On the transportation problem and related questions

+ some computational algebra problems for quantum computing

Gábor Ivanyos
Institute for Computer Science and Control
Eötvös Loránd Research Network

Workshop on Quantum Algorithms in Number Theory
Fields Institute, April 19-21, 2022

The transportation problem

G (in this talk finite) group with
permutation action on a set Ω
Given $\omega_{1}, \omega_{2} \in \Omega$, find

$$
\begin{aligned}
& G_{\omega_{1} \rightarrow \omega_{2}}=\left\{x \in G: x \omega_{1}=\omega_{2}\right\} \\
& \quad \text { empty or a coset of the stabilizer } G_{\omega_{1}}=G_{\omega_{1} \rightarrow \omega_{1}}
\end{aligned}
$$

For $\omega_{1} \neq \omega_{2}$, often just one element of $G_{\omega_{1} \rightarrow \omega_{2}}$ is sufficient
Examples
Discrete log: $G=\mathbb{Z}_{N}^{*}, \Omega=\left\{a^{x}: x \in G\right\} a^{N}=1, \quad x \cdot a=a^{x}$
Graph isomorphism: $G=S_{n}$,
$\Omega=\{E: E$ is the edge set of a graph on n vertices $\}$,
$\{u, v\} \in \pi \cdot E$ if $\left\{\pi^{-1}(u), \pi^{-1}(v)\right\} \in E$

Toy reductions

Transportation \prec Stabilizer:

$$
\begin{gathered}
\Gamma=\Omega \times \Omega, K=G \imath \mathbb{Z}_{2}=(G \times G) \rtimes \mathbb{Z}_{2} \\
K_{\left(\omega_{1}, \omega_{2}\right)} \backslash G \times G
\end{gathered}
$$

Stabilizer \prec Hidden Subgroup: $\quad f: x \mapsto x \omega$ level sets: left cosets of G_{ω}

For abelian G, further \prec Stabilizer/HSP in $G \rtimes \mathbb{Z}_{2}$
Regular Transportation (case $G_{\omega_{i}}=1$) \prec Shift of injective functions

$$
f_{i}(x)=x \omega_{i}
$$

Abelian transportation/shift

Often better to consider transportation as a two-part problem:

Find the stabilizer H in G
Solve the "regular" transportation problem over G / H
No need to replace G with a more complicated group
A similar decomposition "works" in the noncommutative case up to problems in G

The best/most important abelian algorithms:
Stabilizer: Shor-Kitaev 1994-95: poly $(|G|)$
Regular Transportation: Kuperberg 2003, 2011; Regev 2004

$$
\exp (O(\sqrt{|G|}))
$$

in $\mathbb{Z}_{p}^{n}, p=O(1)$ prime: Friedl, I., Magniez, Santha, Sen 2003

$$
\operatorname{poly}(n)
$$

From HSP/Shift to Stabilizer/Transportation

"function graph" $|f\rangle=\frac{1}{\sqrt{|G|}} \sum_{z \in G}|z\rangle|f(z)\rangle$
G permutes function graphs: $|x f\rangle=\frac{1}{\sqrt{|G|}} \sum_{z \in G}|z\rangle|f(x z)\rangle$
to compute: $|x f\rangle=\frac{1}{\sqrt{|G|}} \sum_{z \in G}\left|x^{-1} z\right\rangle|f(z)\rangle$
If the level sets of f are the left cosets of H then the states $|x f\rangle$ are pairwise orthogonal/identical
"quantum version" of the Stabilizer problem:
Ω is an orthonormal system in a Hilbert space action of G on Ω by oracle input: by oracle or as a stream of copies of $|\omega\rangle$ (or $\left|\omega_{1}, \omega_{2}\right\rangle$)

\approx the same problems

quantum versions of HSP and Stabilizer are equivalent by the reductions, can use the term Stabilizer or the term HSP for all of these problems

Discrete log as an abelian HSP does not follow the \imath / \rtimes approach $\operatorname{group} G=\mathbb{Z}_{N} \times \mathbb{Z}_{N},\left(\operatorname{not} \mathbb{Z}_{N}^{*} \times \mathbb{Z}_{N}^{*}!\right)$

$$
f(x, y)=\left(a^{x}\right)\left(b^{y}\right)^{-1}
$$

First steps in typical HSP algorithms

$$
\begin{aligned}
& \quad H=\text { hidden subgroup } \\
& \frac{1}{\sqrt{|G|}} \sum_{x \in G}|x\rangle|0\rangle \\
& \downarrow \\
& \frac{1}{\sqrt{|G|}} \sum_{x \in G}|x\rangle|f(x)\rangle \\
& \downarrow \text { measure } f(x) \quad \text { (not necessary, simplifies presentation) } \\
& \frac{1}{\sqrt{|H|}} \sum_{x \in H}|a x\rangle \\
&
\end{aligned}
$$

First steps II.

$\frac{1}{\sqrt{|H|}} \sum_{x \in H}|a x\rangle$ "random" coset superposition
without measurement: mixture of the coset superpositions
(name: subgroup state)
Most HSP algorithms work with a stream of subgroup states as input
\sim a generalization of Stabilizer: input: stream $\left|\omega_{1}\right\rangle,\left|\omega_{2}\right\rangle,\left|\omega_{3}\right\rangle \ldots$ with $G_{\omega_{i}}=H$
Query complexity even of this is poly
(Ettinger, Hoyer,Knill 2004)

Orbit superposition

$$
|G \omega\rangle=\frac{1}{\sqrt{|G|}} \sum_{x \in G}|x \omega\rangle=\frac{1}{\sqrt{|G \omega|}} \sum_{\omega^{\prime} \in G \omega}\left|\omega^{\prime}\right\rangle
$$

Why is it useful:

$$
K \triangleleft G, G / K \text { acts on }\{|K \omega\rangle:|\omega\rangle \in \Omega\}
$$

recursion to G / K computes $G_{K \omega_{1} \rightarrow K \omega_{2}}$ Inside this, finding $G_{\omega_{1} \rightarrow \omega_{2}} \prec$ finding $K_{\omega_{1} \rightarrow \omega_{2}^{\prime}}$

Orbit superposition and transportation I

Friedl, I, Magniez, Santha, Sen 2003, 2014
What we would like:

$$
|G \omega\rangle=\frac{1}{\sqrt{|G \omega|}} \sum_{\omega^{\prime} \in G \omega}\left|\omega^{\prime}\right\rangle
$$

What we can compute:

$$
\frac{1}{\sqrt{|G|}} \sum_{x \in G}|x\rangle|x \omega\rangle=\frac{1}{\sqrt{|G \omega|}} \sum_{\omega^{\prime} \in G \omega}\left|G_{\omega \rightarrow \omega^{\prime}}\right\rangle\left|\omega^{\prime}\right\rangle
$$

$\left|\omega^{\prime}\right\rangle$ is entangled with $\left|G_{\omega \rightarrow \omega^{\prime}}\right\rangle$
Need to " reverse-compute" $\left|G_{\omega \rightarrow \omega^{\prime}}\right\rangle$:
inverse of solving the transportation problem

Orbit superposition and transportation II.

Issue: to compute $\left|G_{\omega \rightarrow \omega^{\prime}}\right\rangle$, need many copies of $|\omega\rangle$ and $\left|\omega^{\prime}\right\rangle$
Workaround: action on $\Omega^{(r)}=\left\{|\omega\rangle^{\otimes r}:|\omega\rangle \in \Omega\right\}$
(r sufficiently large)

Assume G solvable. $G \triangleright G^{\prime} \triangleright G^{\prime \prime} \triangleright \ldots \triangleright 1$

$$
\text { length } O(\log \log |G|) \quad(\text { Glasby 1989) }
$$

Recursion along this, using the Shor-Kitaev HSP, and
Kuperberg's shift algorithms in the abelian factors \longrightarrow time

$$
\exp (O(\sqrt{\log |G|} \log \log |G|))
$$

Orbit superposition and transportation III.

Friedl, I, Magniez, Santha, Sen 2003
For $O(1)$-step solvable groups G of exponent $O(1)$,
a poly time shift algorithm in factors \mathbb{Z}_{p}^{n}

$$
\text { (for } p=O(1), \text { prime) }
$$

\downarrow
poly time Stabilizer in G

Remark: the orbit superposition approach does not work with subgroup states as input!

Abelian shift/transportation

From now on, omit normalizing factors and use measurements

Interesting case: A regularly acts on $\Omega, \omega_{2}=s \omega_{1}$, find s.
On $A \times\{0,1\}, \quad|f(x, t)\rangle=\left|x \omega_{2-t}\right\rangle$.

Level set superpositions:

$$
|x\rangle|0\rangle+|x+s\rangle|1\rangle
$$

Apply Fourier transform of A, measure character, obtain

$$
|0\rangle+\chi(s)|1\rangle
$$

Shift in $A=\mathbb{Z}_{p}^{n}$

Friedl, I, Magniez, Santha, Sen 2003
Measure $|0\rangle+\chi(s)|1\rangle$ in the (Hadamard)

$$
\text { basis }(|0\rangle+|1\rangle,|0\rangle-|1\rangle) .
$$

If we get $|0\rangle-|1\rangle$, then $\chi(s) \neq 1$.
Use $A \cong A^{*}: \chi(x)=\omega^{(u, x)}$ for some $u \in \mathbb{Z}_{p}^{n} \quad(\omega=\sqrt[p]{1})$
Get (essentially) uniformly random u with $(u, s) \neq 0$
$(u, s)^{p-1}-1$ polynomial in u
$O\left(p\binom{n+p-2}{p-1}\right)$ "random" zeros determine the coeffs $\rightarrow s$.

Problem: Hyperplane cover

Decision version of finding s
search reducible to $O(n(p+1))$ instances
Problem: given hyperplanes in \mathbb{Z}_{p}^{n}, do they cover the space?
NP-complete
Average case relaxation: what is the smallest $M=M(p, n)$ s.t. M random hyperplanes cover \mathbb{Z}_{p}^{n} in a way provable in time poly (n, M)
$O(n p \log p)$ sufficient to cover with good probability
Open: Are $(n p)^{O(1)}$ sufficient to efficiently provably cover?

Multiple shift in \mathbb{Z}_{p}^{n}

Assume that the level sets of f on $\mathbb{Z}_{p}^{n} \times M$ are

$$
\{u+t \cdot s: t \in M\} \quad M \subseteq\{0, \ldots, p\}
$$

Childs, van Dam 2007:
poly time for $n=1, M=\{0, \ldots, k\} p=k^{O(1)}$
I, Prakash, Santha 2018; Chen, Liu, Zhandry 2021 generalizations of Friedl et al 2003 work in poly time when $p-|M|=O(1)$.
Open question: for $k=p / O(1)$, large n ?

Stabilizer/HSP in nilpotent groups

$[G,[G,[\ldots, G]]]=1$ (c brackets), $c=$ nilpotency class
For constant class, the interesting case
$G p$-group of exponent $p,|H|=p$ (p prime)
Example: $G=\left\{\left(\begin{array}{lll}1 & * & * \\ & 1 & * \\ & & 1\end{array}\right)\right\}([G,[G, G]]=1$, class 2$)$

Manipulating representations in class 2

$G^{\prime}=[G, G] \leq Z(G)$, exponent p
I, Sanselme, Santha 2007-8
Idea comes from Clifford theory of representations
Also has an "elementary" version
G has automorphisms $\sigma_{k}(k=1, \ldots, p-1)$
σ_{k} raises to the k th power modulo G^{\prime}
to the k^{2} th power in G^{\prime}
can be used to change reps
while $H G^{\prime}$ remains the same

The elementary approach

Goal: from $|c H\rangle$, would like to make $\left|c G^{\prime} H\right\rangle$ from several states $\left|c_{i} G^{\prime} H\right\rangle$, compute $G^{\prime} H$ using the abelian HSP algorithm find H in $G^{\prime} H$

$$
\begin{aligned}
& \left|G^{\prime}\right\rangle|c H\rangle=\sum_{z \in G^{\prime}} \sum_{y \in H}|z\rangle|c y\rangle \\
& \quad \downarrow \quad \text { (multiplication) } \\
& \sum_{z \in G^{\prime}} \sum_{y \in H}|z\rangle|c z y\rangle \quad \text { (Fourier of } G^{\prime}, \text { measure character) } \\
& \quad \downarrow \quad \text { would like } \chi(z)=1 \text { for all } z \in G^{\prime} \\
& \sum_{z \in G^{\prime}} \sum_{y \in H} \chi(z)|c z y\rangle
\end{aligned}
$$

Canceling out

$\sum_{z \in G^{\prime}} \sum_{y \in H} \chi(z)|c z y\rangle$
is an eigenstate for multiplication by $a \in G^{\prime}$:
$\sum_{z \in G^{\prime}} \sum_{y \in H} \chi(z)|a c z y\rangle=\chi^{-1}(a) \sum_{z \in G^{\prime}} \sum_{y \in H} \chi(z)|c z y\rangle$

Make several copies:

$$
\otimes_{i=1}^{m} \sum_{z_{i} \in G^{\prime}} \sum_{y_{i} \in H} \chi_{i}\left(z_{i}\right)\left|c_{i} z_{i} y_{i}\right\rangle=:|\Psi\rangle
$$

Choose appropriate k_{1}, \ldots, k_{m}, define action of G on $|\Psi\rangle$:

$$
|x \cdot \Psi\rangle:=\bigotimes_{i=1}^{m} \sum_{z_{i} \in G^{\prime}} \sum_{y_{i} \in H} \chi_{i}\left(z_{i}\right)\left|c_{i} z_{i} y_{i} \sigma_{k_{i}}(x)\right\rangle
$$

Canceling out II.

$$
|x \cdot \Psi\rangle=\bigotimes_{i=1}^{m} \sum_{z_{i} \in G^{\prime}} \sum_{y_{i} \in H} \chi_{i}\left(z_{i}\right)\left|c_{i} z_{i} y_{i} \sigma_{k_{i}}(x)\right\rangle
$$

For $a \in G^{\prime}$

$$
|a \cdot \Psi\rangle=\prod \chi_{i}^{-k_{i}^{2}}(a)|\Psi\rangle
$$

If $\prod \chi_{i}^{k_{i}^{2}}=1$ then

$$
|a \cdot \Psi\rangle=\Psi
$$

Also, for $x \notin G^{\prime} H$

$$
|x \cdot \Psi\rangle \perp|\Psi\rangle .
$$

Equations for canceling out

Condition $\Pi \chi_{i}^{k_{i}^{2}}=1$ in G^{\prime} :

$$
n=r k G^{\prime} \text { homogeneous linear equations in } k_{i}^{2}
$$

These $+n$ homogeneous linear eqs in k_{i} also ensure

$$
|x \Psi\rangle=|\Psi\rangle \text { for } x \in G^{\prime} H
$$

If not all k_{i} are zero

$$
|x \Psi\rangle \perp|\Psi\rangle \text { for } x \notin G^{\prime} H
$$

For $m=O\left(n^{3}\right)$ we can find a nontrivial solution in poly time (Chevalley-Warning: existence for $m>3 n$)

HSP in $\mathbb{Z}_{p}^{n} \rtimes \mathbb{Z}_{p}$

Decker, Hoyer, I., Santha 2014; I., Santha 2015

$$
V=\mathbb{Z}_{p}^{n}, G=V \rtimes \mathbb{Z}_{p}
$$

fix $y \in G \backslash V$, conjugation on V by y :

$$
\begin{gathered}
I+N, N^{d}=0 \\
H=\langle v y\rangle(v \in V) \\
(v y)^{t}=v(t) y^{t} \\
(d=\text { nilp. class of } G, d \leq p) \\
\end{gathered}
$$

HSP in $\mathbb{Z}_{p}^{n} \rtimes \mathbb{Z}_{p}$ II.

$\sum_{t}|w+v(t)\rangle|t\rangle \quad$ coset superposition
$\downarrow \quad$ Fourier of V, measure character
$\sum_{t} \chi(w+v(t))|t\rangle$
$\chi(w+v(t))=\omega^{(u, w+v(t))} \quad$ for some $u \in V$
repeat m times, add $\left|Z_{p}\right\rangle=\sum_{t}|t\rangle$ in a new register
$\sum_{t_{1}, \ldots, t_{m}, t} \omega\left(\sum_{i} u_{i}, w_{i}+v\left(t_{i}\right)\right)\left|t_{1}, \ldots, t_{m}\right\rangle|t\rangle$
\downarrow find δ_{i} (not all zero) s.t. $\sum \delta_{i}^{d} u_{i}=0$, subtract $\delta_{i} t$ from t_{i}
$\sum_{t} \sum_{t_{1}, \ldots, t_{m}} \omega\left(\sum_{i} u_{i}, w_{i}+v\left(t_{i}+\delta_{i} t\right)\right)\left|t_{1}, \ldots, t_{m}\right\rangle|t\rangle$
$\left(\sum_{i} u_{i}, w_{i}+v\left(t_{i}+\delta_{i} t\right)\right)$ will have degree $d-1$ in t measure t_{1}, \ldots, t_{m}

HSP in $\mathbb{Z}_{p}^{n} \rtimes \mathbb{Z}_{p}$ III.

collect m^{\prime} copies, let the degree $d-1$-parts cancel out each other,
... repeat until we get

$$
\sum_{t} \omega^{\ell(t)}|t\rangle
$$

with linear $\ell(t)$
Fourier gives the degree 1 coefficient of $\ell(t)$
This coefficient is a "random" linear combination of the coefficients of $v(t)$
Obtained a linear equation for those

Collect such equations until $v(t)$ gets determined

Equations for canceling out

$$
\begin{array}{ll}
x_{1}^{d} v_{1}+\ldots+x_{m}^{d} v_{m}=0 \quad\left(v_{1}, \ldots, v_{m} \in \mathbb{Z}_{p}^{n} \text { random }\right) \\
\text { need a nontrivial solution } & (d \mid p-1 \text { can be assumed })
\end{array}
$$

Chevalley-Warning: existence for $m>d n$
"Polynomial-time effective version":
For how large m can be found in time poly $(n m \log p)$?
I., Santha 2015: poly time algorithm for $m=d^{\Omega\left(d^{2} \log d\right)}(n+1)^{\Omega(d \log d)}$
Open: Is there something closer to $d n$?
In the special case $d=p-1$?
(" poly-time effective Davenport-constant"?)

Main problems

Hyperplane cover:
H_{1}, \ldots, H_{m} random hyperplanes in \mathbb{Z}_{p}^{n}
How large sample size m needed to find efficiently an evidence witnessing that \mathbb{Z}_{p}^{n} is covered
would like $m=(n+p)^{O(1)}$ but have $(n+p)^{O(p)}$
Systems of diagonal equations/an effective
Chevalley-Warning-type problem:
$x_{1}^{d} v_{1} \ldots, x_{m}^{d} v_{m}=0\left(v_{i} \in \mathbb{F}_{p}^{n}\right.$ random $)$
How large should m be to efficiently find a nontrivial solution? existence for $m>n d$ (Chevalley-Warning)
would like $m=(n d)^{O(1)} \quad$ but have $m=(n d)^{O\left(d^{2} \log d\right)}$ Imran, I. (ongoing): slight improvement for certain d can the "average-case" situation be exploited?
Special case $d=p-1$: zero sum subset (Alt. proof: Olson)

