Embedding Hardy fields with composition into transseries

March 15, 2022
including joint work with Elliot Kaplan and Joris van der Hoeven.

geometric / formal

geometric realm

formal realm

Embeddings

Operations on germs

Germs (at $+\infty$)

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have $f(t)=g(t)$. Equivalence classes are called germs. \mathcal{G} is the ring of germs with pointwise sum and product.

Operations on germs

Germs (at $+\infty$)

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have $f(t)=g(t)$. Equivalence classes are called germs. \mathcal{G} is the ring of germs with pointwise sum and product.

Further structure for $f, g \in \mathcal{G}$.
Ordering. $f<g$ if $f(t)<g(t)$ for $t \gg 1$. So $g>\mathbb{R}$ if $\lim _{t \rightarrow+\infty} g(t)=+\infty$.

Operations on germs

Germs (at $+\infty$)

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have $f(t)=g(t)$. Equivalence classes are called germs. \mathcal{G} is the ring of germs with pointwise sum and product.

Further structure for $f, g \in \mathcal{G}$.
Ordering. $f<g$ if $f(t)<g(t)$ for $t \gg 1$. So $g>\mathbb{R}$ if $\lim _{t \rightarrow+\infty} g(t)=+\infty$.
Dominance relation. $f \prec g$ if $r|f|<|g|$ for all $r \in \mathbb{R}^{>0}$.

Operations on germs

Germs (at $+\infty$)

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have $f(t)=g(t)$. Equivalence classes are called germs. \mathcal{G} is the ring of germs with pointwise sum and product.

Further structure for $f, g \in \mathcal{G}$.
Ordering. $f<g$ if $f(t)<g(t)$ for $t \gg 1$. So $g>\mathbb{R}$ if $\lim _{t \rightarrow+\infty} g(t)=+\infty$.
Dominance relation. $f \prec g$ if $r|f|<|g|$ for all $r \in \mathbb{R}^{>0}$.
Derivation. If $t \mapsto f(t)$ is differentiable on $(r,+\infty)$ for $r \gg 1$, then f^{\prime} is the germ of the derivative.

Operations on germs

Germs (at $+\infty$)

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have $f(t)=g(t)$. Equivalence classes are called germs. \mathcal{G} is the ring of germs with pointwise sum and product.

Further structure for $f, g \in \mathcal{G}$.
Ordering. $f<g$ if $f(t)<g(t)$ for $t \gg 1$. So $g>\mathbb{R}$ if $\lim _{t \rightarrow+\infty} g(t)=+\infty$.
Dominance relation. $f \prec g$ if $r|f|<|g|$ for all $r \in \mathbb{R}^{>0}$.
Derivation. If $t \mapsto f(t)$ is differentiable on $(r,+\infty)$ for $r \gg 1$, then f^{\prime} is the germ of the derivative.

Composition. If $g>\mathbb{R}$, then the germ $f \circ g$ of $t \mapsto f(g(t))$ only depends on f and g. We have a composition law

$$
0: \mathcal{G} \times \mathcal{G}>\mathbb{R} \longrightarrow \mathcal{G}
$$

For fixed $g \in \mathcal{G}^{>\mathbb{R}}$, the function $\mathcal{G} \longrightarrow \mathcal{G} ; f \mapsto f \circ g$ is a strictly increasing morphism of rings.

Hardy fields

A Hardy field is a subfield H of \mathcal{G} containing \mathbb{R} and closed under derivation of germs.

Hardy fields with composition

Hardy fields

A Hardy field is a subfield H of \mathcal{G} containing \mathbb{R} and closed under derivation of germs.

- Each $f \in H$ is either constant or strictly monotonous
- $\forall f \in H, f>\mathbb{R} \Longrightarrow f^{\prime}>0$.
- $\forall f \in H, f \preccurlyeq 1 \Longrightarrow \exists r=\lim _{+\infty} f \in \mathbb{R}, f-r \prec 1$.

Hardy fields with composition

Hardy fields

A Hardy field is a subfield H of \mathcal{G} containing \mathbb{R} and closed under derivation of germs.

- Each $f \in H$ is either constant or strictly monotonous
- $\forall f \in H, f>\mathbb{R} \Longrightarrow f^{\prime}>0$.
- $\forall f \in H, f \preccurlyeq 1 \Longrightarrow \exists r=\lim _{+\infty} f \in \mathbb{R}, f-r \prec 1$.

Hardy fields with composition
A Hardy field with composition is a Hardy field \mathcal{H} which contains id and which is closed under compositions $(f, g) \mapsto f \circ g$ with $f \in \mathcal{H}$ and $g \in \mathcal{H}>\mathbb{R}$.

Hardy fields with composition

Hardy fields

A Hardy field is a subfield H of \mathcal{G} containing \mathbb{R} and closed under derivation of germs.

- Each $f \in H$ is either constant or strictly monotonous
- $\forall f \in H, f>\mathbb{R} \Longrightarrow f^{\prime}>0$.
- $\forall f \in H, f \preccurlyeq 1 \Longrightarrow \exists r=\lim _{+\infty} f \in \mathbb{R}, f-r \prec 1$.

Hardy fields with composition

A Hardy field with composition is a Hardy field \mathcal{H} which contains id and which is closed under compositions $(f, g) \mapsto f \circ g$ with $f \in \mathcal{H}$ and $g \in \mathcal{H}>\mathbb{R}$.

Examples:

- $\mathbb{R}(\mathrm{id})$: germs of rational functions.
- HARDY's field of L-functions: closure of $\mathbb{R}(i d)$ under semialgebraic functions, exp and log.
- Boshernitzan's field $\mathcal{B}:=\cap\{M: M$ is a maximal Hardy field $\}$.

A short-lived conjecture?

Conjecture on (\mathcal{H}, \circ)

Let \mathcal{H} be a Hardy field with composition and let $f, g \in \mathcal{H}>\mathbb{R}$.
Conjecture 1. For all $\delta \in \mathcal{H}$ with $\delta \prec g$ and $\left(f^{\prime} \circ g\right) \delta \prec(f \circ g)$, we have

$$
f \circ(g+\delta) \sim f \circ g .
$$

Conjecture 2. The centralizer $\mathcal{C}(f):=\left\{h \in \mathcal{H}^{>R}: h \circ f=f \circ h\right\}$ is commutative.

Conjecture 3. If $f>\underset{\text { (iterates) }}{g^{[\mathbb{N}]}}>$ id, then $f \circ g>g \circ f$.

A short-lived conjecture?

Conjecture on (\mathcal{H}, \circ)

Let \mathcal{H} be a Hardy field with composition and let $f, g \in \mathcal{H}>\mathbb{R}$.
Conjecture 1. For all $\delta \in \mathcal{H}$ with $\delta \prec g$ and $\left(f^{\prime} \circ g\right) \delta \prec(f \circ g)$, we have

$$
f \circ(g+\delta) \sim f \circ g .
$$

Conjecture 2. The centralizer $\mathcal{C}(f):=\{h \in \mathcal{H}>\mathbb{R}: h \circ f=f \circ h\}$ is commutative.

Conjecture 3. If $f>\underset{\text { (iterates) }}{g^{[\mathbb{N}]}}>$ id, then $f \circ g>g \circ f$.

Conjecture 1 holds whenever \mathcal{H} contains exp, but has no transexponential germ.

Let $\mathcal{R}=(\mathbb{R},+,-, \times,<, \ldots)$ be a functional expansion of the real ordered ring in a firstorder language \mathcal{L}.

Let $\mathcal{R}=(\mathbb{R},+,-, \times,<, \ldots)$ be a functional expansion of the real ordered ring in a firstorder language \mathcal{L}.

Define:

- $\mathcal{H}_{\mathcal{R}}$ as the set of germs of functions $\mathbb{R} \longrightarrow \mathbb{R}$ that are definable with parameters in \mathcal{R}.
- $\mathcal{T}_{\mathcal{R}}$ as the subset of \mathcal{H} of germs of unary functions $r \mapsto t(r)$ for all arity $\leqslant 1$ terms $t[u]$.

Let $\mathcal{R}=(\mathbb{R},+,-, \times,<, \ldots)$ be a functional expansion of the real ordered ring in a firstorder language \mathcal{L}.

Define:

- $\mathcal{H}_{\mathcal{R}}$ as the set of germs of functions $\mathbb{R} \longrightarrow \mathbb{R}$ that are definable with parameters in \mathcal{R}.
- $\mathcal{T}_{\mathcal{R}}$ as the subset of \mathcal{H} of germs of unary functions $r \mapsto t(r)$ for all arity $\leqslant 1$ terms $t[u]$. Those are partially ordered rings, and even \mathcal{L}-structures under pointwise operations.

Moreover $\mathcal{T}_{\mathcal{R}}$ and $\mathcal{H}_{\mathcal{R}}$ are closed under composition.

Let $\mathcal{R}=(\mathbb{R},+,-, \times,<, \ldots)$ be a functional expansion of the real ordered ring in a firstorder language \mathcal{L}.

Define:

- $\mathcal{H}_{\mathcal{R}}$ as the set of germs of functions $\mathbb{R} \longrightarrow \mathbb{R}$ that are definable with parameters in \mathcal{R}.
- $\mathcal{T}_{\mathcal{R}}$ as the subset of \mathcal{H} of germs of unary functions $r \mapsto t(r)$ for all arity $\leqslant 1$ terms $t[u]$. Those are partially ordered rings, and even \mathcal{L}-structures under pointwise operations.

Moreover $\mathcal{T}_{\mathcal{R}}$ and $\mathcal{H}_{\mathcal{R}}$ are closed under composition.

We will consider in particular $\mathcal{R}=\mathbb{R}_{\mathrm{an}, \exp }$, and we write $\mathcal{H}_{\mathrm{an}, \exp }=\mathcal{H}_{\mathbb{R}_{\mathrm{an}, \exp }}$.

Model theoretic perks

If $\operatorname{Th}(\mathcal{R})$ is o-minimal
Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.

Model theoretic perks

If $\operatorname{Th}(\mathcal{R})$ is o-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.
$\mathcal{M} \succ \mathcal{R}:$ non-standard model

Model theoretic perks

If $\operatorname{Th}(\mathcal{R})$ is o-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.
$\mathcal{M} \succ \mathcal{R}$: non-standard model ξ : element of \mathcal{M} with $\xi>\mathbb{R}$.

There is a natural \mathcal{L}-embedding $\Psi: \mathcal{H}_{\mathcal{R}} \longrightarrow \mathcal{M}$ which sends id to ξ. This map commutes with definable functions $\mathbb{R}^{n} \longrightarrow \mathbb{R}$.

Model theoretic perks

If $\operatorname{Th}(\mathcal{R})$ is o-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.
$\mathcal{M} \succ \mathcal{R}$: non-standard model ξ : element of \mathcal{M} with $\xi>\mathbb{R}$.

There is a natural \mathcal{L}-embedding $\Psi: \mathcal{H}_{\mathcal{R}} \longrightarrow \mathcal{M}$ which sends id to ξ. This map commutes with definable functions $\mathbb{R}^{n} \longrightarrow \mathbb{R}$.

There is a unique \mathcal{L}-embedding $\Phi: \mathcal{T}_{\mathcal{R}} \longrightarrow \mathcal{M}$ with $\Phi(\mathrm{id})=\xi$.

Model theoretic perks

If $\operatorname{Th}(\mathcal{R})$ is o-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.
$\mathcal{M} \succ \mathcal{R}:$ non-standard model $\quad \xi$: element of \mathcal{M} with $\xi>\mathbb{R}$.
There is a natural \mathcal{L}-embedding $\Psi: \mathcal{H}_{\mathcal{R}} \longrightarrow \mathcal{M}$ which sends id to ξ. This map commutes with definable functions $\mathbb{R}^{n} \longrightarrow \mathbb{R}$.

There is a unique \mathcal{L}-embedding $\Phi: \mathcal{T}_{\mathcal{R}} \longrightarrow \mathcal{M}$ with $\Phi(\mathrm{id})=\xi$.

If $\operatorname{Th}(\mathcal{R})$ has QE and a universal axiomatization

Then any definable function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is given piecewise by (a finite list of) terms. In particular for $n=1$, the germ of f lies in $\mathcal{T}_{\mathcal{R}}$. So $\mathcal{T}_{\mathcal{R}}=\mathcal{H}_{\mathcal{R}}$.

Model theoretic perks

If $\operatorname{Th}(\mathcal{R})$ is o-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.
$\mathcal{M} \succ \mathcal{R}$: non-standard model
ξ : element of \mathcal{M} with $\xi>\mathbb{R}$.
There is a natural \mathcal{L}-embedding $\Psi: \mathcal{H}_{\mathcal{R}} \longrightarrow \mathcal{M}$ which sends id to ξ. This map commutes with definable functions $\mathbb{R}^{n} \longrightarrow \mathbb{R}$.

There is a unique \mathcal{L}-embedding $\Phi: \mathcal{T}_{\mathcal{R}} \longrightarrow \mathcal{M}$ with $\Phi(\mathrm{id})=\xi$.

If $\operatorname{Th}(\mathcal{R})$ has QE and a universal axiomatization

Then any definable function $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is given piecewise by (a finite list of) terms. In particular for $n=1$, the germ of f lies in $\mathcal{T}_{\mathcal{R}}$. So $\mathcal{T}_{\mathcal{R}}=\mathcal{H}_{\mathcal{R}}$.

Both conditions are satisfied for $\mathcal{R}=\mathbb{R}_{\mathrm{an}, \exp }$ (vDDMM, '94).
\mathfrak{L} : group of germs $\prod_{k<n}\left(\log _{k} x\right)^{\mathfrak{l}_{k}}$ for $\mathfrak{l}_{0}, \ldots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Transseries

\mathfrak{L} : group of germs $\prod_{k<n}\left(\log _{k} x\right)^{\mathfrak{l}_{k}}$ for $\mathfrak{l}_{0}, \ldots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

\mathbb{T}_{L} is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L}. E.g.

$$
\begin{gathered}
f_{0}=x+\pi(\log x)^{3}+\frac{1}{\log x}+\frac{1}{(\log x)^{2}}+\frac{1}{(\log x)^{3}}+\cdots+\frac{2(\log x)^{2}}{x} \\
f_{1}=x+\log x+\log \log x+\cdots
\end{gathered}
$$

We have a logarithm log: $\mathbb{T}_{L}^{>0} \longrightarrow \mathbb{T}_{L}$:

$$
\log \left(\prod_{k<n}\left(\log _{k} x\right)^{\mathfrak{l}_{k}}\right):=
$$

Transseries

\mathfrak{L} : group of germs $\prod_{k<n}\left(\log _{k} x\right)^{\mathfrak{l}_{k}}$ for $\mathfrak{l}_{0}, \ldots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

\mathbb{T}_{L} is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L}. E.g.

$$
\begin{gathered}
f_{0}=x+\pi(\log x)^{3}+\frac{1}{\log x}+\frac{1}{(\log x)^{2}}+\frac{1}{(\log x)^{3}}+\cdots+\frac{2(\log x)^{2}}{x} \\
f_{1}=x+\log x+\log \log x+\cdots
\end{gathered}
$$

We have a logarithm log: $\mathbb{T}_{L}^{>0} \longrightarrow \mathbb{T}_{L}$:

$$
\log \left(\prod_{k<n}\left(\log _{k} x\right)^{\mathfrak{l}_{k}}\right):=\sum_{k<n} \mathfrak{l}_{k} \log _{k+1} x
$$

Transseries

\mathfrak{L} : group of germs $\prod_{k<n}\left(\log _{k} x\right)^{\mathfrak{l}_{k}}$ for $\mathfrak{l}_{0}, \ldots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

\mathbb{T}_{L} is the field $\mathbb{R}[[\mathcal{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L}. E.g.

$$
\begin{gathered}
f_{0}=x+\pi(\log x)^{3}+\frac{1}{\log x}+\frac{1}{(\log x)^{2}}+\frac{1}{(\log x)^{3}}+\cdots+\frac{2(\log x)^{2}}{x} \\
f_{1}=x+\log x+\log \log x+\cdots
\end{gathered}
$$

We have a logarithm log: $\mathbb{T}_{L}^{>0} \longrightarrow \mathbb{T}_{L}$:

$$
\log (\underset{\in \mathfrak{L}}{\mathfrak{l} \in \mathbb{R}} \underset{\prec}{r}(1+\underset{\prec 1}{\varepsilon})):=
$$

Transseries

\mathfrak{L} : group of germs $\prod_{k<n}\left(\log _{k} x\right)^{\mathfrak{l}_{k}}$ for $\mathfrak{l}_{0}, \ldots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

\mathbb{T}_{L} is the field $\mathbb{R}[[\mathcal{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L}. E.g.

$$
\begin{gathered}
f_{0}=x+\pi(\log x)^{3}+\frac{1}{\log x}+\frac{1}{(\log x)^{2}}+\frac{1}{(\log x)^{3}}+\cdots+\frac{2(\log x)^{2}}{x} \\
f_{1}=x+\log x+\log \log x+\cdots
\end{gathered}
$$

$$
\log (\mathfrak{l} r(1+\varepsilon)):=\log (\mathfrak{l})+\log r+\sum_{k>0} \frac{(-1)^{k+1}}{k} \varepsilon^{k}
$$

Transseries

\mathfrak{L} : group of germs $\prod_{k<n}\left(\log _{k} x\right)^{\mathfrak{l}_{k}}$ for $\mathfrak{l}_{0}, \ldots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

\mathbb{T}_{L} is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L}. E.g.

$$
\begin{gathered}
f_{0}=x+\pi(\log x)^{3}+\frac{1}{\log x}+\frac{1}{(\log x)^{2}}+\frac{1}{(\log x)^{3}}+\cdots+\frac{2(\log x)^{2}}{x} \\
f_{1}=x+\log x+\log \log x+\cdots
\end{gathered}
$$

We have a morphism log: $\left(\mathbb{T}_{L}^{>0}, \times,<\right) \longrightarrow\left(\mathbb{T}_{L},+,<\right)$.

Transseries

\mathfrak{L} : group of germs $\prod_{k<n}\left(\log _{k} x\right)^{\mathfrak{l}_{k}}$ for $\mathfrak{l}_{0}, \ldots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

\mathbb{T}_{L} is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L}. E.g.

$$
\begin{gathered}
f_{0}=x+\pi(\log x)^{3}+\frac{1}{\log x}+\frac{1}{(\log x)^{2}}+\frac{1}{(\log x)^{3}}+\cdots+\frac{2(\log x)^{2}}{x} \\
f_{1}=x+\log x+\log \log x+\cdots
\end{gathered}
$$

We have a morphism log: $\left(\mathbb{T}_{L}^{>0}, \times,<\right) \longrightarrow\left(\mathbb{T}_{L},+,<\right)$.

Exponential extensions

log: $\mathbb{T}_{L}^{>0} \longrightarrow \mathbb{T}_{L}$ is not surjective, but \mathbb{T}_{L} can be closed under exponentials: iteratively adjoin formal monomials e^{φ} for certain transseries φ as long as $\exp (\varphi)$ is undefined.

Transseries with derivation and composition

Transseries, introduced by DAHN-GÖRING and ÉcALLE, can be declined in several forms: grid-based, log-exp $\left(\mathbb{T}_{\mathrm{LE}}\right)$, exp-log, ...
We consider generalized transseries, which form a class sized Hahn series field $\mathbb{R}\langle\langle x\rangle\rangle \supsetneq$ \mathbb{T}_{LE} closed under \exp and log.

Transseries with derivation and composition

Transseries, introduced by DAHN-GÖRING and ÉCALLE, can be declined in several forms: grid-based, $\log -\exp \left(\mathbb{T}_{\mathrm{LE}}\right)$, exp-log, ...
We consider generalized transseries, which form a class sized Hahn series field $\mathbb{R}\langle\langle x\rangle\rangle \supsetneq$ \mathbb{T}_{LE} closed under \exp and log.

Dervation and composition (Scmheling, Berarducci-Mantova)

The field $\mathbb{R}\langle\langle x\rangle\rangle$ is equipped with a derivation $\partial: \mathbb{R}\langle\langle x\rangle\rangle \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ and a composition law $\circ: \mathbb{R}\langle\langle x\rangle\rangle \times(\mathbb{R}\langle\langle x\rangle\rangle)>\mathbb{R} \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ whose properties mimic those of Hardy fields with composition.

Transseries with derivation and composition

Transseries, introduced by DAHN-GÖRING and ÉcALLE, can be declined in several forms: grid-based, log-exp $\left(\mathbb{T}_{\mathrm{LE}}\right)$, exp-log, ...
We consider generalized transseries, which form a class sized Hahn series field $\mathbb{R}\langle\langle x\rangle\rangle \supsetneq$ \mathbb{T}_{LE} closed under \exp and log.

Dervation and composition (Scmheling, Berarducci-Mantova)

The field $\mathbb{R}\langle\langle x\rangle\rangle$ is equipped with a derivation $\partial: \mathbb{R}\langle\langle x\rangle\rangle \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ and a composition law $\circ: \mathbb{R}\langle\langle x\rangle\rangle \times(\mathbb{R}\langle\langle x\rangle\rangle)>\mathbb{R} \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ whose properties mimic those of Hardy fields with composition.

$$
\begin{aligned}
& f_{0}=x+\pi(\log x)+\frac{1}{\log x}+\frac{1}{(\log x)^{2}}+\frac{1}{(\log x)^{3}}+\cdots+\frac{2(\log x)^{2}}{x} \\
& f_{0}^{\prime}=1+\frac{\pi}{x}-\frac{1}{x(\log x)^{2}}-\frac{2}{x(\log x)^{3}}-\cdots-\frac{4 x(\log x)-2 x(\log x)^{2}}{x^{2}}
\end{aligned}
$$

Transseries with derivation and composition

Transseries, introduced by DAHN-GöRING and Écalle, can be declined in several forms: grid-based, log-exp (\mathbb{T}_{LE}), exp-log, ...

We consider generalized transseries, which form a class sized Hahn series field $\mathbb{R}\langle\langle x\rangle\rangle \supsetneq$ \mathbb{T}_{LE} closed under exp and log.

Dervation and composition (Scmheling, Berarducci-Mantova)

The field $\mathbb{R}\langle\langle x\rangle\rangle$ is equipped with a derivation $\partial: \mathbb{R}\langle\langle x\rangle\rangle \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ and a composition law $\circ: \mathbb{R}\langle\langle x\rangle\rangle \times(\mathbb{R}\langle\langle x\rangle\rangle)>\mathbb{R} \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ whose properties mimic those of Hardy fields with composition.

$$
\begin{gathered}
f_{1}=x+\log x+\log \log x+\cdots \\
f_{1} \circ(\log x)=\log x+\log \log x+\log \log \log x+\cdots
\end{gathered}
$$

Theorem (vDDries-MACIntYre-Marker, 1997 and 2001)
There is a unique $\mathcal{L}_{\mathrm{an}, \exp }$-embedding $\mathcal{H}_{\mathrm{an}, \exp } \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ which sends id to x. This embedding also preserves ∂ and \circ.

Theorem (vDDries-Macintyre-Marker, 1997 and 2001)

There is a unique $\mathcal{L}_{\mathrm{an}, \exp }$-embedding $\mathcal{H}_{\mathrm{an}, \exp } \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ which sends id to x. This embedding also preserves ∂ and \circ.

This embedding can be used to describe growth orders of germs in $\mathcal{H}_{\text {an, exp }}$

Theorem (vDDries-Macintyre-Marker, 1997 and 2001)

There is a unique $\mathcal{L}_{\text {an, } \exp }$-embedding $\mathcal{H}_{\text {an, } \exp } \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ which sends id to x. This embedding also preserves ∂ and \circ.

This embedding can be used to describe growth orders of germs in $\mathcal{H}_{\text {an, exp }}$.

Using this, vDDMM showed that:

- the inverse of $t \mapsto(\log t)(\log \log t)$ is not an L-function (as conjectured by HARDY).
- no primitive $\int_{a}^{t} \mathrm{e}^{s} \mathrm{ds}$ of $t \mapsto \mathrm{e}^{t^{2}}$ is definable in $\mathbb{R}_{\text {an, }}$ exp.

Theorem (vDDries-Macintyre-Marker, 1997 and 2001)

There is a unique $\mathcal{L}_{\text {an, } \exp }$-embedding $\mathcal{H}_{\text {an, } \exp } \longrightarrow \mathbb{R}\langle\langle x\rangle\rangle$ which sends id to x. This embedding also preserves ∂ and \circ.

This embedding can be used to describe growth orders of germs in $\mathcal{H}_{\text {an, exp }}$.

Using this, vDDMM showed that:

- the inverse of $t \mapsto(\log t)(\log \log t)$ is not an L-function (as conjectured by HARDY).
- no primitive $\int_{a}^{t} \mathrm{e}^{s} \mathrm{ds}$ of $t \mapsto \mathrm{e}^{t^{2}}$ is definable in $\mathbb{R}_{\text {an, }}$ exp.

We will see that the field $\mathcal{H}_{\mathrm{an}, \exp }$ satisfies the conjecture.

Sublogarithmic-transexponential germs in the wild

Consider the functional, conjugation equation

$$
\begin{equation*}
E(t+1)=\mathrm{e}^{E(t)}, \quad \text { for } t \gg 1 . \tag{1}
\end{equation*}
$$

in E, called Abel's equation for exp. Continuous solutions of (1) are transexponential.

Sublogarithmic-transexponential germs in the wild

Consider the functional, conjugation equation

$$
\begin{equation*}
E(t+1)=\mathrm{e}^{E(t)}, \quad \text { for } t \gg 1 . \tag{2}
\end{equation*}
$$

in E, called Abel's equation for exp. Continuous solutions of (2) are transexponential. KnESER showed in 1949 that (2) has an analytic solution $\exp _{\omega}$, say with $\exp _{\omega}(0)=1$. The (germ of the) functional inverse $\log _{\omega}$ satisfies the dual equation

$$
\log _{\omega}(\log t)=\log _{\omega}(t)-1 \quad \text { for } t \gg 1 .
$$

Sublogarithmic-transexponential germs in the wild

Consider the functional, conjugation equation

$$
\begin{equation*}
E(t+1)=\mathrm{e}^{E(t)}, \quad \text { for } t \gg 1 . \tag{3}
\end{equation*}
$$

in E, called Abel's equation for exp. Continuous solutions of (3) are transexponential. KnESER showed in 1949 that (3) has an analytic solution $\exp _{\omega}$, say with $\exp _{\omega}(0)=1$. The (germ of the) functional inverse $\log _{\omega}$ satisfies the dual equation

$$
\log _{\omega}(\log t)=\log _{\omega}(t)-1 \quad \text { for } t \gg 1 .
$$

Those functions induce a flow of real-iterates of exp, i.e. a strictly increasing morphism

$$
\begin{aligned}
\exp ^{[\cdot]}:(\mathbb{R},+,<) & \longrightarrow(\mathcal{G}, 0,<) \\
r & \longmapsto \exp ^{[r]}:=\exp _{\omega} \circ\left(\log _{\omega}+r\right) .
\end{aligned}
$$

Sublogarithmic-transexponential germs in the wild

Consider the functional, conjugation equation

$$
\begin{equation*}
E(t+1)=\mathrm{e}^{E(t)}, \quad \text { for } t \gg 1 \tag{4}
\end{equation*}
$$

in E, called Abel's equation for exp. Continuous solutions of (4) are transexponential. KNESER showed in 1949 that (4) has an analytic solution $\exp _{\omega}$, say with $\exp _{\omega}(0)=1$. The (germ of the) functional inverse $\log _{\omega}$ satisfies the dual equation

$$
\log _{\omega}(\log t)=\log _{\omega}(t)-1 \quad \text { for } t \gg 1
$$

Those functions induce a flow of real-iterates of exp, i.e. a strictly increasing morphism

$$
\begin{aligned}
\exp ^{[\cdot]}:(\mathbb{R},+,<) & \longrightarrow(\mathcal{G}, \circ,<) \\
r & \longmapsto \exp ^{[r]}:=\exp _{\omega} \circ\left(\log _{\omega}+r\right) .
\end{aligned}
$$

Theorem [PADGETt, '22]
There is a Hardy field \mathcal{T}_{ω} with composition which contains $\exp _{\omega}$ and $\log _{\omega}$.

Levels

Exp-log classes

Given an ordered exponential field F and $a \in F^{>\mathbb{R}}$, the exp-log class $\operatorname{EL}(a)$ of $a \in F$ is its equivalence class for

$$
a \asymp^{L} b \quad \text { if and only if } \quad \exists n \in \mathbb{N},\left(\log { }^{[n]} a \sim \log { }^{[n]} b\right) .
$$

Levels

Exp-log classes

Given an ordered exponential field F and $a \in F^{>\mathbb{R}}$, the exp-log class $\operatorname{EL}(a)$ of $a \in F$ is its equivalence class for

$$
a \asymp^{L} b \quad \text { if and only if } \quad \exists n \in \mathbb{N},\left(\log ^{[n]} a \sim \log ^{[n]} b\right)
$$

Let \mathcal{H} be a Hardy field with composition with $\exp , \log \in \mathcal{H}$. Set

$$
\mathcal{E}:=\left\{\exp ^{[n]} \circ\left(\log { }^{[n]} \pm 1\right): n \in \mathbb{N}\right\} \subseteq \mathcal{H}^{>\mathbb{R}} .
$$

Then each $\operatorname{EL}(f)$ is the convex hull of $\mathcal{E} \circ f=\{g \circ f: g \in \mathcal{E}\}$.

Levels

Exp-log classes

Given an ordered exponential field F and $a \in F^{>\mathbb{R}}$, the exp-log class $\operatorname{EL}(a)$ of $a \in F$ is its equivalence class for

$$
a \asymp^{L} b \quad \text { if and only if } \quad \exists n \in \mathbb{N},\left(\log ^{[n]} a \sim \log ^{[n]} b\right) .
$$

Let \mathcal{H} be a Hardy field with composition with $\exp , \log \in \mathcal{H}$. Set

$$
\mathcal{E}:=\left\{\exp ^{[n]} \circ\left(\log ^{[n]} \pm 1\right): n \in \mathbb{N}\right\} \subseteq \mathcal{H}^{>\mathbb{R}} .
$$

Then each $\operatorname{EL}(f)$ is the convex hull of $\mathcal{E} \circ f=\{g \circ f: g \in \mathcal{E}\}$.
Marker-Miller: EL classes in $\mathcal{H}_{\text {an, exp }}$ and $\mathbb{R}\langle\langle x\rangle\rangle$ are parametrized by integers. Each f lies in $\operatorname{EL}\left(\exp ^{[n]}\right)$ for a unique $n \in \mathbb{Z}$ called the level of f. Write $\lambda_{n}=\operatorname{EL}(f)$.

Levels

Exp-log classes

Given an ordered exponential field F and $a \in F^{>\mathbb{R}}$, the exp-log class $\operatorname{EL}(a)$ of $a \in F$ is its equivalence class for

$$
a \asymp^{L} b \quad \text { if and only if } \quad \exists n \in \mathbb{N},\left(\log ^{[n]} a \sim \log ^{[n]} b\right) .
$$

Let \mathcal{H} be a Hardy field with composition with $\exp , \log \in \mathcal{H}$. Set

$$
\mathcal{E}:=\left\{\exp ^{[n]} \circ\left(\log ^{[n]} \pm 1\right): n \in \mathbb{N}\right\} \subseteq \mathcal{H}^{>\mathbb{R}} .
$$

Then each $\operatorname{EL}(f)$ is the convex hull of $\mathcal{E} \circ f=\{g \circ f: g \in \mathcal{E}\}$.
Marker-Miller: EL classes in $\mathcal{H}_{\text {an, exp }}$ and $\mathbb{R}\langle\langle x\rangle\rangle$ are parametrized by integers. Each f lies in $\operatorname{EL}\left(\exp ^{[n]}\right)$ for a unique $n \in \mathbb{Z}$ called the level of f. Write $\lambda_{n}=\operatorname{EL}(f)$.

Note that $\log \lambda_{n}=\lambda_{n-1}$ for all $n \in \mathbb{Z}$.

More levels

Let us come back to the field \mathcal{I}_{ω}. Write

$$
\lambda_{\omega}:=\operatorname{EL}\left(\exp _{\omega}\right), \quad \lambda_{-\omega}:=\operatorname{EL}\left(\log _{\omega}\right), \quad \text { and } \lambda_{r}:=\operatorname{EL}\left(\exp ^{[r]}\right) \text { for all } r \in \mathbb{R} .
$$

More levels

Let us come back to the field \mathcal{I}_{ω}. Write

$$
\lambda_{\omega}:=\operatorname{EL}\left(\exp _{\omega}\right), \quad \lambda_{-\omega}:=\operatorname{EL}\left(\log _{\omega}\right), \quad \text { and } \lambda_{r}:=\operatorname{EL}\left(\exp ^{[r]}\right) \text { for all } r \in \mathbb{R} .
$$

We have

$$
\lambda_{\omega}>\lambda_{\mathbb{Z}}, \quad \lambda_{-\omega}<\lambda_{\mathbb{Z}}, \quad \text { and } \quad \forall r, s \in \mathbb{R},\left(\lambda_{r}<\lambda_{s} \Longleftrightarrow r<s\right) .
$$

More levels

Let us come back to the field \mathcal{I}_{ω}. Write

$$
\lambda_{\omega}:=\operatorname{EL}\left(\exp _{\omega}\right), \quad \lambda_{-\omega}:=\operatorname{EL}\left(\log _{\omega}\right), \quad \text { and } \lambda_{r}:=\operatorname{EL}\left(\exp ^{[r]}\right) \text { for all } r \in \mathbb{R} \text {. }
$$

We have

$$
\lambda_{\omega}>\lambda_{\mathbb{Z}}, \quad \lambda_{-\omega}<\lambda_{\mathbb{Z}}, \quad \text { and } \quad \forall r, s \in \mathbb{R},\left(\lambda_{r}<\lambda_{s} \Longleftrightarrow r<s\right) .
$$

We also have levels $\omega-1, \omega+1, \ldots$ with

$$
\lambda_{\mathbb{R}}<\lambda_{\omega-1}=\log \left(\lambda_{\omega}\right)<\lambda_{\omega}<\lambda_{\omega+1}=\exp \left(\lambda_{\omega}\right)
$$

and so on...

Even more levels

For $\varphi, \psi \in \mathcal{T}_{P} \mathbb{R}^{\mathbb{R}}$, we have

$$
\begin{aligned}
\operatorname{EL}\left(\exp _{\omega} \circ \varphi\right)<\operatorname{EL}\left(\exp _{\omega} \circ \psi\right) & \Longleftrightarrow \mathcal{E} \circ\left(\exp _{\omega} \circ \varphi\right)<\mathcal{E} \circ\left(\exp _{\omega} \circ \psi\right) \\
& \Longleftrightarrow\left(\log _{\omega} \circ \mathcal{E} \circ \exp _{\omega}\right) \circ \varphi<\left(\log _{\omega} \circ \mathcal{E} \circ \exp _{\omega}\right) \circ \psi .
\end{aligned}
$$

Even more levels

For $\varphi, \psi \in \mathcal{T}_{\omega}^{>\mathbb{R}}$, we have

$$
\begin{aligned}
\operatorname{EL}\left(\exp _{\omega} \circ \varphi\right)<\operatorname{EL}\left(\exp _{\omega} \circ \psi\right) & \Longleftrightarrow \mathcal{E} \circ\left(\exp _{\omega} \circ \varphi\right)<\mathcal{E} \circ\left(\exp _{\omega} \circ \psi\right) \\
& \Longleftrightarrow\left(\log _{\omega} \circ \mathcal{E} \circ \exp _{\omega}\right) \circ \varphi<\left(\log _{\omega} \circ \mathcal{E} \circ \exp _{\omega}\right) \circ \psi .
\end{aligned}
$$

Even more levels

For $\varphi, \psi \in \mathcal{T}_{\omega}^{>\mathbb{R}}$, we have

$$
\begin{aligned}
\operatorname{EL}\left(\exp _{\omega} \circ \varphi\right)<\operatorname{EL}\left(\exp _{\omega} \circ \psi\right) & \Longleftrightarrow \mathcal{E} \circ\left(\exp _{\omega} \circ \varphi\right)<\mathcal{E} \circ\left(\exp _{\omega} \circ \psi\right) \\
& \Longleftrightarrow\left(\log _{\omega} \circ \mathcal{E} \circ \exp _{\omega}\right) \circ \varphi<\left(\log _{\omega} \circ \mathcal{E} \circ \exp _{\omega}\right) \circ \psi .
\end{aligned}
$$

Set $g=\exp ^{[n]} \circ\left(\log ^{[n]}+1\right) \in \mathcal{E}$. Since $\log _{\omega}^{\prime} \approx 1 /$ id , the mean value theorem for $\log _{\omega}$ gives

$$
\mathrm{id}+\frac{1}{\log ^{[n-1]} \circ \exp _{\omega}}<\log _{\omega} \circ g \circ \exp _{\omega}<\mathrm{id}+\frac{1}{\log ^{[n]} \circ \exp _{\omega}} .
$$

For $\varphi, \psi \in \mathcal{T}_{\omega}^{>\mathbb{R}}$, we have

$$
\begin{aligned}
\operatorname{EL}\left(\exp _{\omega} \circ \varphi\right)<\operatorname{EL}\left(\exp _{\omega} \circ \psi\right) & \Longleftrightarrow \mathcal{E} \circ\left(\exp _{\omega} \circ \varphi\right)<\mathcal{E} \circ\left(\exp _{\omega} \circ \psi\right) \\
& \Longleftrightarrow\left(\log _{\omega} \circ \mathcal{E} \circ \exp _{\omega}\right) \circ \varphi<\left(\log _{\omega} \circ \mathcal{E} \circ \exp _{\omega}\right) \circ \psi .
\end{aligned}
$$

Set $g=\exp ^{[n]} \circ\left(\log ^{[n]}+1\right) \in \mathcal{E}$. Since $\log _{\omega}^{\prime} \approx 1 /$ id , the mean value theorem for $\log _{\omega}$ gives

$$
\mathrm{id}+\frac{1}{\log ^{[n-1]} \circ \exp _{\omega}}<\log _{\omega} \circ g \circ \exp _{\omega}<\mathrm{id}+\frac{1}{\log ^{[n]} \circ \exp _{\omega}} .
$$

If $\varphi+\left(\frac{1}{\log ^{[\mathbb{N}]} \circ \exp _{\omega} \circ \varphi}\right)<\psi$, then $\operatorname{EL}\left(\exp _{\omega} \circ \varphi\right)<\operatorname{EL}\left(\exp _{\omega} \circ \psi\right)$. The EL class $\lambda_{1 / \omega}$ of

$$
\exp _{\omega} \circ\left(\log _{\omega}+\frac{1}{\log _{\omega}}\right)
$$

is "infinitesimal", i.e. larger than λ_{0} but smaller than each λ_{r} for $r \in \mathbb{R}^{>}$.

All levels

Tentative description of all possible levels in models of $\mathbb{R}_{\exp }$ using Conway's field No of surreal numbers:

Theorem (Berarducci-Mantova, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, $<$) itself.
There is an order embedding $\mathbf{N o} \longrightarrow \mathbf{N o}>\mathbb{R} ; z \mapsto \lambda_{z}$ such that each surreal number lies in $\operatorname{EL}\left(\lambda_{z}\right)$ for a unique $z \in \mathbf{N o}$.

All levels

Tentative description of all possible levels in models of $\mathbb{R}_{\exp }$ using Conway's field No of surreal numbers:

Theorem (Berarducci-Mantova, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, $<$) itself.
There is an order embedding $\mathbf{N o} \longrightarrow \mathbf{N o}{ }^{>R} ; z \mapsto \lambda_{z}$ such that each surreal number lies in $\operatorname{EL}\left(\lambda_{z}\right)$ for a unique $z \in \mathbf{N o}$.

They defined a canonical derivation ∂ on No such that (No, ∂) is a Liouville-closed H field. It is an elementary extension of \mathbb{T}_{LE} (Ashcenbrenner-vDDRIES-VDHoeven, '17).

All levels

Tentative description of all possible levels in models of $\mathbb{R}_{\exp }$ using Conway's field No of surreal numbers:

Theorem (Berarducci-Mantova, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, $<$) itself.
There is an order embedding $\mathbf{N o} \longrightarrow \mathbf{N o}{ }^{>R} ; z \mapsto \lambda_{z}$ such that each surreal number lies in $\operatorname{EL}\left(\lambda_{z}\right)$ for a unique $z \in \mathbf{N o}$.

They defined a canonical derivation ∂ on No such that $(\mathbf{N o}, \partial)$ is a Liouville-closed H field. It is an elementary extension of \mathbb{T}_{LE} (Ashcenbrenner-vdDries-VdHoeven, '17).

Every model of $\mathbb{R}_{\exp }$ embeds into (No, \exp).

All levels

Tentative description of all possible levels in models of $\mathbb{R}_{\exp }$ using Conway's field No of surreal numbers:

Theorem (Berarducci-Mantova, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, $<$) itself.
There is an order embedding $\mathbf{N o} \longrightarrow \mathbf{N o}>\mathbb{R} ; z \mapsto \lambda_{z}$ such that each surreal number lies in $\mathrm{EL}\left(\lambda_{z}\right)$ for a unique $z \in \mathbf{N o}$.

They defined a canonical derivation ∂ on No such that (No, ∂) is a Liouville-closed Hfield. It is an elementary extension of \mathbb{T}_{LE} (Ashcenbrenner-vdDries-VdHoeven, '17). Every model of $\mathbb{R}_{\exp }$ embeds into (No, \exp).

Question. Is any real-closed Hardy field H closed under exp and \log an elementary extension of $\mathbb{R}_{\text {exp }}$?

Berarducci-Mantova (2017) defined a composition law

$$
\mathrm{o}: \mathbb{R}\langle\langle x\rangle\rangle \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o} .
$$

$\mathbb{R}\langle\langle x\rangle\rangle$ naturally embeds into No by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{N o}^{>\mathbb{R}}$.

Goal

Berarducci-Mantova (2017) defined a composition law

$$
\mathrm{o}: \mathbb{R}\langle\langle x\rangle\rangle \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o} .
$$

$\mathbb{R}\langle\langle x\rangle\rangle$ naturally embeds into No by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{N o}^{>\mathbb{R}}$.
The composition law does not extend to $\mathrm{No} \times \mathbf{N o}{ }^{>\mathbb{R}}$ in a compatible way with respect to ∂. So let us leave the surreal realm.

Goal

Berarducci-Mantova (2017) defined a composition law

$$
\mathrm{o}: \mathbb{R}\langle\langle x\rangle\rangle \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o} .
$$

$\mathbb{R}\langle\langle x\rangle\rangle$ naturally embeds into No by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{N o}^{>\mathbb{R}}$.
The composition law does not extend to $\mathrm{No} \times \mathbf{N o}{ }^{>\mathbb{R}}$ in a compatible way with respect to ∂. So let us leave the surreal realm.
\rightarrow Can we "directly" build a field of generalized power series involving transexponential and sublogarithmic behavior?

Goal

Berarducci-Mantova (2017) defined a composition law

$$
\mathrm{o}: \mathbb{R}\langle\langle x\rangle\rangle \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o} .
$$

$\mathbb{R}\langle\langle x\rangle\rangle$ naturally embeds into No by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{N o}^{>\mathbb{R}}$.
The composition law does not extend to $\mathrm{No} \times \mathbf{N o}{ }^{>\mathbb{R}}$ in a compatible way with respect to ∂. So let us leave the surreal realm.
\rightarrow Can we "directly" build a field of generalized power series involving transexponential and sublogarithmic behavior?
\rightarrow Can we do so while solving the functional equations

$$
E \circ(x+1)=\mathrm{e}^{x} \circ E \quad \text { and } \quad L-1=L \circ \log x ?
$$

Goal

Berarducci-MAntova (2017) defined a composition law

$$
\mathrm{o}: \mathbb{R}\langle\langle x\rangle\rangle \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o} .
$$

$\mathbb{R}\langle\langle x\rangle\rangle$ naturally embeds into No by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{N o}^{>\mathbb{R}}$.
The composition law does not extend to $\mathrm{No} \times \mathbf{N o}{ }^{>\mathbb{R}}$ in a compatible way with respect to ∂. So let us leave the surreal realm.
\rightarrow Can we "directly" build a field of generalized power series involving transexponential and sublogarithmic behavior?
\rightarrow Can we do so while solving the functional equations

$$
E \circ(x+1)=\mathrm{e}^{x} \circ E \quad \text { and } \quad L-1=L \circ \log x ?
$$

\rightarrow Do we also get a formal version of the conjecture for those fields?

Formal hyperlogarithms

Let us build a structure ($\mathbb{L}, \partial, \circ$) which contains a solution $\ell_{\omega} x$ to

$$
\begin{equation*}
\ell_{\omega} x-1=\left(\ell_{\omega} x\right) \circ\left(\ell_{1} x\right) . \tag{5}
\end{equation*}
$$

Let us build a structure $(\mathbb{L}, \partial, \circ)$ which contains a solution $\ell_{\omega} x$ to

$$
\begin{equation*}
\ell_{\omega} x-1=\left(\ell_{\omega} x\right) \circ\left(\ell_{1} x\right) . \tag{6}
\end{equation*}
$$

We gather symbols $\ell_{\gamma} x, \gamma<\omega^{2}$ with $\ell_{0} x=x$ is the identity, $\ell_{1} x$ is the logarithm, and

$$
\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x=\left(\ell_{1} x\right)^{[n]} \circ\left(\ell_{\omega} x\right)^{[m]}
$$

Let us build a structure $(\mathbb{L}, \partial, \circ)$ which contains a solution $\ell_{\omega} x$ to

$$
\begin{equation*}
\ell_{\omega} x-1=\left(\ell_{\omega} x\right) \circ\left(\ell_{1} x\right) . \tag{7}
\end{equation*}
$$

We gather symbols $\ell_{\gamma} x, \gamma<\omega^{2}$ with $\ell_{0} x=x$ is the identity, $\ell_{1} x$ is the logarithm, and

$$
\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x=\left(\ell_{1} x\right)^{[n]} \circ\left(\ell_{\omega} x\right)^{[m]}
$$

Differentiating (7), we get

$$
\left(\ell_{\omega} x\right)^{\prime}=\frac{1}{x} \times\left(\ell_{\omega} x\right)^{\prime} \circ\left(\ell_{1} x\right)
$$

Let us build a structure $(\mathbb{L}, \partial, \circ)$ which contains a solution $\ell_{\omega} x$ to

$$
\begin{equation*}
\ell_{\omega} x-1=\left(\ell_{\omega} x\right) \circ\left(\ell_{1} x\right) . \tag{8}
\end{equation*}
$$

We gather symbols $\ell_{\gamma} x, \gamma<\omega^{2}$ with $\ell_{0} x=x$ is the identity, $\ell_{1} x$ is the logarithm, and

$$
\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x=\left(\ell_{1} x\right)^{[n]} \circ\left(\ell_{\omega} x\right)^{[m]}
$$

Differentiating (8), we get

$$
\begin{aligned}
\left(\ell_{\omega} x\right)^{\prime} & =\frac{1}{x} \times\left(\ell_{\omega} x\right)^{\prime} \circ\left(\ell_{1} x\right) \\
& =\frac{1}{x\left(\ell_{1} x\right) \cdots\left(\ell_{n} x\right)} \times\left(\ell_{\omega} x\right)^{\prime} \circ\left(\ell_{n+1} x\right)
\end{aligned}
$$

Let us build a structure $(\mathbb{L}, \partial, \circ)$ which contains a solution $\ell_{\omega} x$ to

$$
\begin{equation*}
\ell_{\omega} x-1=\left(\ell_{\omega} x\right) \circ\left(\ell_{1} x\right) . \tag{9}
\end{equation*}
$$

We gather symbols $\ell_{\gamma} x, \gamma<\omega^{2}$ with $\ell_{0} x=x$ is the identity, $\ell_{1} x$ is the logarithm, and

$$
\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x=\left(\ell_{1} x\right)^{[n]} \circ\left(\ell_{\omega} x\right)^{[m]}
$$

Differentiating (9), we get

$$
\begin{aligned}
\left(\ell_{\omega} x\right)^{\prime} & =\frac{1}{x} \times\left(\ell_{\omega} x\right)^{\prime} \circ\left(\ell_{1} x\right) \\
& =\frac{1}{x\left(\ell_{1} x\right) \cdots\left(\ell_{n} x\right)} \times o\left(\frac{1}{\ell_{n} x}\right)
\end{aligned}
$$

Let us build a structure $(\mathbb{L}, \partial, \circ)$ which contains a solution $\ell_{\omega} x$ to

$$
\begin{equation*}
\ell_{\omega} x-1=\left(\ell_{\omega} x\right) \circ\left(\ell_{1} x\right) . \tag{10}
\end{equation*}
$$

We gather symbols $\ell_{\gamma} x, \gamma<\omega^{2}$ with $\ell_{0} x=x$ is the identity, $\ell_{1} x$ is the logarithm, and

$$
\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x=\left(\ell_{1} x\right)^{[n]} \circ\left(\ell_{\omega} x\right)^{[m]} .
$$

Differentiating (10), we get

$$
\left(\ell_{\omega} x\right)^{\prime} \stackrel{?}{=} \prod_{n<\omega}\left(\ell_{n} x\right)^{-1}
$$

So one needs to have, as basic symbols, formal products

$$
\mathfrak{l}:=\prod_{\gamma<\omega^{2}}\left(\ell_{\gamma} x\right)^{L_{\gamma}}, \quad \text { for }\left(\mathfrak{l}_{\gamma}\right)_{\gamma<\omega^{2}} \in \mathbb{R}^{\omega^{2}} .
$$

So one needs to have, as basic symbols, formal products

$$
\mathfrak{l}:=\prod_{\gamma<\omega^{2}}\left(l_{\gamma} x\right)^{L_{\gamma}}, \quad \text { for }\left(\mathfrak{l}_{\gamma}\right)_{\gamma<\omega^{2}} \in \mathbb{R}^{\omega^{2}} .
$$

Gathering those in a lexicographically ordered group $\mathfrak{L}_{<\omega^{2}}$ yields a Hahn series field

$$
\mathbb{L}_{<\omega^{2}}=\mathbb{R}\left[\left[\mathfrak{L}_{<\omega^{2}}\right]\right] .
$$

So one needs to have, as basic symbols, formal products

$$
\mathfrak{l}:=\prod_{\gamma<\omega^{2}}\left(\ell_{\gamma} x\right)^{h_{\gamma}}, \quad \text { for }\left(\mathfrak{l}_{\gamma}\right)_{\gamma<\omega^{2}} \in \mathbb{R}^{\omega^{2}} .
$$

Gathering those in a lexicographically ordered group $\mathfrak{L}_{<\omega^{2}}$ yields a Hahn series field

$$
\mathbb{L}_{<\omega^{2}}=\mathbb{R}\left[\left[\mathfrak{L}_{<\omega^{2}}\right]\right] .
$$

The derivation is defined by extending the rule $\left(\ell_{\omega} x\right)^{\prime}=\prod_{n<\omega}\left(\ell_{n} x\right)^{-1}$.

So one needs to have, as basic symbols, formal products

$$
\mathfrak{l}:=\prod_{\gamma<\omega^{2}}\left(\ell_{\gamma} x\right)^{L_{\gamma}}, \quad \text { for }\left(\mathfrak{h}_{\gamma}\right)_{\gamma<\omega^{2}} \in \mathbb{R}^{\omega^{2}} .
$$

Gathering those in a lexicographically ordered group $\mathfrak{L}_{<\omega^{2}}$ yields a Hahn series field

$$
\mathbb{L}_{<\omega^{2}}=\mathbb{R}\left[\left[\mathfrak{L}_{<\omega^{2}}\right]\right] .
$$

The derivation is defined by extending the rule $\left(\ell_{\omega} x\right)^{\prime}=\prod_{n<\omega}\left(\ell_{n} x\right)^{-1}$.
For any ordinal α, we similarly have a field $\mathbb{L}_{<\alpha}$, and a class sized field

$$
\mathbb{L}:=\bigcup_{\alpha \in \mathrm{On}} \mathbb{L}_{<\alpha}
$$

called the field of logarithmic hyperseries (vDD-vDH-KAPLAN).

Main properties of \mathbb{L}

Theorem [vdDries-vdHoeven-Kaplan - 2018]

There is a composition law $\circ: \mathbb{L} \times \mathbb{L}>\mathbb{R} \longrightarrow \mathbb{L}$ with $\ell_{\omega^{\mu+1}} x-1=\left(\ell_{\omega^{\mu+1}} x\right) \circ\left(\ell_{\omega^{\mu}} x\right)$ for all ordinals μ. (\mathbb{L}, ∂) is an H-field with small derivation and surjective derivation. We have the chain rule for (\circ, ∂).

Main properties of \mathbb{L}

Theorem [vdDries-vdHoeven-Kaplan - 2018]

There is a composition law $0: \mathbb{L} \times \mathbb{L}>\mathbb{R} \longrightarrow \mathbb{L}$ with $\ell_{\omega^{\mu+1}} x-1=\left(\ell_{\omega^{\mu+1}} x\right) \circ\left(\ell_{\omega^{\mu}} x\right)$ for all ordinals μ. (\mathbb{L}, ∂) is an H-field with small derivation and surjective derivation. We have the chain rule for (\circ, ∂).

How is $\left(\ell_{\omega} x\right) \circ g$ defined at say $g=x+1$? Using Taylor series:

Main properties of \mathbb{L}

Theorem [vdDries-vdHoeven-Kaplan - 2018]

There is a composition law $0: \mathbb{L} \times \mathbb{L}>\mathbb{R} \longrightarrow \mathbb{L}$ with $\ell_{\omega^{\mu+1}} x-1=\left(\ell_{\omega^{\mu+1}} x\right) \circ\left(\ell_{\omega^{\mu}} x\right)$ for all ordinals μ. (\mathbb{L}, ∂) is an H-field with small derivation and surjective derivation. We have the chain rule for (o, ∂).

How is $\left(\ell_{\omega} x\right) \circ g$ defined at say $g=x+1$? Using Taylor series:

Theorem [vdDries-vdHoeven-Kaplan - 2018]

For $f, \delta \in \mathbb{L}$ and $g \in \mathbb{L}>\mathbb{R}$ with $\delta \prec g$, we have the following Taylor expansion around g :

$$
f \circ(g+\delta)=\sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^{k} .
$$

Main properties of \mathbb{L}

Theorem [vdDries-vdHoeven-Kaplan - 2018]

There is a composition law $0: \mathbb{L} \times \mathbb{L}>\mathbb{R} \longrightarrow \mathbb{L}$ with $\ell_{\omega^{\mu+1}} x-1=\left(\ell_{\omega^{\mu+1}} x\right) \circ\left(\ell_{\omega^{\mu}} x\right)$ for all ordinals μ. (\mathbb{L}, ∂) is an H-field with small derivation and surjective derivation. We have the chain rule for (\circ, ∂).

How is $\left(\ell_{\omega} x\right) \circ g$ defined at say $g=x+1$? Using Taylor series:

Theorem [vdDries-vdHoeven-Kaplan - 2018]

For $f, \delta \in \mathbb{L}$ and $g \in \mathbb{L}>\mathbb{R}$ with $\delta \prec g$, we have the following Taylor expansion around g :

$$
f \circ(g+\delta)=\sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^{k} .
$$

In particular

$$
f \circ(x+1)=\sum_{k \in \mathbb{N}} \frac{f^{(k)}}{k!} .
$$

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} ; f \mapsto\left(\ell_{\omega} x\right) \circ f$.

Hyperexponential closure

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} ; f \mapsto\left(\ell_{\omega} x\right) \circ f$. Its right inverse E_{ω} is partially defined. E.g. $E_{\omega}(x)$ is undefined. We close $\mathbb{L}_{<\omega^{2}}$ under E_{ω} by adjoining formal monomials $\mathrm{e}_{\omega}^{\varphi}$ to $\mathfrak{L}_{<\omega^{2}}$, for certain series φ.

Hyperexponential closure

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} \longrightarrow \mathbb{L}<\mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} ; f \mapsto\left(\ell_{\omega} x\right) \circ f$. Its right inverse E_{ω} is partially defined. E.g. $E_{\omega}(x)$ is undefined. We close $\mathbb{L}_{<\omega^{2}}$ under E_{ω} by adjoining formal monomials $\mathrm{e}_{\omega}^{\varphi}$ to $\mathfrak{L}_{<\omega^{2}}$, for certain series φ. When should $\boldsymbol{E}_{\boldsymbol{\omega}}(\varphi)$ be a new monomial $\mathrm{e}_{\boldsymbol{\omega}}^{\boldsymbol{\varphi}}$? If $E_{\omega}(\varphi)$ is defined and

$$
\varepsilon \prec \frac{1}{\left(\ell_{n} x\right) \circ E_{\omega}(\varphi)}
$$

for some $n \in \mathbb{N}$, then $E_{\omega}(\varphi+\varepsilon)$ is given by Taylor expansions around φ.

Hyperexponential closure

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} ; f \mapsto\left(\ell_{\omega} x\right) \circ f$.
Its right inverse E_{ω} is partially defined. E.g. $E_{\omega}(x)$ is undefined. We close $\mathbb{L}_{<\omega^{2}}$ under E_{ω} by adjoining formal monomials $\mathrm{e}_{\omega}^{\varphi}$ to $\mathfrak{L}_{<\omega^{2}}$, for certain series φ. When should $\boldsymbol{E}_{\boldsymbol{\omega}}(\varphi)$ be a new monomial $\mathrm{e}_{\boldsymbol{\omega}}^{\boldsymbol{\varphi}}$? If $E_{\omega}(\varphi)$ is defined and

$$
\varepsilon \prec \frac{1}{\left(\ell_{n} x\right) \circ E_{\omega}(\varphi)}
$$

for some $n \in \mathbb{N}$, then $E_{\omega}(\varphi+\varepsilon)$ is given by Taylor expansions around φ.
\rightarrow It is enough to add E_{ω}^{φ} for representatives φ in each convex hull

$$
\mathcal{L}(g):=\operatorname{Conv}\left(\left\{g \pm \frac{1}{\left(L_{n} x\right) \circ E_{\omega}^{\varphi}}: n \in \mathbb{N}\right\}\right) .
$$

Hyperexponential closure

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^{2}}^{>\mathbb{R}} ; f \mapsto\left(\ell_{\omega} x\right) \circ f$.
Its right inverse E_{ω} is partially defined. E.g. $E_{\omega}(x)$ is undefined. We close $\mathbb{L}_{<\omega^{2}}^{>\mathbb{R}}$ under E_{ω} by adjoining formal monomials $\mathrm{e}_{\omega}^{\varphi}$ to $\mathfrak{L}_{<\omega^{2}}$, for certain series φ. When should $E_{\boldsymbol{\omega}}(\varphi)$ be a new monomial $\mathrm{e}_{\boldsymbol{\omega}}$? If $E_{\omega}(\varphi)$ is defined and

$$
\varepsilon \prec \frac{1}{\left(\ell_{n} x\right) \circ E_{\omega}(\varphi)}
$$

for some $n \in \mathbb{N}$, then $E_{\omega}(\varphi+\varepsilon)$ is given by Taylor expansions around φ.
\rightarrow It is enough to add E_{ω}^{φ} for representatives φ in each convex hull

$$
\mathcal{L}(g):=\operatorname{Conv}\left(\left\{g \pm \frac{1}{\left(L_{n} x\right) \circ E_{\omega}^{\varphi}}: n \in \mathbb{N}\right\}\right) .
$$

For any two distinct representatives φ, ψ, the EL-classes of $\mathrm{e}_{\omega}^{\varphi}$ and $\mathrm{e}_{\omega}^{\psi}$ should be disjoint. This determines an ordering of the extension of $\mathfrak{L}_{<\omega^{2}}$ by monomials $\mathrm{e}_{\omega}^{\varphi}$.

Extending derivations and compositions

Theorem [B.-vDHoeven-Kaplan]

There are a minimal extension $\tilde{\mathbb{L}}$ of \mathbb{L}, and an extension $0: \mathbb{L} \times \tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}$ of the composition law on \mathbb{L}, for which each $L_{\omega^{\mu}}: \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$ for ordinals μ is bijective.

Extending derivations and compositions

Theorem [B.-vdHoeven-Kaplan]

There are a minimal extension $\tilde{\mathbb{L}}$ of \mathbb{L}, and an extension $\circ: \mathbb{L} \times \tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}$ of the composition law on \mathbb{L}, for which each $L_{\omega^{\mu}}: \tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$ for ordinals μ is bijective.
$\tilde{\mathbb{L}}$ is obtained by iteratively adjoining hyperexponentials $E_{\omega^{\mu}}^{\varphi}$ of hyperseries φ. Any $f \in \tilde{\mathbb{L}}$ has a concrete expression involving $\ell_{\gamma} x$'s, e e_{γ} 's, real numbers, and transfinite sums.

We have everything we need to define:

Extending derivations and compositions

Theorem [B.-vdHoeven-Kaplan]

There are a minimal extension $\tilde{\mathbb{L}}$ of \mathbb{L}, and an extension $\circ: \mathbb{L} \times \tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}$ of the composition law on \mathbb{L}, for which each $L_{\omega^{\mu}}: \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$ for ordinals μ is bijective.
$\tilde{\mathbb{L}}$ is obtained by iteratively adjoining hyperexponentials $E_{\omega^{\mu}}^{\varphi}$ of hyperseries φ. Any $f \in \tilde{\mathbb{L}}$ has a concrete expression involving $\ell_{\gamma} x$'s, e e_{γ} 's, real numbers, and transfinite sums.

We have everything we need to define:

Work in progress [B.]

There is a derivation $\tilde{\partial}: \tilde{\mathbb{L}} \longrightarrow \tilde{\mathbb{L}}$ such that $(\tilde{\mathbb{L}}, \tilde{\partial})$ is an elementary extension of the ordered, valued, differential field \mathbb{T}_{LE} of log-exp transseries.

Extending derivations and compositions

Theorem [B.-vdHoeven-Kaplan]

There are a minimal extension $\tilde{\mathbb{L}}$ of \mathbb{L}, and an extension $\circ: \mathbb{L} \times \tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}$ of the composition law on \mathbb{L}, for which each $L_{\omega^{\mu}}: \tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}>\mathbb{R}$ for ordinals μ is bijective.
$\tilde{\mathbb{L}}$ is obtained by iteratively adjoining hyperexponentials $E_{\omega^{\mu}}^{\varphi}$ of hyperseries φ. Any $f \in \tilde{\mathbb{L}}$ has a concrete expression involving $\ell_{\gamma} x$'s, e e_{γ} 's, real numbers, and transfinite sums.

We have everything we need to define:

Work in progress [B.]

There is a derivation $\tilde{\partial}: \tilde{\mathbb{L}} \longrightarrow \tilde{\mathbb{L}}$ such that $(\tilde{\mathbb{L}}, \tilde{\partial})$ is an elementary extension of the ordered, valued, differential field \mathbb{T}_{LE} of log-exp transseries.

Work in progress [B.]

There is a composition law $\tilde{o}: \tilde{\mathbb{L}} \times \tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}$ such that ($\tilde{\partial}, \tilde{o})$ satisfies the chain rule.

Strongly linear algebra

The derivation and composition (on the right) should be strongly linear, i.e. commute with transfinite sums. For instance

$$
\left(\sum_{n \in \mathbb{N}} n!\mathrm{e}_{\omega}^{\sum_{k \geqslant n^{\ell} k} x}\right) \circ\left(x+\frac{1}{\mathrm{e}_{\omega}^{x}}\right)=\sum_{n \in \mathbb{N}} n!E_{\omega}\left(\sum_{k \geqslant n}\left(\ell_{k} x\right) \circ\left(x+\frac{1}{\mathrm{e}_{\omega}^{x}}\right)\right) .
$$

Strongly linear algebra

The derivation and composition (on the right) should be strongly linear, i.e. commute with transfinite sums. For instance

Strongly linear algebra

The derivation and composition (on the right) should be strongly linear, i.e. commute with transfinite sums. For instance

$$
\left(\sum_{n \in \mathbb{N}} n!\mathrm{e}_{\omega}^{\sum_{k \geqslant n^{\ell_{k} x}}}\right) \circ\left(x+\frac{1}{\mathrm{e}_{\omega}^{x}}\right)=\sum_{n \in \mathbb{N}} n!E_{\omega}\left(\sum_{k \geqslant n}\left(\ell_{k} x\right) \circ\left(x+\frac{1}{\mathrm{e}_{\omega}^{x}}\right)\right) .
$$

Problem: making sense of those transfinite sums. We use strongly linear algebra: a set of order theoretic results regarding a formal notion of summability.

Strongly linear algebra

The derivation and composition (on the right) should be strongly linear, i.e. commute with transfinite sums. For instance

$$
\left(\sum_{n \in \mathbb{N}} n!\mathrm{e}_{\omega}^{\sum_{k \geqslant n}^{\ell_{k} x}}\right) \circ\left(x+\frac{1}{\mathrm{e}_{\omega}^{x}}\right)=\sum_{n \in \mathbb{N}} n!E_{\omega}\left(\sum_{k \geqslant n}\left(\ell_{k} x\right) \circ\left(x+\frac{1}{\mathrm{e}_{\omega}^{x}}\right)\right) .
$$

Problem: making sense of those transfinite sums. We use strongly linear algebra: a set of order theoretic results regarding a formal notion of summability.

Idea: Hahn series fields are "formal" Banach spaces. Two results of VAN DER Hoeven:

- If $\Psi: \mathbb{R}[[\mathfrak{M}]] \longrightarrow \mathbb{R}[[\mathfrak{M}]]$ is strongly linear with $\Psi(s) \prec s$ for all $s \neq 0$, then $\mathrm{Id}+\Psi$ has a strongly linear functional inverse

$$
(\operatorname{Id}+\Psi)^{[-1]}(s)=\sum_{k \in \mathbb{N}}(-1)^{k} \Psi^{[k]}(s)
$$

- We have a strongly linear implicit function theorem.

The ordered group $(\tilde{\mathbb{L}}>\mathbb{R}, \circ, x,<)$

Work in progress [B.]: bi-ordered group of hyperseries

The class ($\tilde{\mathbb{L}}>\mathbb{R}, o, x,<$) is a linearly bi-ordered group: $f \in \tilde{\mathbb{L}}>\mathbb{R}$ has an inverse in $\tilde{\mathbb{L}}>\mathbb{R}$ and each function $\tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}} ; g \mapsto f \circ g$ is strictly increasing.

The ordered group $(\tilde{\mathbb{L}}>\mathbb{R}, \circ, x,<)$

Work in progress [B.]: bi-ordered group of hyperseries

The class ($\tilde{\mathbb{L}}>\mathbb{R}, o, x,<$) is a linearly bi-ordered group: $f \in \tilde{\mathbb{L}}>\mathbb{R}$ has an inverse in $\tilde{\mathbb{L}}>\mathbb{R}$ and each function $\tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}>\mathbb{R} ; g \mapsto f \circ g$ is strictly increasing.

This reflects in particular the monotonicity properties of germs in Hardy fields.

The ordered group $(\tilde{\mathbb{L}}>\mathbb{R}, \circ, x,<)$

Work in progress [B.]: bi-ordered group of hyperseries

The class ($\tilde{\mathbb{L}}>\mathbb{R}, o, x,<$) is a linearly bi-ordered group: $f \in \tilde{\mathbb{L}}>\mathbb{R}$ has an inverse in $\tilde{\mathbb{L}}>\mathbb{R}$ and each function $\tilde{\mathbb{L}}>\mathbb{R} \longrightarrow \tilde{\mathbb{L}}>\mathbb{R} ; g \mapsto f \circ g$ is strictly increasing.

This reflects in particular the monotonicity properties of germs in Hardy fields.

Work in progress [B.]: conjugacy

Any two series $f, g \in \tilde{\mathbb{L}}>\mathbb{R}$ with $f, g>x$ are conjugate, i.e. satisfy

$$
V \circ f=g \circ V
$$

for a certain $V \in \tilde{\mathbb{L}}>\mathbb{R}$.
For instance, the series e^{x} and $x+1$ are conjugate via $V=\ell_{\omega} x$:

$$
\left(\ell_{\omega} x\right) \circ \mathrm{e}^{x}=\ell_{\omega} x+1
$$

The conjecture: formal / geometric

Work in progress [B.]: Taylor expansions
For all $f, g, \delta \in \tilde{\mathbb{L}}$ with $g>\mathbb{R}$, if $\delta \prec g$ and $\left(\mathfrak{m}^{\prime} \circ g\right) \delta \prec \mathfrak{m} \circ g$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$
f \circ(g+\delta)=\sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^{k} .
$$

The conjecture: formal / geometric

Work in progress [B.]: Taylor expansions

For all $f, g, \delta \in \tilde{\mathbb{L}}$ with $g>\mathbb{R}$, if $\delta \prec g$ and $\left(\mathfrak{m}^{\prime} \circ g\right) \delta \prec \mathfrak{m} \circ g$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$
f \circ(g+\delta)=\sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^{k} .
$$

Work in progress [B.]: real iterates

For each $x \neq f \in \tilde{\mathbb{L}}>\mathbb{R}$, there is a unique isomorphism $(\mathbb{R},+,<) \longrightarrow(\mathcal{C}(f), \circ,<)$ sending 1 to f. This is defined by conjugating f with $x \pm 1$: indeed $\mathcal{C}(x+1)=x+\mathbb{R}$.

The conjecture: formal / geometric

Work in progress [B.]: Taylor expansions

For all $f, g, \delta \in \tilde{\mathbb{L}}$ with $g>\mathbb{R}$, if $\delta \prec g$ and $\left(\mathfrak{m}^{\prime} \circ g\right) \delta \prec \mathfrak{m} \circ g$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$
f \circ(g+\delta)=\sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^{k} .
$$

Work in progress [B.]: real iterates

For each $x \neq f \in \tilde{\mathbb{L}}>\mathbb{R}$, there is a unique isomorphism $(\mathbb{R},+,<) \longrightarrow(\mathcal{C}(f), \circ,<)$ sending 1 to f. This is defined by conjugating f with $x \pm 1$: indeed $\mathcal{C}(x+1)=x+\mathbb{R}$.

Work in progress [B.]: solving inequations
For all $f, g \in \tilde{\mathbb{L}}^{>\mathbb{R}} f>g^{[\mathbb{N}]}>x$, we have $f \circ g>g \circ f$.

The conjecture: formal / geometric

Work in progress [B.]: Taylor expansions

For all $f, g, \delta \in \tilde{\mathbb{L}}$ with $g>\mathbb{R}$, if $\delta \prec g$ and $\left(\mathfrak{m}^{\prime} \circ g\right) \delta \prec \mathfrak{m} \circ g$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$
f \circ(g+\delta)=\sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^{k} .
$$

Work in progress [B.]: real iterates

For each $x \neq f \in \tilde{\mathbb{L}}>\mathbb{R}$, there is a unique isomorphism $(\mathbb{R},+,<) \longrightarrow(\mathcal{C}(f), \circ,<)$ sending 1 to f. This is defined by conjugating f with $x \pm 1$: indeed $\mathcal{C}(x+1)=x+\mathbb{R}$.

Work in progress [B.]: solving inequations

For all $f, g \in \tilde{\mathbb{L}}^{>\mathbb{R}} f>g^{[\mathbb{N}]}>x$, we have $f \circ g>g \circ f$.
Any Hardy field with composition which embeds into $\tilde{\mathbb{L}}$ satisfies the conjecture.

Bibliography

Thanks to these:

[1] M. Aschenbrenner, L. van den Dries, and J. van der Hoeven. The surreal numbers as a universal H-field. Journal of the European Mathematical Society, 21(4), 2019.
[2] A. Berarducci and V. Mantova. Surreal numbers, derivations and transseries. JEMS, 20(2):339-390, 2018.
[3] A. Berarducci and V. Mantova. Transseries as germs of surreal functions. Transactions of the American Mathematical Society, 371:3549-3592, 2019.
[4] M. Boshernitzan. New "orders of infinity". J. d.'Analyse Math., 41:130-167, 1981.
[5] B. Dahn and P. Göring. Notes on exponential-logarithmic terms. Fundamenta Mathematicae, 127(1):45-50, 1987.
[6] L. van den Dries, J. van der Hoeven, and E. Kaplan. Logarithmic hyperseries. Transactions of the American Mathematical Society, 372, 2019.
[7] L. van den Dries, A. Macintyre, and D. Marker. The elementary theory of restricted analytic fields with exponentiation. Annals of Mathematics, 140(1):183-205, 1994.
[8] L. van den Dries, A. Macintyre, and D. Marker. Logarithmic-exponential power series. Journal of the London Mathematical Society, 56(3):417-434, 1997.
[9] L. van den Dries, A. Macintyre, and D. Marker. Logarithmic-exponential series. Annals of Pure and Applied Logic, 111:61-113, 072001.
[10] J. Ecalle. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Actualités Mathématiques. Hermann, 1992.
[11] G. H. Hardy. Orders of infinity, the 'Infinitärcalcül' of Paul du Bois-Reymond. Cambridge University Press edition, 1910.
[12] H. Kneser. Reelle analytische Lösung der Gleichung $\phi(\phi(x))=\mathrm{e}^{x}$ und verwandter Funktionalgleichungen. Journal Für Die Reine Und Angewandte Mathematik, 1950:56-67, 011950.
[13] D. Marker and C. Miller. Levelled o-minimal structures. Revista Matemática de la Universidad Complutense de Madrid, 10(Special Issue suppl.):241-249, 1997.
[14] A. Padgett. TBA. PhD thesis, UC Berkeley, 2022.
[15] M. C. Schmeling. Corps de transséries. PhD thesis, Université Paris-VII, 2001.

