
FINITENESS THEOREMS FOR LIMIT
CYCLES

Yu. Ilyashenko

National Research University Higher School of Economy
Independent University of Moscow

Yu. Ilyashenko FINITENESS THEOREMS FOR LIMIT CYCLES



PLAN

1 Recalling the Structural theorem
2 Classes FC0, FC1 and the Additive Decomposition

theorem (ADT)
3 From ADT to the Finiteness theorem
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Maps TO and FROM

The Dulac map for the real saddle-node TO the central
manifold extended to the complex domain has the form:

∆ = g ◦∆st ◦ Fnorm,

where Fnorm is a normalizing cochain for the monodromy map
of the saddle-node, ∆st is the same as above, g is holomorphic
germ at a fixed point 0, and g ′(0) > 0.

FROM = TO−1.
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Structural theorem

Theorem
The monodromy map of a polycycle of an analytic vector field
is a composition of the maps TO, FROM for real saddle-nodes,
and of almost regular germs that are real on the real axis.
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Characteristic of a composition

Definition
Characteristic of a composition ∆ above is a continuous
function χ on a segment [−N , 0] which is linear between two
subsequent integers, χ(0) = 0, and

χ(−j) = χ(−j + 1) for ∆j ∈ R ,

χ(−j) = χ(−j + 1)− 1 for ∆j ∈ TO,

χ(−j) = χ(−j + 1) + 1 for ∆j ∈ FROM .

The composition ∆ is balanced iff χ(−N) = χ(0) = 0.
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Graph of the characteristic of a composition

Figure 1: Graph of the characteristic of a composition
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Transition to the logarithmic chart ζ = − ln z

Mapping in a natural
chart

The same mapping in the loga-
rithmic chart

1 Power: z 7→ Czν Affine: ζ 7→ νζ − lnC
2 Standard flat: z 7→

exp(−1/z)
Exponential: ζ 7→ exp ζ

3 A mapping defined in a
sector with vertex 0 and
expandable in a conver-
gent or asymptotic Tay-
lor series f̂ = z(1 +∑∞

1 ajz
j)

A mapping defined in a horizon-
tal half-strip and expandable in
a convergent or asymptotic Du-
lac (exponential) series f̃ = ζ +∑∞

1 bj exp(−jζ)
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Transition to the logarithmic chart (continued)

4 hk,a : z 7→ kzk(1 −
az−k ln z)−1

h̃k,a : ζ 7→ kζ − ln k − ln(1 −
aζ exp(−kζ))

5 An almost regular
mapping with asymp-
totic Dulac series at zero
z 7→ Czν +

∑
Pj(z)z−νj ,

where C > 0, ν > 0,
0 < νj ↗ ∞, and
and the Pj are real
polynomials

An almost regular mapping with
asymptotic Dulac exponential se-
ries at infinity ζ 7→ νζ − lnC +∑

Qj(ζ) · exp(−µjζ) where C >
0, ν > 0, 0 < µj ↗ ∞, and the
Qj are real polynomials
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Normalizing cochains in the logarithmic chart

Upon transition to the logarithmic chart the normalizing
cochain Fnorm becomes a map-cochain defined in a half-plane
C+

a : ξ ≥ a; a depends on the cochain.

1. Partition The corresponding partition is a partition of C+
a

into half-strips by the rays η = πm/k , m ∈ Z, ξ > a. This
partition for k = 1 is called standard and denoted by Ξst .

2. Extension The components of the map-cochain extend
analytically to the ε-neighborhoods of the corresponding
half-strips in the partition for arbitrary ε ∈ (0, π/2k) (a
depends also on ε).
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Normalizing cochains in the logarithmic chart

3. Growth These components have an exponentially
decreasing correction (difference with the identity).

4. Coboundary The modulus of the coboundary has the upper
estimate

C exp(−C ′ exp kξ)

for some C ,C ′ > 0 depending on the cochain.

5. Decomposition The mappings making up Fnorm
(components of F ) can be expanded in a common asymptotic
Dulac exponential series; see row 5 of the table.
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Classes FC0 and FC1

We extend class of normalizing cochains to a wider class of
simple cochains denoted by FC0.

We also extend class of almost regular germs to a much wider
class of sectorial cochains denoted by FC1 so that the
following transposition becomes possible:
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Lower Estimate theorem (LET)

Theorem

Cochains from FC0 and FC1 admit the following lower
estimate:

|ReF | � exp(−κξ)

in a standard domain for some κ > 0, provided that F u 6≡ 0.
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Additive Decomposition Theorem (ADT)

These extensions will allow us to decompose the monodromy
map ∆ of an alternant polycycle as the following theorem
claims.

Theorem
(ADT)

∆ = a + F0 + ΣN
1 Fj ◦ exp ◦µj (1)

where a is real affine, all F ’s are cochains exponentially
decreasing at infinity,

0 < µj ↗, F0 ∈ FC0, Fj ∈ FC1.
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ADT implies Non-accumulation Theorem

Theorem
Either ∆ = id, or

∆ 6∈ Fix∞ (2)

Proof.
Case 1: a 6= id in (1)
Then

|a − id| > C 6= 0, ∆− a→ 0.

Hence, (2) holds.
Case 2: a = id,F0 6≡ 0 in (1).
Then |F0| � exp(−κξ) on (R+,∞), and

|∆− a − F0| ≺ exp(νξ)∀ν > 0 on (R+,∞).

Again, (2) holds.
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ADT implies Non-accumulation Theorem

Proof.
Case 3: a = id,F0 ≡ 0 in (1), but ∆ 6≡ id.
Then

|F1 ◦ exp ◦µ1| � exp(−κ expµ1ξ).

Then, for some λ > 0,

|∆− ζ − F1 ◦ expµ1ξ)| ≺ exp(−λ expµ2ξ) = o(F1 ◦ expµ1ξ).
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Definition of FC0

These cochais are similar to the normalizing ones.
1. Partition
Definition

A simple partition of the type

σ = (µ1, . . . , µN), µ1 > µ2 · · · > µN > 0 (3)

is a product of images of the standard partition:

Ξσ =
N∏
1

µj∗Ξst.

2. Extension The components of the cochain extend
analytically to the ε-neighborhoods of the corresponding
half-strips of the partition for some ε >.
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Definition of FC0

3. Growth All the components of F grow no faster than some
exponent

4. Coboundary Recall that the boundary of the partition Ξ is
the union of the boundaries of all its domains; notation: ∂Ξ.

Definition
Consider a quadratic standard domain and its simple partition
of type (3). A rigging cochain mε,C ,C ′ is defined in the
generalized ε-neighborhood of the boundary ∂Σσ, and in a
generalized ε-neighborhood of a boundary curve L, it takes
the form:

mε,C ,C ′ =
∑

C exp(−C ′ expµ−1
j ξ), (4)

the summation is over those j for which L ⊂ µj∂Ξst.
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Definition of FC0

The coboundary of F admits an upper estimate by some
rigging cochain (4): ∃ ε,C ,C ′ such that |δF | < mε,C ,C ′ in the
generalized ε-neighborhoods of ∂Ξσ.

5. Decomposition The mappings making up Fnorm can be
expanded in a common asymptotic Dulac exponential series;
see row 5 of the table.

This is a sketch; an actual definition contains more details.
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Genesis

We consider F ∈ NC, a = αζ affine, and a composition F ◦ a.
This composition corresponds to a partition α−1Ξst . We want
to add such cochains for different α′s, and thus get products
of partitions. The rigging cochain for the partition α−1Ξst is
the pullback of the rigging cochain for the standard partition
by the map a−1.
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Sectorial cochains

These cochains are defined in the similar way, but the partition
has the form

Ξ =
N∏
1

exp ◦µj∗Ξst.

The rigging cochains are the sums of the pullbacks of the
rigging cochain for a standard partition. The decomposition
part is much more complicated, and will be delivered in the
next lecture. Here the Super Exact Asymptotic Series occur.
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Phragmen-Lindelof theorem for FC0

Theorem

If a cochain F ∈ FC0 decreases on (R+,∞) faster than any
exponent, then F u ≡ 0 (F u is the component of F that is
defined in the strip of the corresponding partition that is
adjacent to (R+,∞) from above).
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Lower Estimate theorem for FC0

Proof.
The proof is similar to that for the almost regular germs. The
cochain F corresponds to an exponential Dulac series Σ in
some quadratic standard domain Ω:

Σ = Σ∞1 Pj(ζ) exp νjζ, νj ↘ −∞.

For any ν > 0 there exists N such that

ΣN = ΣN
1 Pj(ζ) exp νjζ,

and
|F − ΣN | ≺ exp(−νξ)

in Ω.
If Σ ≡ 0 then by Phragmen-Lindelof theorem F u ≡ 0, a
contradiction.
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Phragmen-Lindelof theorem for two quadrants

Proof.
If Σ 6≡ 0 then

F = P1(ζ)(exp ν1ζ)(1 + o(1).

This cochain does not oscillate.

Theorem
If a holomorphic function f defined in C+ increases no faster
than an exponential exp νξ, ν > 0, and is bounded on the
positive semiaxis of the real axis, and on the imaginary axis,
then it is bounded in C+, and

sup
C+

= sup
∂C+

.
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Phragmen-Lindelof theorem for decreasing
holomorphis functions

Theorem
If a holomorphic function f defined in C+ increases no faster
than an exponential exp νξ, ν > 0, is bounded on the
imaginary axis and tends to zero faster than any expronent on
the positive semiaxis of the real axis, then f ≡ 0.

Proof.
Take ζ0 ∈ C+, ξ0 = Reζ0 6= 0, f (ζ0) 6= 0. Consider

fλ = f expλζ, λ > 0

This function is bounded on iR ∪ R+. Hence,

|f (ζ) expλζ| ≤ sup
iR
|f | = M .
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Phragmen-Lindelof theorem for the class NC

Proof.
Hence,

|f (ζ0)| < M exp(−λξ0)∀λ > 0,

a contradiction.

NC is a class of simple cochains corresponding to the
standard partition.

Theorem
If a cochain F of class NC decreases on R+ faster than any
exponential exp(−νξ), ν > 0, then F u ≡ 0.
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Trivialization of a cocycle

Lemma

Let F be an ε -extendable cochain of class NC defined in an
ε-neighborhood Ωε of a standard domain Ω. Let ΞF ,ε (ΞF ) be
the partition of Ωε (respectively, Ω) that corresponds to this
cochain . Let the coboundary of F be estimated from above
by m = exp(−C exp ξ), and

m0 = sup
Ωε

m,

∫
∂ΞF ,ε

mds = I <∞.

Then there exists an ε–extendable functional cochain Φ
defined in Ω, such that

δF = δΦ max
Ω
|Φ| ≤ Cε−1(m0 + I ).
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Maximum modulo principle for cochains

Lemma

In assumptions of the previous lemma, let Ω be a standard
domain of class 1, F be a simple or sectorial or rotated
sectorial cochain that grows no faster than the exponent
exp νξ in Ω and is bounded on ∂Ω and on a positive real axis.
Then F is bounded in Ω, and

sup
Ω
|F | ≤ sup

∂Ω
|F |+ 2Cε−1(m0 + I ).

where C , ε, m0, I are the same as in the previous lemma.
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Preliminary estimate

Lemma

Let F be a cochain of the class NC defined in a standard
domain Ω , that decreases on R+ faster than any exponential.
Then for any sector Sα: | arg ζ| < α < π/2 and any δ > 0
there exists C > 0 such that for any ζ ∈ Sα the following
estimate holds:

|F (ζ)| < exp(−C exp(1− δ)ξ).

The classical Phragmen-Lindelof theorem for a halfstripe now
implies the Phragmen-Lindelof theorem for the cochains of the
class NC.
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