FINITENESS THEOREMS FOR LIMIT CYCLES

Yu. Ilyashenko

National Research University Higher School of Economy Independent University of Moscow

PLAN

- Recalling the Structural theorem
- ② Classes \mathcal{FC}^0 , \mathcal{FC}^1 and the Additive Decomposition theorem (ADT)
- From ADT to the Finiteness theorem
- **3** Constructive definition of \mathcal{FC}^0
- **5** Phragmen-Lindelof theorem for \mathcal{FC}^0

Maps TO and FROM

The Dulac map for the real saddle-node TO the central manifold extended to the complex domain has the form:

$$\Delta = g \circ \Delta_{st} \circ F_{norm},$$

where F_{norm} is a normalizing cochain for the monodromy map of the saddle-node, Δ_{st} is the same as above, g is holomorphic germ at a fixed point 0, and g'(0) > 0.

$$FROM = TO^{-1}$$
.

Structural theorem

Theorem

The monodromy map of a polycycle of an analytic vector field is a composition of the maps TO, FROM for real saddle-nodes, and of almost regular germs that are real on the real axis.

Characteristic of a composition

Definition

Characteristic of a composition Δ above is a continuous function χ on a segment [-N,0] which is linear between two subsequent integers, $\chi(0)=0$, and

$$\chi(-j) = \chi(-j+1)$$
 for $\Delta_j \in R$,

$$\chi(-j) = \chi(-j+1) - 1 \text{ for } \Delta_j \in TO,$$

$$\chi(-j) = \chi(-j+1) + 1$$
 for $\Delta_j \in FROM$.

The composition Δ is balanced iff $\chi(-N) = \chi(0) = 0$.

Graph of the characteristic of a composition

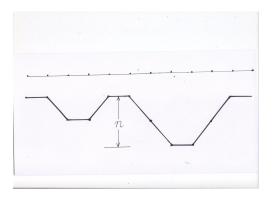


Figure 1: Graph of the characteristic of a composition

Transition to the logarithmic chart $\zeta = -\ln z$

Mapping in a natural chart

- 1 | Power: $z \mapsto Cz^{\nu}$
- 2 Standard flat: $z \mapsto \exp(-1/z)$
- A mapping defined in a sector with vertex 0 and expandable in a convergent or asymptotic Taylor series $\hat{f} = z(1 + \sum_{1}^{\infty} a_i z^i)$

The same mapping in the logarithmic chart

Affine: $\zeta \mapsto \nu \zeta - \ln C$

Exponential: $\zeta \mapsto \exp \zeta$

A mapping defined in a horizontal half-strip and expandable in a convergent or asymptotic Dulac (exponential) series $\tilde{f} = \zeta + \sum_{1}^{\infty} b_{j} \exp(-j\zeta)$

Transition to the logarithmic chart (continued)

- totic Dulac series at zero $\mid 0 < \nu_j \nearrow \infty$, and $\mid Q_j$ are real polynomials and the P_j are real polynomials

4
$$h_{k,a}\colon z\mapsto kz^k(1-\frac{1}{az^{-k}\ln z})^{-1}$$
 $h_{k,a}\colon \zeta\mapsto k\zeta-\ln k-\ln(1-\frac{1}{a\zeta\exp(-k\zeta)})$ An almost regular mapping with asymptotic Dulac series at zero $z\mapsto Cz^{\nu}+\sum P_j(z)z^{-\nu_j},$ where $C>0,\ \nu>0,\ 0<\nu_j\nearrow\infty$, and Q_j are real polynomials

Normalizing cochains in the logarithmic chart

Upon transition to the logarithmic chart the normalizing cochain F_{norm} becomes a map-cochain defined in a half-plane $\mathbb{C}_a^+: \xi \geq a$; a depends on the cochain.

- 1. Partition The corresponding partition is a partition of \mathbb{C}_a^+ into half-strips by the rays $\eta=\pi m/k,\ m\in\mathbb{Z},\ \xi>a$. This partition for k=1 is called *standard* and denoted by Ξ_{st} .
- 2. Extension The components of the map-cochain extend analytically to the ε -neighborhoods of the corresponding half-strips in the partition for arbitrary $\varepsilon \in (0, \pi/2k)$ (a depends also on ε).

Normalizing cochains in the logarithmic chart

- 3. *Growth* These components have an exponentially decreasing correction (difference with the identity).
- 4. *Coboundary* The modulus of the coboundary has the upper estimate

$$C \exp(-C' \exp k\xi)$$

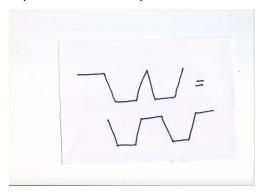
for some C, C' > 0 depending on the cochain.

5. Decomposition The mappings making up F_{norm} (components of F) can be expanded in a common asymptotic Dulac exponential series; see row 5 of the table.

Classes \mathcal{FC}^0 and \mathcal{FC}^1

We extend class of normalizing cochains to a wider class of simple cochains denoted by \mathcal{FC}^0 .

We also extend class of almost regular germs to a much wider class of sectorial cochains denoted by \mathcal{FC}^1 so that the following transposition becomes possible:



Lower Estimate theorem (LET)

Theorem

Cochains from \mathcal{FC}^0 and \mathcal{FC}^1 admit the following lower estimate:

$$|ReF| > \exp(-\varkappa \xi)$$

in a standard domain for some $\varkappa > 0$, provided that $F^u \not\equiv 0$.

Additive Decomposition Theorem (ADT)

These extensions will allow us to decompose the monodromy map Δ of an alternant polycycle as the following theorem claims.

Theorem

(ADT)

$$\Delta = a + F_0 + \sum_{1}^{N} F_j \circ \exp \circ \mu_j \tag{1}$$

where a is real affine, all F's are cochains exponentially decreasing at infinity,

$$0 < \mu_i \nearrow$$
, $F_0 \in \mathcal{FC}^0$, $F_i \in \mathcal{FC}^1$.

ADT implies Non-accumulation Theorem

Theorem

Either $\Delta = id$, or

$$\Delta \notin Fix_{\infty}$$
 (2)

Proof.

Case 1: $a \neq id$ in (1)

Then

$$|a-id|>C\neq 0,\ \Delta-a\rightarrow 0.$$

Hence, (2) holds.

Case 2: $a = id, F_0 \not\equiv 0 \text{ in } (1).$

Then $|F_0| \succ \exp(-\varkappa \xi)$ on (\mathbb{R}^+, ∞) , and

$$|\Delta - a - F_0| \prec \exp(\nu \xi) \forall \nu > 0 \text{ on } (\mathbb{R}^+, \infty).$$

Again, (2) holds.

ADT implies Non-accumulation Theorem

Proof.

Case 3: a = id, $F_0 \equiv 0$ in (1), but $\Delta \not\equiv id$.

Then

$$|F_1 \circ \exp \circ \mu_1| \succ \exp(-\varkappa \exp \mu_1 \xi).$$

Then, for some $\lambda > 0$,

$$|\Delta - \zeta - F_1 \circ \exp \mu_1 \xi)| \prec \exp(-\lambda \exp \mu_2 \xi) = o(F_1 \circ \exp \mu_1 \xi).$$

Definition of \mathcal{FC}^0

These cochais are similar to the normalizing ones.

1. Partition

Definition

A simple partition of the type

$$\sigma = (\mu_1, \dots, \mu_N), \ \mu_1 > \mu_2 \dots > \mu_N > 0$$
 (3)

is a product of images of the standard partition:

$$\Xi_{\sigma} = \prod_{1}^{N} \mu_{j*} \Xi_{st}.$$

2. Extension The components of the cochain extend analytically to the ε -neighborhoods of the corresponding half-strips of the partition for some ε >.

Definition of \mathcal{FC}^0

- 3. Growth All the components of F grow no faster than some exponent
- 4. Coboundary Recall that the boundary of the partition Ξ is the union of the boundaries of all its domains; notation: $\partial \Xi$.

Definition

Consider a quadratic standard domain and its simple partition of type (3). A rigging cochain $m_{\varepsilon,C,C'}$ is defined in the generalized ε -neighborhood of the boundary $\partial \Sigma_{\sigma}$, and in a generalized ε -neighborhood of a boundary curve \mathcal{L} , it takes the form:

$$m_{\varepsilon,C,C'} = \sum C \exp(-C' \exp \mu_j^{-1} \xi), \tag{4}$$

the summation is over those j for which $\mathcal{L} \subset \mu_j \partial \Xi_{st}$.

Definition of \mathcal{FC}^0

The coboundary of F admits an upper estimate by some rigging cochain (4): $\exists \ \varepsilon, C, C'$ such that $|\delta F| < m_{\varepsilon, C, C'}$ in the generalized ε -neighborhoods of $\partial \Xi_{\sigma}$.

5. Decomposition The mappings making up F_{norm} can be expanded in a common asymptotic Dulac exponential series; see row 5 of the table.

This is a sketch; an actual definition contains more details.

Genesis

We consider $F \in \mathcal{NC}$, $a = \alpha \zeta$ affine, and a composition $F \circ a$. This composition corresponds to a partition $\alpha^{-1}\Xi_{st}$. We want to add such cochains for different $\alpha's$, and thus get products of partitions. The rigging cochain for the partition $\alpha^{-1}\Xi_{st}$ is the pullback of the rigging cochain for the standard partition by the map a^{-1} .

Sectorial cochains

These cochains are defined in the similar way, but the partition has the form

$$\Xi = \prod_{1}^{N} \exp \circ \mu_{j*} \Xi_{\mathsf{St}}.$$

The rigging cochains are the sums of the pullbacks of the rigging cochain for a standard partition. The decomposition part is much more complicated, and will be delivered in the next lecture. Here the Super Exact Asymptotic Series occur.

Phragmen-Lindelof theorem for \mathcal{FC}^0

Theorem

If a cochain $F \in \mathcal{FC}^0$ decreases on (\mathbb{R}^+, ∞) faster than any exponent, then $F^u \equiv 0$ (F^u is the component of F that is defined in the strip of the corresponding partition that is adjacent to (\mathbb{R}^+, ∞) from above).

Lower Estimate theorem for \mathcal{FC}^0

Proof.

The proof is similar to that for the almost regular germs. The cochain F corresponds to an exponential Dulac series Σ in some quadratic standard domain Ω :

$$\Sigma = \Sigma_1^{\infty} P_j(\zeta) \exp \nu_j \zeta, \ \nu_j \searrow -\infty.$$

For any $\nu > 0$ there exists N such that

$$\Sigma_N = \Sigma_1^N P_j(\zeta) \exp \nu_j \zeta,$$

and

$$|F - \Sigma_N| \prec \exp(-\nu \xi)$$

in Ω .

If $\Sigma \equiv 0$ then by Phragmen-Lindelof theorem $F^u \equiv 0$, a contradiction.

Phragmen-Lindelof theorem for two quadrants

Proof.

If $\Sigma \not\equiv 0$ then

$$F = P_1(\zeta)(\exp \nu_1 \zeta)(1 + o(1).$$

This cochain does not oscillate.

Theorem

If a holomorphic function f defined in \mathbb{C}^+ increases no faster than an exponential $\exp \nu \xi, \nu > 0$, and is bounded on the positive semiaxis of the real axis, and on the imaginary axis, then it is bounded in \mathbb{C}^+ , and

$$\sup_{\mathbb{C}^+}=\sup_{\partial\mathbb{C}^+}.$$

Phragmen-Lindelof theorem for decreasing holomorphis functions

Theorem

If a holomorphic function f defined in \mathbb{C}^+ increases no faster than an exponential $\exp \nu \xi, \nu > 0$, is bounded on the imaginary axis and tends to zero faster than any expronent on the positive semiaxis of the real axis, then $f \equiv 0$.

Proof.

Take
$$\zeta_0 \in \mathbb{C}^+, \xi_0 = Re\zeta_0 \neq 0, f(\zeta_0) \neq 0$$
. Consider

$$f_{\lambda} = f \exp \lambda \zeta, \lambda > 0$$

This function is bounded on $i\mathbb{R} \cup \mathbb{R}^+$. Hence,

$$|f(\zeta) \exp \lambda \zeta| \leq \sup |f| = M.$$

Phragmen-Lindelof theorem for the class \mathcal{NC}

Proof.

Hence,

$$|f(\zeta_0)| < M \exp(-\lambda \xi_0) \forall \lambda > 0,$$

a contradiction.

 \mathcal{NC} is a class of simple cochains corresponding to the standard partition.

$\mathsf{Theorem}$

If a cochain F of class \mathcal{NC} decreases on \mathbb{R}^+ faster than any exponential $\exp(-\nu\xi)$, $\nu > 0$, then $F^u \equiv 0$.

Trivialization of a cocycle

Lemma

Let F be an ε -extendable cochain of class \mathcal{NC} defined in an ε -neighborhood Ω^{ε} of a standard domain Ω . Let $\Xi^{F,\varepsilon}$ (Ξ^{F}) be the partition of Ω^{ε} (respectively, Ω) that corresponds to this cochain . Let the coboundary of F be estimated from above by $m = \exp(-C \exp \xi)$, and

$$m_0 = \sup_{\Omega^{\varepsilon}} m, \qquad \int_{\partial \Xi^{F,\varepsilon}} m \, ds = I < \infty.$$

Then there exists an ε -extendable functional cochain Φ defined in Ω , such that

$$\delta F = \delta \Phi \qquad \max_{\Omega} |\Phi| \le C \varepsilon^{-1} (m_0 + I).$$

Maximum modulo principle for cochains

Lemma

In assumptions of the previous lemma, let Ω be a standard domain of class 1, F be a simple or sectorial or rotated sectorial cochain that grows no faster than the exponent $\exp \nu \xi$ in Ω and is bounded on $\partial \Omega$ and on a positive real axis. Then F is bounded in Ω , and

$$\sup_{\Omega} |F| \leq \sup_{\partial \Omega} |F| + 2C\varepsilon^{-1}(m_0 + I).$$

where C, ε , m_0 , I are the same as in the previous lemma.

Preliminary estimate

Lemma

Let F be a cochain of the class \mathcal{NC} defined in a standard domain Ω , that decreases on \mathbb{R}^+ faster than any exponential. Then for any sector S_α : $|\arg\zeta|<\alpha<\pi/2$ and any $\delta>0$ there exists C>0 such that for any $\zeta\in S_\alpha$ the following estimate holds:

$$|F(\zeta)| < \exp(-C \exp(1-\delta)\xi).$$

The classical Phragmen-Lindelof theorem for a halfstripe now implies the Phragmen-Lindelof theorem for the cochains of the class \mathcal{NC} .

