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Further structure for f,g€G.
Ordering. f<gif f(t)<g(t) fort>1. So ¢ >R if lim;, 1 o0 g(t) = +00.

Dominance relation. f < g if r|f|<|g| for all r € R>°.
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Germs (at +00)

Identify two functions f, g: R — R if for t > 1, we have f(t) = g(t). Equivalence
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Derivation. If t— f(t) is differentiable on (r,+00) for r > 1, then f’ is the germ of
the derivative.
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Germs (at +00)

Identify two functions f, g: R — R if for t > 1, we have f(t) = g(t). Equivalence
classes are called germs. G is the ring of germs with pointwise sum and product.

Further structure for f,g€q.
Ordering. f<gif f(t)<g(t) for t>1. So g >R if limy—, o g(t) = +o0.
Dominance relation. f < g if r|f|<|g| for all r € R>Y.

Derivation. If t— f(t) is differentiable on (r,+00) for r > 1, then f’ is the germ of
the derivative.

Composition. If g > 1R, then the germ fo g of t— f(g(t)) only depends on f and g.
We have a composition law

0:GxG7R_ @G,

For fixed g € GR, the function G — G: f+— fo g is a strictly increasing morphism
of rings.



A Hardy field is a subfield H of G containing IR and closed under derivation of germs.
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Hardy fields
A Hardy field is a subfield H of G containing R and closed under derivation of germs.

e Each f € H is either constant or strictly monotonous
o VfecH, f>R=— f'>0.
o VfeH, fXx1l=dr=lim,fER, f—r<1.

Hardy fields with composition

A Hardy field with composition is a Hardy field 'H which contains id and which is
closed under compositions (f, g)— fo g with f € H and g € H™ 1.



Hardy fields with composition 4/25

Hardy fields
A Hardy field is a subfield H of G containing R and closed under derivation of germs.

e Each f € H is either constant or strictly monotonous
o VfecH, f>R=— f'>0.
e VfcH, fX1=dr=lim; fER, f—1r=<1.

Hardy fields with composition

A Hardy field with composition is a Hardy field 'H which contains id and which is
closed under compositions (f, g)— fo g with f € H and g € H™ 1.

Examples:
e IR(id): germs of rational functions.

e HARDY's field of L-functions: closure of IR(id) under semialgebraic functions, exp
and log.

e BOSHERNITZAN's field B:=N{M : M is a mazimal Hardy field}.



Let H be a Hardy field with composition and let f, g€ H>®.
Conjecture 1. For all 6 €’ H with § < g and (f'og)d<(fog), we have

fo(g+d)~ foy.

Conjecture 2. The centralizer C(f):={h € H>R:ho f= foh} is commutative.

Conjecture 3. If f> ¢

(iterates)

>id, then fog>go f.
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Conjecture on (H, o)

Let H be a Hardy field with composition and let f, g € H>®.

Conjecture 1. For all 6 € H with < g and (f'og)d<(fog), we have
folg+d)~fog.

Conjecture 2. The centralizer C(f):={h€H>R:ho f= foh} is commutative.

Conjecture 3. If f> ¢V

(iterates)

>id, then fog>go f.

Conjecture 1 holds whenever H contains exp, but has no transexponential germ.
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Let R=(R,+, —, X, <,...) be a functional expansion of the real ordered ring in a first-
order language L.

Define:

e Hp as the set of germs of functions R — IR that are definable with parameters in R..
o 7Tx asthe subset of H of germs of unary functions r+— t(r) for all arity <1 terms t|u].
Those are partially ordered rings, and even L-structures under pointwise operations.

Moreover T and Hp are closed under composition.

We will consider in particular R = Ran,exp, and we write Han,exp = HRap oxp-
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Then Hg =R is a Hardy field with composition.

M = R: non-standard model &: element of M with & > IR.

There is a natural L-embedding V: Hr — M which sends id to £. This map commutes
with definable functions R" — IR.

There is a unique L£-embedding ®: T7r — M with ®(id) = &.
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If Th(R) is o-minimal
Then Hgr =R is a Hardy field with composition.
M = R: non-standard model : element of M with & > RR.

There is a natural £-embedding V: Hr — M which sends id to &£. This map commutes
with definable functions R" — RR.

There is a unique L-embedding ®: 7 — M with ®(id) = &.

If Th(R) has QE and a universal axiomatization

Then any definable function f: R" — R is given piecewise by (a finite list of) terms.
In particular for n =1, the germ of f lies in Tr. So Tr = HR.
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If Th(R) is o-minimal
Then Hgr =R is a Hardy field with composition.
M = R: non-standard model : element of M with & > RR.

There is a natural £-embedding V: Hr — M which sends id to &£. This map commutes
with definable functions R" — RR.

There is a unique L-embedding ®: 7 — M with ®(id) = &.

If Th(R) has QE and a universal axiomatization

Then any definable function f: R" — R is given piecewise by (a finite list of) terms.
In particular for n =1, the germ of f lies in Tr. So Tr = HR.

Both conditions are satisfied for R = Ran exp (VDDMM, '94).



L: group of germs [, _ . (loggx)" for ly,..., [, _1 € Z. The ordering on £ is lexicographic.



L: group of germs [, _ . (loggx)" for ly,..., [, _1 € Z. The ordering on £ is lexicographic.

Ty, is the field R[[£]] of Hahn series with real coefficients and monomial group £. E.g.

1 1 1 2 (log )2

— 3
fo—CU—I—T('(lOgZB) —I_logac (10g:1:)2+ (10g:1;)3+.”+ x

fi=x+logx+loglogx+ - --

We have a logarithm log: Ty — T :

log [ [] (ogxa)*

k<n
el
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L: groupof germs [, _ (logx)% for ly,..., [, _1 € Z. The ordering on £ is lexicographic.

Logarithmic transseries

T, is the field R[[£]] of Hahn series with real coefficients and monomial group £. E.g.

1 1 1 2 (log )2

_ 3 e
fo=z+m (lOg ZIZ) ™ logz = (logz)? ' (logx)3 T x

fi=x+logx+loglogx + ---

We have a logarithm log: Ty — Ty :

10g<H (logkfﬁ)[") = Z [k logr 1@

k<n



L: group of germs [, _ . (logyx)" for lg,..., [, _1 € Z. The ordering on £ is lexicographic.

T, is the field R[[£]] of Hahn series with real coefficients and monomial group £. E.g.

B 3 1 1 1 2 (log x)?
fo=xz+m (logz) Tiogs T (10g:1:)2+ (logx)3+'--—l— .

fi=x+logx+loglogx + - --

We have a logarithm log: Ty — T

{17(2)) -




L: group of germs [, _ . (logyx)" for lg,..., [, _1 € Z. The ordering on £ is lexicographic.

T, is the field R[[£]] of Hahn series with real coefficients and monomial group £. E.g.

B 3 1 1 1 2 (log )2
fo—x+7r(loga:) +log:c+ (10g:1;)2+ (10g:1:)3+“.+ x

fi=x+logx+loglogx + - --

log(I7(1+¢)) = log(l)+1 (=
og(lr (14¢)) := log(l)+ ogr+I§Te.




L: group of germs [, _ . (logyx)" for lg,..., [, _1 € Z. The ordering on £ is lexicographic.

T, is the field R[[£]] of Hahn series with real coefficients and monomial group £. E.g.

B 3 1 1 1 2 (log x)?
fo=xz+m (logz) Tiogs T (10g:1:)2+ (logx)3+'--—l— .

fi=x+logx+loglogx + - --

We have a morphism log: (T7°, x, <) — (T, +, <).
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L: groupof germs [, _ (logx)% for ly,..., [, _1 € Z. The ordering on £ is lexicographic.

Logarithmic transseries
T, is the field R[[£]] of Hahn series with real coefficients and monomial group £. E.g.

2 (log x)?

B 3, 1 1 1
fo—iE—l—?T(lOgZE) +10gaz+ (loga:)2+ (loga:)3+.”+ x

fi=x+logx+loglogx + ---

We have a morphism log: (T7°, x, <) — (Ty,, +, <).

Exponential extensions

log: T — T, is not surjective, but Ty, can be closed under exponentials: iteratively
adjoin formal monomials e? for certain transseries @ as long as exp(p) is undefined.
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Transseries, introduced by DAHN-GORING and ECALLE, can be declined in several forms:
grid-based, log-exp (TLg), exp-log, ...

We consider generalized transseries, which form a class sized Hahn series field R{(z)) 2
T1,g closed under exp and log.
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Transseries, introduced by DAHN-GORING and ECALLE, can be declined in several forms:
grid-based, log-exp (Trg), exp-log, ...

We consider generalized transseries, which form a class sized Hahn series field R{(z)) 2
Tig closed under exp and log.

Dervation and composition (SCMHELING, BERARDUCCI-MANTOVA)
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. 1 1 1 | 2(logz)?
fo=z+m (lOg ZIZ) ™ log = ™ (logx)? = (logx)3 T T x
1 p 4z (logz) — 2z (logx)?

x z(logx)? x(logx)3 x?
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Transseries, introduced by DAHN-GORING and ECALLE, can be declined in several forms:
grid-based, log-exp (Trg), exp-log, ...

We consider generalized transseries, which form a class sized Hahn series field R{(z)) 2
T closed under exp and log.

Dervation and composition (SCMHELING, BERARDUCCI-MANTOVA)

The field R{{x)) is equipped with a derivation 0: R{{z)) — R({x)) and a composi-
tion law o: R{(z)) x (R{(z)))”B—R((z)) whose properties mimic those of Hardy
fields with composition.

fi=x+logx+loglogx + ---

fi1o (logx)=logz +loglog x + logloglogx + - - -



There is a unique Lan exp-embedding Han, exp — R{{x)) which sends id to x. This
embedding also preserves O and o.
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Theorem (VDDRIES-MACINTYRE-MARKER, 1997 and 2001)

There is a unique Lay exp-embedding Han,exp — R{(x)) which sends id to x. This
embedding also preserves O and o.

This embedding can be used to describe growth orders of germs in Han_ exp-
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Theorem (VDDRIES-MACINTYRE-MARKER, 1997 and 2001)

There is a unique Lay exp-embedding Han,exp — R{(x)) which sends id to x. This
embedding also preserves O and o.

This embedding can be used to describe growth orders of germs in Han_ exp-

Using this, vDDMM showed that:

e the inverse of t+— (logt) (loglogt) is not an L-function (as conjectured by HARDY).

oot > . .
e no primitive [ 'e®ds of ¢+ e" is definable in Ran,exp.

We will see that the field Han, exp satisfies the conjecture.
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in E, called Abel’s equation for exp. Continuous solutions of (1) are transexponential.
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log,(logt)=log,(t) —1 fort>1.
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Consider the functional, conjugation equation
E(t+1)=e"®, for t > 1. ©)

in E, called Abel’s equation for exp. Continuous solutions of (3) are transexponential.

KNESER showed in 1949 that (3) has an analytic solution exp,,, say with exp,(0)=1.
The (germ of the) functional inverse log,, satisfies the dual equation

log,(logt)=log,(t) —1 fort>1.
Those functions induce a flow of real-iterates of exp, i.e. a strictly increasing morphism

eXp[']:(R7+7<) - (g,0,<>

r — expll:=expy o (log, +1).



Sublogarithmic-transexponential germs in the wild 1125

Consider the functional, conjugation equation
E(t+1)=ef0), for t>1. )

in E, called Abel’s equation for exp. Continuous solutions of (4) are transexponential.

KNESER showed in 1949 that (4) has an analytic solution exp,,, say with exp,(0)=1.
The (germ of the) functional inverse log,, satisfies the dual equation

log,(logt)=log,(t) —1 fort>1.
Those functions induce a flow of real-iterates of exp, i.e. a strictly increasing morphism

eXp[']:(R7+7<) - (Q,o,<)

r — expll:=expy o (log, +1).

Theorem [PADGETT, '22]

There is a Hardy field 1., with composition which contains exp,, and log,,.



Given an ordered exponential field F and a € F> R, the exp-log class EL(a) of a € F
is its equivalence class for

a=tb if and only if In e N, (logi™ a~log™ b).




Given an ordered exponential field F and a € F> R, the exp-log class EL(a) of a € F
is its equivalence class for

a=tb if and only if In e N, (logi™ a~log™ b).

Let H be a Hardy field with composition with exp,log € ‘H. Set
£ :={exp™o(logM+1):ne N} cH>R,

Then each EL( f) is the convex hull of Eo f={go f:ge&}.
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Exp-log classes

Given an ordered exponential field F and a € F>R, the exp-log class EL(a) of a € F
is its equivalence class for

a=tb if and only if dn €N, (log[n] a~ logl™ b).
Let H be a Hardy field with composition with exp,log € H. Set
£ :={exp™o (logl+1):ne N} C H>E,

Then each EL( f) is the convex hull of £o f={go f:ge&}.

MARKER-MILLER: EL classes in Han exp and R{(x)) are parametrized by integers. Each
f lies in EL(exp!™) for a unique n € Z called the level of f. Write A, = EL(f).
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Exp-log classes

Given an ordered exponential field F and a € F>R, the exp-log class EL(a) of a € F
is its equivalence class for

a=tb if and only if dn €N, (log[n] a~ logl™ b).

Let H be a Hardy field with composition with exp,log € H. Set
£ :={exp™o (logl+1):ne N} C H>E,

Then each EL( f) is the convex hull of £o f={go f:ge&}.

MARKER-MILLER: EL classes in Han exp and R{(x)) are parametrized by integers. Each
f lies in EL(exp!™) for a unique n € Z called the level of f. Write A, = EL(f).

Note that log \,, = A\,, 1 for all n € Z.



Let us come back to the field 7. Write

Ao = EL(expy,), A_w :=EL(log,), and )\, := EL(exp")) for all r € R.
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Let us come back to the field 7. Write
Ao = EL(expy,), A_w :=EL(log,), and )\, := EL(exp")) for all r € R.

We have

Aw > A7z, Aw < Az, and Vr,seR, (A <As<=1<5).

We also have levels w — 1, w—+1,... with
AR < Aw—1=log(A\y) < Ay < Awt1=exp(Ay)

and so on...



For @, 1 € Tp" 2, we have

EL(expy 0 ¢) < EL(exp,01) <= Eo(expy,0 )< Eo(expy,o 1)
<= (logwo&oexp,)o ¢ < (log,o& oexp,)o .



For @, 1 € T2 we have

EL(expy 0 ) < EL(exp,01) <= Eo(expy,0 )< Eo (exp, o)
< (log,o&oexp,)op<(log,o&oexp,)o.



For @, 1 € T2 we have

EL(expy 0 ) < EL(exp,01) <= Eo(expy,0 )< Eo (exp, o)
< (log,o&oexp,)op<(log,o&oexp,)o.

Set g=exp™ o (log™ +1) € €. Since log!,~ /4, the mean value theorem for log,, gives

: 1
<log_ ogoexp,<id+

id 4 :
0 €XPy log™ o expy,

log[n—l]
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For ¢, € 7;>R, we have

EL(expy o ) < EL(expyo 1) <= Eo(expyo @) <& o (exp,o )
— ) o <( ) o .

Set g:exp[”] e (log[”] +1)€e&. Since log/, ~ /4, the mean value theorem for log, gives

: 1 : 1
id + : < <id + :
log!” Yo exp,, log!™ o expy,

If o+ ( ! ) < 1, then EL(expy 0 ) < EL(exp,0 ). The EL class A,/ of

log[N] 0 eXpy O P

1
exp,, O (logw + Iog )
w

is “infinitesimal’, i.e. larger than \g but smaller than each A, for r € R~.
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Tentative description of all possible levels in models of Rexp using Conway's field No of
surreal numbers:

Theorem (BERARDUCCI-MANTOVA, 2015)
EL classes in (No, exp) are in canonical order isomorphism with (No, <) itself.

There is an order embedding No — No”: 2z — ), such that each surreal number

lies in EL(\;) for a unique z € No.
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Tentative description of all possible levels in models of Rexp using Conway's field No of
surreal numbers:

Theorem (BERARDUCCI-MANTOVA, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, <) itself.

There is an order embedding No — No”: 2z — ), such that each surreal number
lies in EL()\,) for a unique z € No.

They defined a canonical derivation 0 on No such that (No, d) is a Liouville-closed H-
field. It is an elementary extension of Ty g (ASHCENBRENNER-VDDRIES-VDHOEVEN, '17).

Every model of Rexp embeds into (No, exp).

Question. Is any real-closed Hardy field H closed under exp and log an elementary
extension of Rexp?



BERARDUCCI-MANTOVA (2017) defined a composition law
o: R{{z)) x No”* — No.

R{(z)) naturally embeds into No by sending f to fow for a certain w € No~&.
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BERARDUCCI-MANTOVA (2017) defined a composition law
o:R{(z)) x No”® — No.

R((z)) naturally embeds into No by sending f to fow for a certain w € No~ &,

The composition law does not extend to No x No~ in a compatible way with respect
to 0. So let us leave the surreal realm.

— Can we “directly” build a field of generalized power series involving transexponential
and sublogarithmic behavior?

— Can we do so while solving the functional equations
Fo(r+1)=e"oF and L—1=Lologx ?

— Do we also get a formal version of the conjecture for those fields?



Let us build a structure (IL, 9, o) which contains a solution ¢,z to

bor—1=(l,x)0 (l12). ©)
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box—1=l,x)o(l1T). ©)
We gather symbols £, x, v < w? with fox =z is the identity, ¢1 x is the logarithm, and
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Differentiating (9), we get
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Let us build a structure (IL, 0, o) which contains a solution ¢,z to
box—1=(lyx)0(l1T). (10)
We gather symbols £, x, v < w? with fox =z is the identity, ¢1 x is the logarithm, and

Vm,n € N, lyminx= ({1 x)["] o (4, x)[m].

Differentiating (10), we get
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So one needs to have, as basic symbols, formal products

[:= H (L,x)",  for ([7)7<w2€1R”2.

y<w?

Gathering those in a lexicographically ordered group £_ 2 yields a Hahn series field
Log2= R[[£<w2“

The derivation is defined by extending the rule (¢, z) =] Cpx) L.

n<w(

For any ordinal «, we similarly have a field L., and a class sized field

L:= U L,

a€On

called the field of logarithmic hyperseries (vDD-vDH-KAPLAN).



There is a composition law o: L x LR — T with £_.t12 —1=({_ur12) 0 (burx)
for all ordinals . (IL, Q) is an H-field with small derivation and surjective derivation.
We have the chain rule for (o, 0).
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for all ordinals . (IL, Q) is an H-field with small derivation and surjective derivation.
We have the chain rule for (o, 0).

How is (4, x) o g defined at say g =x + 17 Using Taylor series:
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Theorem [vDDRIES-VDHOEVEN-KAPLAN - 2018]

There is a composition law o:IL x >R — L with £ ut120 — 1= ({_u+12) 0 (bynx)
for all ordinals . (IL, Q) is an H-field with small derivation and surjective derivation.
We have the chain rule for (o, 0).

How is (/,x) o g defined at say g=x + 1?7 Using Taylor series:

Theorem [vDDRIES-VDHOEVEN-KAPLAN - 2018]

For f,5 €L and g € L>® with § < g, we have the following Taylor expansion around g:
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Theorem [vDDRIES-VDHOEVEN-KAPLAN - 2018]

There is a composition law o:IL x >R — L with £ ut120 — 1= ({_u+12) 0 (bynx)
for all ordinals . (IL, Q) is an H-field with small derivation and surjective derivation.
We have the chain rule for (o, 0).

How is (/,x) o g defined at say g=x + 1?7 Using Taylor series:

Theorem [vDDRIES-VDHOEVEN-KAPLAN - 2018]

For f,5 €L and g € L>® with § < g, we have the following Taylor expansion around g:

_ fWog g
kelN
In particular

(k)
fo(x—l—l)zz fk—'

keNN
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Hyperexponential closure 20725

Write L, for the strictly increasing function ]ngig — 1[4252; fr—(Uyx)o f.

>R

~,2 under

Its right inverse E, is partially defined. E.g. E,(x) is undefined. We close IL
E,, by adjoining formal monomials e? to £__2, for certain series .

When should E,,(¢) be a new monomial e’,? If E,(¢) is defined and

1
) o Ey(ep)

€<
(
for some n € N, then E,(yp+¢€) is given by Taylor expansions around .

— It is enough to add E for representatives ¢ in each convex hull

E(g):zConv({gj: (LnxioEf :nE]N}).

For any two distinct representatives ¢, 1, the EL-classes of e/ and eff should be disjoint.
This determines an ordering of the extension of £__2 by monomials €.




There are a minimal extension I of I, and an extension o: L x LR — 1, of the

composition law on 1L, for which each Lyu: L>® — >R for ordinals  is bijective.
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has a concrete expression involving £, x's, e4's, real numbers, and transfinite sums.

We have everything we need to define:
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Theorem [B.-vDHOEVEN-KAPLAN]

There are a minimal extension I of 1L, and an extension o: L x LR — L of the
composition law on 1L, for which each Lyu: L>® — IL>®R for ordinals 11 is bijective.

IL is obtained by iteratively adjoining hyperexponentials E?¥,. of hyperseries . Any f € L
has a concrete expression involving £, x's, e4's, real numbers, and transfinite sums.

We have everything we need to define:

Work in progress [B.]

There is a derivation 9: 1L — 1L such that (L, d) is an elementary extension of the
ordered, valued, differential field Ti,g of log-exp transseries.

Work in progress [B.]

There is a composition law &: 1L x L>® — 1L such that (9,3) satisfies the chain rule.
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Strongly linear algebra 22/25

The derivation and composition (on the right) should be strongly linear, i.e. commute
with transfinite sums. For instance

(Z n!egk%ékx)o(x—kelw): Z n'E, Z

>
neN neN k>n Taylor

Problem: making sense of those transfinite sums. We use strongly linear algebra: a set
of order theoretic results regarding a formal notion of summability.

Idea: Hahn series fields are “formal” Banach spaces. Two results of vaN DER HOEVEN:

o If U:R[[IMN]] — R[[MN]] is strongly linear with ¥(s) <s for all s=#0, then Id + ¥
has a strongly linear functional inverse

(Id+ ) (s) = (—1)Fwl(s).

keN

e We have a strongly linear implicit function theorem.
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The class (IL>R, 0, x, <) is a linearly bi-ordered group: f € L has an inverse in L>&

and each function L>® — >R g f o g is strictly increasing.

This reflects in particular the monotonicity properties of germs in Hardy fields.
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Work in progress [B.]: bi-ordered group of hyperseries

The class ("R, 0, x, <) is a linearly bi-ordered group: f € L>® has an inverse in L>R
and each function LR — IL>R: g f o g is strictly increasing.

This reflects in particular the monotonicity properties of germs in Hardy fields.

Work in progress [B.]: conjugacy

Any two series c L>R with > x are conjugate, i.e. satisf
y » g » g jug Yy

Vof=goV
for a certain V € LR,

For instance, the series € and = + 1 are conjugate via V =/, x:

(byx)oe*=L,x+ 1.



Forall f,q,6 €L withg>TR, if6< g and (m'og)d <mo g for all m € supp f, then

)
folg+d8)=>" ! k! I 5k,

keN
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Work in progress [B.]: Taylor expansions

Forall f,g,6 €L with g>TRR, if 6 < g and (m’o g)d <mo g for all m €supp f, then

)
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Work in progress [B.]: real iterates

For each x # f € L>R, there is a unique isomorphism (R, +, <) — (C(f), o, <)
sending 1 to f. This is defined by conjugating f with x +1: indeed C(x +1)=x+ R.
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Work in progress [B.]: Taylor expansions

Forall f,g,6 €L with g>TRR, if 6 < g and (m’o g)d <mo g for all m €supp f, then
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Work in progress [B.]: real iterates

For each x # f € L>R, there is a unique isomorphism (R, +, <) — (C(f), o, <)
sending 1 to f. This is defined by conjugating f with x +1: indeed C(x +1)=x+ R.
Work in progress [B.]: solving inequations

Forall f,ge LR f> ¢™N'> 2 we have fog>go f.



The conjecture: formal / geometric 24/25

Work in progress [B.]: Taylor expansions

Forall f,g,6 €L with g>TRR, if 6 < g and (m’o g)d <mo g for all m €supp f, then

(k) o
fO(g+5):Z ! ! 9 5k

k
kEN

Work in progress [B.]: real iterates

For each x # f € L>R, there is a unique isomorphism (R, +, <) — (C(f), o, <)
sending 1 to f. This is defined by conjugating f with x +1: indeed C(x +1)=x+ R.

Work in progress [B.]: solving inequations

Forall f,ge LR f> ¢™N'> 2 we have fog>go f.

Any Hardy field with composition which embeds into L satisfies the conjecture.
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