ on } (\mathbb{R}^+, \infty).$$
 (9)

We have:

$$S_{k-1} = \exp \mathbf{h}_k (S_k + R_k).$$

By (8) $R_k = o(S_k)$. Together with relation $\mathbf{h}_k \in E^1 \circ \mu_{k-1}$ this implies (9).

General outlook

Figure 1: Graph of the characteristic of a composition