Heterogeneous Multi-task Feature Learning

with mixed $\ell_{2,1}$ regularization

Yuan Zhong¹, Wei Xu², Xin Gao¹

¹Department of Mathematics and Statistics, York University ² Department of Biostatistics, Dalla Lana School of Public Health, University of Toronto

TABLE OF CONTENTS

- 1 Introduction and Formulation of Problem
- 2 Methodology
- 3 Simulation Studies
- 4 Data Analysis

Data integration is the process of extracting information from multiple sources and jointly analyzing different data sets.

- Reduce sample bias;
- Increase prediction accuracy;
- · Analyze intrinsic relatedness.

Meanwhile, there are many challenges due to the complexity of the data sets.

- · Divergent dimensionality;
- · Inconsistent measurements;
- Heterogeneous datasets.

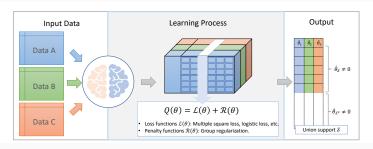
Suppose K different tasks analyze a common set of predictors $M_1, M_2, \cdots, M_{p_n}$:

Responses		Linear Predictors						
		M_1	M_2		M_{p_1}			M_{p_n}
Task 1:	Y_1	$\theta_{11}X_{11}$	$+\theta_{12}X_{12}$		$+\theta_{1p} X_{1p}$		$+\theta_{1p_n}$	X_{1p_n}
Task 2:	Y_2	$\theta_{21}X_{21}$	$+\theta_{22}X_{22}$		$+\theta_{2p} X_{2p}$		$+\theta_{2p_n}$	X_{2p_n}
Task k:	Y_k	$\theta_{k1}X_{k1}$	$+\theta_{k2}X_{k2}$		$+\theta_{kp} X_{kp}$		$+\theta_{kp_n}$	X_{kp_n}
Task K:	Y_K	$\theta_{K1}X_{K1}$	$+\theta_{K2}X_{K2}$		$+\theta_{Kp} X_{Kp}$		$+\theta_{Kp_n}$	X_{Kp_n}
		$\theta^{(1)}$	$\theta^{(2)}$		$\theta^{(p)}$		$\theta^{(p_n)}$.)

Each task can be modeled as generalized linear model (GLM) with link function $g_k()$ and linear predictor η_k ,

$$g_k(E(Y_k|X_k)) = \eta_k = X_k\theta_k$$

with $X_k = (X_{k1}, X_{k2}, \cdots, X_{kp_n})$ and $\theta_k = (\theta_{k1}, \theta_{k2}, \cdots, \theta_{kp_n})$.



Loss function $\mathcal{L}(\theta)$		Penalty $\mathcal{R}(\theta)$	Literature
Multivariate Square Loss	+	Mixed $\ell_{2,1}$ norm Mixed $\ell_{\infty,1}$ norm Ridge penalty	Liu et al. (2009); Lounici et al. (2011) Negahban and Wainwright (2011) Argyriou et al. (2006)
Multivariate Logistic Loss	+	Mixed $\ell_{2,1}$ norm	Lapedriza et al. (2007); Zhou et al. (2011);
Hinge loss	+	Mixed $\ell_{q,r}$ norm	Rakotomamonjy et al. (2011)
Composite Likelihood Loss	+	Group SCAD	Gao and Carroll (2017)

For any doubly indexed vector $\mathbf{v} = \left(\mathbf{v}_{11}, \mathbf{v}_{12}, \cdots, \mathbf{v}_{ij}, \cdots, \mathbf{v}_{Kd}\right)^T$, the $\ell_{q,r}$ norm is $\|\mathbf{v}\|_{q,r} = \left(\sum_{j=1}^d \left(\sum_{i=1}^K \mathbf{v}_{ij}^q\right)^{\frac{1}{q}}\right)^{\frac{1}{r}}$.

Mixed regularization:

The parameters/coefficients are grouped with the ℓ_2 norm, and for all predictors, the penalization is conducted with parameter λ_n ,

$$\mathcal{R}(\theta) = n\lambda_n \|\theta\|_{2,1} = n\lambda_n \sum_{p=1}^{\rho_n} \|\theta^{(p)}\|_2$$

The sub-differential $\partial \|\theta\|_{2,1}/\partial \theta^{(p)}$ denoted by $z^{(p)}$ satisfies

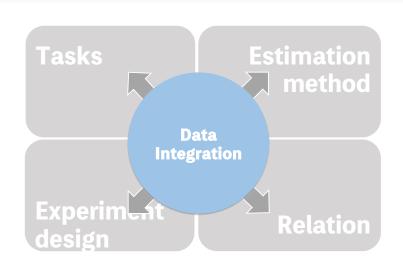
$$\begin{cases} z^{(p)} = \frac{\theta^{(p)}}{\|\theta^{(p)}\|_2} & \text{if } \theta^{(p)} \neq \mathbf{0} \\ \|z^{(p)}\|_2 < 1 & \text{if } \theta^{(p)} = \mathbf{0} \end{cases}$$

The mixed $\ell_{2,1}$ norm can satisfy following properties:

- 1. For any subset $\mathcal{E} \in \{1, 2, \dots, p_n\}$, the mixed norm can be decomposed as $\|\theta\|_{2,1} = \|\theta_{\mathcal{E}}\|_{2,1} + \|\theta_{\mathcal{E}^o}\|_{2,1}$,
- 2. For any two vector θ_1 and θ_2 , $\|\theta_1\|_{2,1} \|\theta_2\|_{2,1} z_2^T(\theta_1 \theta_2) \ge 0$ with z_2 is subdifferential of $\|\theta_2\|_{2,1}$.

Previous researches:

- 1. Multiple regression tasks can be modeled by multivariate squared loss:
 - Lounici et al. (2011) showed that the regression coefficients estimated from multi-task learning could satisfy the oracle inequality, and the result can be extended to model multivariate regressions with independent and non-Gaussian errors.
 - Obozinski et al. (2011) and Negahban and Wainwright (2011) verified the union support recovery of the multi-task feature learning with different regularizers over both deterministic and random design.
- 2. Mixed types of tasks can be modeled by the composite likelihood loss:
 - Gao and Carroll (2017) applied the BIC-type information criterion to show selection consistency with the group smoothly clipped absolute deviations (SCAD) penalty.



Heterogeneous Multi-task Feature Learning

Heterogeneity:

- Linear Regression;
- Logistic Regression; and etc.

Heterogeneous Multi-task

Deterministic Design under Regularity Conditions

Robust Estimation:

- Composite Likelihood
- Composite Quasi Likelihood

Correlated Tasks:

Likelihood-based Method

The loss function is negative weighted average of individual losses,

$$\mathcal{L}(\theta) = -\sum_{k=1}^{K} w_k \ell_k(\theta_k; Y_k)$$

with weights w_k assigned based on the relative importance of the data sets.

For response variables from the exponential family, the individual loss can be modeled as

$$\ell_k(\theta_k; Y_k) = \sum_{i=1}^{n_k} \ell_{ki}(\theta_k; y_{ki}) = \sum_{i=1}^{n_k} \frac{y_{ki}\beta_{ki} - b_k(\beta_{ki})}{a(\phi_k)} + c(y_{ki}),$$
(1)

with cumulant generating functions $b_k(\beta_{ki})$ and $\partial b_k(\beta_{ki})/\partial \beta_{ki} = E(y_{ki}|x_{k1i},\ldots,x_{kp_ni}) = \mu_{ki} = g_k^{-1}(\eta_{ki})$ (McCullagh and Nelder, 1989).

To relax distributional assumptions, the quasi log-likelihood function (Wedderburn, 1974) can be used to model the individual loss as follows,

$$\ell_k(\theta_k; Y_k) = \sum_{i=1}^{n_k} \ell_{ki}(\theta_k; y_{ki}) \propto \sum_{i=1}^{n_k} \int_{y_{ki}}^{g_k^{-1}(\eta_{ki})} \frac{y_{ki} - \mu}{V(\mu)\phi_k} d\mu.$$
 (2)

for linear predictor $\eta_{ki} = \sum_{p=1}^{p_n} x_{kpi} \theta_p$.

Quasi-likelihood function:

- Mean and link function: $E(y_{ki}|x_{k1i},\ldots,x_{kp_ni})=\mu_{ki}=g_k^{-1}(\eta_{ki})$,
- Variance function: $Var(y_{ki}|x_{k1i},...,x_{kp_ni}) = \phi_k V(\mu_{ki})$.

Assumption. (Quasi likelihood conditions)

For any θ satisfying $\|\theta - \theta^*\|_1 \le D$, the linear predictor $\|\eta_k\|_\infty \le \infty$ in any kth task. There exist some constants ν , σ_{\max} , K_1 , K_2 , and K_3 ,

Mean and variance functions are bounded as

$$\max_{k,i}\{|g_k^{-1}(\eta_{ki})|\} \leq \nu, \text{ and } V(g_k^{-1}(\eta_{ki})) \leq \mathrm{e}^3 V(g_k^{-1}(\eta_{ki}^*)) \leq \sigma_{\max}^2$$

• The derivatives of mean and variance functions have

$$\begin{split} \big| \max_{k,i} \frac{\partial^2 g_k^{-1}(\eta)}{\partial \eta^2} \Big|_{\eta = \eta_{ki}} \big| &\leq K_1, \big| \max_{k,i} \frac{V'(g_k^{-1}(\eta))}{V(g_k^{-1}(\eta))} \Big|_{\eta = \eta_{ki}} \big| \leq K_2, \\ &\text{and } \big| \min_{k,i} \frac{\partial g_k^{-1}(\eta)}{\partial \eta} \Big|_{\eta = \eta_{ki}} \big| \geq K_3 \end{split}$$

The sensitivity matrix $H(\theta)$ and variability matrix $J(\theta)$:

$$H(\theta) = E\{n^{-1}\nabla^2 \mathcal{L}(\theta)\}\$$
and $J(\theta) = Cov\{n^{-1}\nabla \mathcal{L}(\theta)\}.$

and $H(\theta) \neq J(\theta)$ for the composite quasi log-likelihood function due to the correlations across different tasks

The maximum composite quasi-likelihood estimator $\hat{\theta}$ can be used for the inference of correlated platform, which can hold the asymptotic properties based on the information theory

$$\sqrt{n}(\hat{\theta} - \theta^*) \stackrel{d}{\sim} N_{p_n}(0, G^{-1}(\hat{\theta}))$$

The asymptotic covariance matrix of the maximum composite quasi likelihood estimator can be estimated by the inverse Godambe information matrix $G^{-1}(\theta)$

$$G(\theta) = H(\theta)J^{-1}(\theta)H(\theta),$$

The penalty function is the $\ell_{2,1}$ regularization,

$$\mathcal{R}(\theta) = n\lambda_n \|\theta\|_{2,1} = n\lambda_n \sum_{p=1}^{\rho_n} \|\theta^{(p)}\|_2$$

The penalized estimate is the solution $\hat{\theta}$ of the estimating equation

$$n^{-1}\nabla Q(\hat{\theta})^T(\hat{\theta}-\theta^*)=n^{-1}\nabla \mathcal{L}(\hat{\theta})^T(\hat{\theta}-\theta^*)+\lambda_n\hat{z}^T(\hat{\theta}-\theta^*)=0,$$

where \hat{z} is the subdifferential of the mixed $\ell_{2,1}$ norm at the penalized estimate $\hat{\theta}$. If $\hat{\theta}$ correctly recovers the true union support \mathcal{S} , then

$$\begin{cases} -\frac{1}{n}\nabla \mathcal{L}(\hat{\theta})^{(p)} = \lambda_n \hat{\mathbf{z}}^{(p)}, & \text{for any } p \in \mathcal{S}; \\ \|\frac{1}{n}\nabla \mathcal{L}(\hat{\theta})^{(p)}\|_2 < \lambda_n, & \text{for any } p \in \mathcal{S}^c. \end{cases}$$

Assumption. (Dimensionality)

There exist some constants $0 < 3k_1 + k_2 < 1$, such that $s = O(n^{k_1})$ and $\log(p_n) = O(n^{k_2})$. In addition, the true parameter vector $\|\theta^*\|_1 \le R$ for some constant R > 0.

By Hölder's inequality, the finite sample bound can be obtained by

$$n^{-1}\nabla \mathcal{L}(\theta^*)^T(\hat{\theta} - \theta^*) \leq \text{sup}_p\{\|n^{-1}\nabla \mathcal{L}(\theta^*)^{(p)}\|_2\}\|\hat{\theta} - \theta^*\|_{2,1}$$

Assumption. (Design of Study)

For any kth task, let linear predictor be denoted as $\eta_{ki}^* = \sum x_{kpi} \theta_{kp}^*$,

- 1. The error terms $y_{ki} g_k^{-1}(\eta_{ki}^*)$ are independent from sub-exponential distributions with ψ_1 norm bounded by some constant \mathcal{M} ;
- 2. The covariates in the design matrix satisfy the condition that $\sup_{k,p,j} \{x_{kpi}\} \le L < \infty$.

The concentration of the score function and Hessian:

$$\begin{split} \sup_{p} \|\frac{1}{n} \nabla \mathcal{L}(\theta^*)^{(p)}\|_2 = &O_p\big(\sqrt{\frac{K}{n}} + \sqrt{\frac{K \log(p_n)}{n}}\big), \\ \sup_{k,p,p'} \{\frac{1}{n} \nabla^2 \mathcal{L}(\theta^*) - H(\theta^*)\}_{[kp,kp']} = &O_p\big(\sqrt{\frac{\log p_n}{n}}\big), \end{split}$$

for any $k = 1, 2, \dots, K$ and $p, p' = 1, 2, \dots, p_n$.

Assumption. (Restricted Eigenvalues)

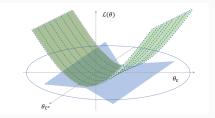
There exist $m=c_0Ks$ for some $c_0>0$ and some positive constants $\gamma \geq 2\sqrt{K}+1$, ρ_- and ρ_+ , such that the restricted minimum and maximum eigenvalues of the design matrix

$$\rho_{-}(m,\gamma) = \inf_{k} \left\{ u^{\mathsf{T}} \frac{X_k X_k^{\mathsf{T}}}{n} u : u \in \mathcal{C}(m,\gamma) \right\}, \text{ and } \rho_{+}(m,\gamma) = \sup_{k} \left\{ u^{\mathsf{T}} \frac{X_k X_k^{\mathsf{T}}}{n} u : u \in \mathcal{C}(m,\gamma) \right\}$$

are bounded by

$$0 < \rho_- \le \rho_-(m, \gamma) < \rho_+(m, \gamma) \le \rho_+ < \infty,$$

where
$$C(m, \gamma) := \{u : S \subset J, |J| < m, \|u_{J^c}\|_1 \le \gamma \|u_J\|_1 \}.$$



The observed Hessian

$$0 < \kappa_{-} \le u^{\mathsf{T}} \frac{\nabla^{2} \mathcal{L}(\theta)}{n} u \le \kappa_{+} < \infty$$

for any unit vector $u \in C(m, \gamma)$.

Assumption. (Mutual Incoherence)

Let the sub-matrices of the expected Hessian matrix be denoted by

$$H_{\mathcal{SS}}^* = E_{\theta^*}[n^{-1}\nabla^2\mathcal{L}(\theta^*)_{\mathcal{SS}}] \text{ and } H_{\mathcal{S}^c\mathcal{S}}^* = E_{\theta^*}[n^{-1}\nabla^2\mathcal{L}(\theta^*)_{\mathcal{S}^c\mathcal{S}}],$$

where ${\cal S}$ is the support of non-zero parameters. For some constant $\xi\in(0,1)$, the inequality holds

$$\sqrt{K} \left\| H_{\mathcal{S}^{c}\mathcal{S}}^{*} [H_{\mathcal{S}\mathcal{S}}^{*}]^{-1} \right\|_{\infty} \leq 1 - \xi.$$

With concentration of Hessian and restricted eigenvalues, the observed Hessian holds the mutual incoherence condition:

$$\sqrt{K} \left\| \frac{1}{n} \nabla^2 \mathcal{L}(\theta^*)_{\mathcal{S}^{\circ} \mathcal{S}} \left(\frac{1}{n} \nabla^2 \mathcal{L}(\theta^*)_{\mathcal{S} \mathcal{S}} \right)^{-1} \right\|_{\infty} < 1 - \frac{\xi}{2}$$

holds with a probability at least $1 - 4K \exp\{-C_0 \xi^2 n/s^3 + 2 \log(p_n)\}$ for some universal constant $C_0 > 0$.

Methodologies

Theorem 1. (Sign Recovery Consistency)

Suppose the penalty parameter chosen as

$$\lambda_n \ge \frac{4\mathcal{M}_*}{\xi} \sqrt{\frac{K}{n}} \left(1 + \sqrt{2\log(p_n)} \right), \tag{3}$$

and the minimum non-zero parameter $\min_{k;p\in\mathcal{S}}\theta_{kp}\geq 2\kappa_-^{-1}\sqrt{s}\lambda_n$, the estimator $\hat{\theta}$ satisfies that $\operatorname{sign}(\hat{\theta})=\operatorname{sign}(\theta^*)$ with probability $1-2p_n^{-d}-2K\exp\{-Cn/s^3+\log(p_n)\}$ for the universal constants d>1 and C>0.

Theorem 2. (Estimation Error Bound)

Suppose the composite score vector satisfies $\|n^{-1}\nabla\mathcal{L}(\theta^*)\|_{\infty} \leq \lambda_n/(2\sqrt{K})$, the estimator $\hat{\theta}$ satisfies

$$\begin{split} &\|\hat{\theta} - \theta^*\|_2 \leq \frac{3\lambda_n \sqrt{s}}{2\kappa_-}; \|\hat{\theta} - \theta^*\|_1 \leq \frac{3\sqrt{K}(\sqrt{K} + 1)}{\kappa_-} \lambda_n s; \\ &(\frac{1}{n} \nabla \mathcal{L}(\hat{\theta}) - \frac{1}{n} \nabla \mathcal{L}(\theta^*))^T (\hat{\theta} - \theta^*) \leq \frac{3(\sqrt{K} + 1)(2\sqrt{K} + 1)}{2\kappa_-} \lambda_n^2 s \end{split}$$

with a probability at least $1 - 2 \exp\{-C \log(p_n)\}$ for some constant C.

Simulation setups

• Parameters: Non-zero coefficients present different patterns for any $p \in \mathcal{S}$ and $|\mathcal{S}| = |p_n^{1/2}|$.

	Coefficient Type	Distribution
Task 1	Large variance	$\theta_{1p}^* \sim N(1,3)$
Task 2	Small variance	$\theta_{2D}^* \sim N(1,1)$
Task 3	Strictly positive	$\theta_{3p}^* \sim Unif(1,2)$
Task 4	No sign constraint	$\theta_{4p}^* \sim Unif(-1,1)$

· Responses variable is modeled by the linear function,

$$y_{ki} = \sum_{p=1}^{p_n} x_{kpi} \theta_{kp}^* + \varepsilon_{ki}, \text{ and } x_{kpi} \sim N(0,1)$$

• Error term $(\varepsilon_{1i}, \varepsilon_{2i}, \varepsilon_{3i}, \varepsilon_{4i})^T$ is i.i.d vectors simulated from multivariate Normal distribution MVN $(0, \Sigma)$ or multivariate t distribution $t_{10}(\Sigma)$.

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \rho_{13}\sigma_1\sigma_3 & \rho_{14}\sigma_1\sigma_4 \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \rho_{23}\sigma_2\sigma_3 & \rho_{24}\sigma_2\sigma_4 \\ \rho_{13}\sigma_1\sigma_3 & \rho_{23}\sigma_2\sigma_3 & \sigma_3^2 & \rho_{34}\sigma_3\sigma_4 \\ \rho_{14}\sigma_1\sigma_4 & \rho_{24}\sigma_2\sigma_4 & \rho_{34}\sigma_3\sigma_4 & \sigma_4^2 \end{bmatrix}; \begin{pmatrix} \sigma_1^2 \\ \sigma_2^2 \\ \sigma_3^2 \\ \sigma_4^2 \end{pmatrix} = \begin{pmatrix} 9 \\ 4 \\ 4 \\ 1 \end{pmatrix}$$

Combination of two regression tasks and two classification tasks:

Two responses are dichotomized as binary data $y_{ki}=1$ if $\sum_{p=1}^{p_n} x_{kpi}\theta_{kp}^* + \varepsilon_{ki} \geq 0$.

Simulation I: Moderate correlation $\rho_{\nu\nu'} \sim \text{Unif}(0.4, 0.65)$.

	n= 200 p = 200		n= 200 p = 500		n= 500 p = 500		n= 500 p = 1000		
Model	PSR	FDR	PSR	FDR	PSR	FDR	PSR	FDR	
Simulation I: Gaussian Error									
MTL	98 (1)	4 (5)	97 (1)	4 (4)	98 (1)	2 (3)	99 (0)	2 (3)	
SA 1	81 (7)	8 (8)	86 (4)	11 (7)	87 (4)	7 (5)	89 (3)	7 (4)	
SA 2	82 (7)	11 (9)	87 (4)	14 (8)	87 (4)	8 (6)	89 (3)	8 (5)	
SA 3	80 (7)	2 (4)	90 (3)	18 (11)	80 (3)	0 (0)	87 (2)	1 (2)	
SA 4	83 (6)	22 (11)	91 (3)	35 (9)	83 (4)	15 (7)	88 (2)	21(7)	
	Simulation II: Heavy-tail Error								
MTL	97 (1)	4 (5)	96 (1)	4 (4)	97 (0)	1 (3)	99 (0)	2 (3)	
SA 1	82 (7)	9 (8)	86 (4)	12 (7)	87 (4)	7 (6)	89 (3)	7 (5)	
SA 2	82 (7)	12 (9)	87 (4)	15 (8)	87 (4)	8 (6)	90 (3)	9 (5)	
SA 3	80 (5)	2 (4)	90 (3)	20 (11)	80 (3)	0 (1)	87 (2)	2 (2)	
SA 4	84 (6)	23 (11)	91 (3)	37 (9)	84 (4)	16 (7)	89 (2)	22 (7)	

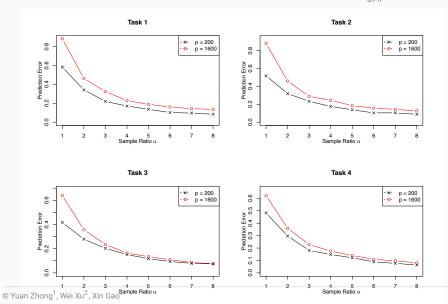
MTL: Multi-task learning; SA: Single-plaform analysis. PSR: Positive selection rates (%); FDR: false discovery rates (%). © Yuan Zhong¹, Wei Xu², Xin Gao¹

Simulation II: High correlation $\rho_{kk'} = 0.9$.

	n= 200 p = 200		n= 200 p = 500		n= 500 p = 500		n= 500 p = 1000		
Model	PSR	FDR	PSR	FDR	PSR	FDR	PSR	FDR	
Simulation I: Gaussian Error									
MTL	99 (1)	4 (5)	97 (1)	4 (4)	98 (1)	1 (2)	99 (0)	2 (3)	
SA 1	81 (8)	8 (8)	87 (4)	10 (7)	87 (4)	6 (5)	89 (3)	6 (4)	
SA 2	82 (7)	11 (9)	87 (5)	14 (8)	87 (4)	8 (6)	89 (3)	8 (5)	
SA3	79 (5)	2 (4)	90 (3)	19 (10)	80 (3)	0 (0)	87 (2)	1(2)	
SA 4	83 (6)	23 (12)	91 (3)	36 (10)	83 (4)	15 (8)	88 (2)	21(7)	
Simulation II: Heavy-tail Error									
MTL	98 (1)	5 (5)	97 (1)	4 (4)	98 (1)	1(2)	99 (0)	2 (3)	
SA 1	81 (8)	8 (8)	87 (4)	10 (7)	87 (4)	6 (5)	89 (3)	6 (4)	
SA 2	82 (7)	10 (8)	87 (5)	14 (8)	87 (4)	8 (6)	89 (3)	8 (5)	
SA3	80 (5)	2 (4)	90 (3)	19 (10)	80 (3)	0 (0)	87 (2)	1 (2)	
SA 4	83 (6)	24 (11)	91 (3)	36 (10)	83 (4)	15 (8)	88 (2)	21(7)	

MTL: Multi-task learning; SA: Single-plaform analysis. PSR: Positive selection rates (%); FDR: false discovery rates (%).

Prediction Error:= $(n^{-1}\nabla \mathcal{L}(\theta) - n^{-1}\nabla \mathcal{L}(\theta^*))^T(\theta - \theta^*)$ and $\alpha = \frac{n}{s \log p_n}$.



Breast cancer multi-task studies.

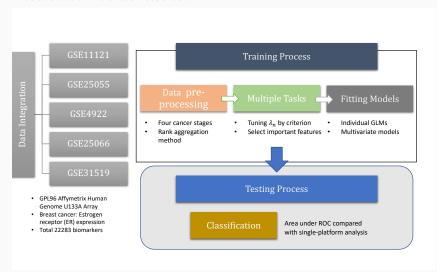


Table: Performance of the logistic regression models is measured by AUC; performance of the multinomial regression models is measured by the percentage of correct classification.

Tasks	Log	gistic regress	Multinomial regression			
		(AUC)	(% Class	ification)		
Data	GSE11121	GSE4922	GSE25055	GSE25066		
(n)	(151)	(188)	(217)	(358)		
MTL	0.81	0.81	66	66		
SA	0.74	0.83	0.65	66	64	

- [1] G. Obozinski, M. J. Wainwright, and M. I. Jordan. Support union recovery in high-dimensional multivariate regression. The Annals of Statistics, 39(1):1–47, 02 2011.
- [2] K. Lounici, M. Pontil, S. van de Geer, and A. B. Tsybakov. Oracle inequalities and optimal inference under group sparsity. The Annals of Statistics, 39(4):2164–2204, 2011.
- [3] X. Gao and R. J. Carroll. Data integration with high dimensionality. Biometrika, 104(2):251–272, 05 2017.
- [4] J. Fan, H. Liu, Q. Sun, and T. Zhang. I-lamm for sparse learning: Simultaneous control of algorithmic complexity and statistical error. The Annals of Statistics, 46 2:814–841, 2018.
- [5] S. N. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. Statist. Sci., 27(4):538–557, 11 2012.

Thank You!

