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Operations on germs 3/25

Identify two functions f ; g:R¡!R if for t� 1, we have f(t) = g(t). Equivalence
classes are called germs. G is the ring of germs with pointwise sum and product.

Germs (at +1)

Further structure for f ; g 2G.

Ordering. f < g if f(t)< g(t) for t� 1. So g >R if limt!+1 g(t)=+1.

Dominance relation. f � g if r jf j< jg j for all r 2R>0.

Derivation. If t 7! f(t) is differentiable on (r;+1) for r� 1, then f 0 is the germ of
the derivative.

Composition. If g >R, then the germ f � g of t 7! f(g(t)) only depends on f and g.
We have a composition law

�: G �G>R¡!G:

For fixed g2G>R, the function G ¡!G; f 7! f � g is a strictly increasing morphism
of rings.
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Hardy fields with composition 4/25

A Hardy field is a subfield H of G containing R and closed under derivation of germs.

Hardy fields

� Each f 2H is either constant or strictly monotonous

� 8f 2H; f >R=) f 0> 0.

� 8f 2H; f 4 1=)9r= lim+1 f 2R; f ¡ r� 1.

A Hardy field with composition is a Hardy field H which contains id and which is
closed under compositions (f ; g) 7! f � g with f 2H and g 2H>R.

Hardy fields with composition

Examples:

� R(id): germs of rational functions.

� HARDY's field of L-functions: closure of R(id) under semialgebraic functions, exp
and log.

� BOSHERNITZAN's field B :=\fM :M is a maximal Hardy fieldg.
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A short-lived conjecture? 5/25

Let H be a Hardy field with composition and let f ; g 2H>R.

Conjecture 1. For all � 2H with �� g and (f 0 � g) �� (f � g), we have

f � (g+ �)� f � g:

Conjecture 2. The centralizer C(f) := fh2H>R :h� f = f �hg is commutative.

Conjecture 3. If f > g[N]

(iterates)
> id, then f � g > g � f.

Conjecture on (H; �)

Conjecture 1 holds whenever H contains exp, but has no transexponential germ.
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Terms and definable functions 6/25

Let R=(R;+;¡;�;<;: : :) be a functional expansion of the real ordered ring in a first-
order language L.

Define:

� HR as the set of germs of functionsR¡!R that are definable with parameters inR.

� TR as the subset of H of germs of unary functions r 7! t(r) for all arity61 terms t[u].

Those are partially ordered rings, and even L-structures under pointwise operations.

Moreover TR and HR are closed under composition.

We will consider in particular R=Ran;exp, and we write Han;exp=HRan;exp.
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Model theoretic perks 7/25

Then HR<R is a Hardy field with composition.

If Th(R) is o-minimal

M�R: non-standard model �: element of M with � >R.

There is a natural L-embedding 	:HR¡!M which sends id to �. This map commutes
with definable functions Rn¡!R.

There is a unique L-embedding �: TR¡!M with �(id)= �.

Then any definable function f :Rn¡!R is given piecewise by (a finite list of) terms.
In particular for n=1, the germ of f lies in TR. So TR=HR.

If Th(R) has QE and a universal axiomatization

Both conditions are satisfied for R=Ran;exp (VDDMM, '94).
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Transseries 8/25

L: group of germs
Q
k<n(logkx)

lk for l0;:::; ln¡12Z. The ordering on L is lexicographic.

TL is the field R[[L]] of Hahn series with real coefficients and monomial group L. E.g.

f0=x+� (log x)3+
1

logx +
1

(logx)2
+ 1

(logx)3
+ � � �+ 2 (logx)2

x

f1=x+ log x+ log log x+ � � �

We have a logarithm log:TL
>0¡!TL:

log
0@Y
k<n

(logkx)lk

2L

1A :=

Logarithmic transseries

log:TL
>0¡!TL is not surjective, but TL can be closed under exponentials: iteratively

adjoin formal monomials e' for certain transseries ' as long as exp(') is undefined.

Exponential extensions
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Transseries with derivation and composition 9/25

Transseries, introduced by DAHN-GÖRING and ÉCALLE, can be declined in several forms:
grid-based, log-exp (TLE), exp-log, . . .

We consider generalized transseries, which form a class sized Hahn series field Rhhxii)
TLE closed under exp and log.

The field Rhhxii is equipped with a derivation @:Rhhxii¡!Rhhxii and a composi-
tion law �:Rhhxii� (Rhhxii)>R¡!Rhhxii whose properties mimic those of Hardy
fields with composition.

Dervation and composition (SCMHELING, BERARDUCCI-MANTOVA)

f0=x+� (log x)+
1

logx
+ 1

(logx)2
+ 1

(logx)3
+ � � �+ 2 (logx)2

x

f0
0=1+ �

x
¡ 1

x (logx)2
¡ 2

x (logx)3
¡ � � � ¡ 4x (logx)¡ 2 x (logx)2

x2
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Log-exp-analytic functions as transseries 10/25

There is a unique Lan;exp-embedding Han;exp¡!Rhhxii which sends id to x. This
embedding also preserves @ and �.

Theorem (VDDRIES-MACINTYRE-MARKER, 1997 and 2001)

This embedding can be used to describe growth orders of germs in Han;exp.

Using this, VDDMM showed that:

� the inverse of t 7! (log t) (log log t) is not an L-function (as conjectured by HARDY).

� no primitive
R
a

tesds of t 7! et
2
is definable in Ran;exp.

We will see that the field Han;exp satisfies the conjecture.
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Sublogarithmic-transexponential germs in the wild 11/25

Consider the functional, conjugation equation

E(t+1)=eE(t); for t� 1. (1)

in E, called Abel's equation for exp. Continuous solutions of (1) are transexponential.

KNESER showed in 1949 that (1) has an analytic solution exp!, say with exp!(0) = 1.
The (germ of the) functional inverse log! satisfies the dual equation

log!(log t)= log!(t)¡ 1 for t� 1.

Those functions induce a flow of real-iterates of exp, i.e. a strictly increasing morphism

exp[:]: (R;+; <) ¡! (G ; �; <)
r 7¡! exp[r] := exp! � (log!+ r):

There is a Hardy field T! with composition which contains exp! and log!.

Theorem [PADGETT, '22]
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Levels 12/25

Given an ordered exponential field F and a2F>R, the exp-log class EL(a) of a2F
is its equivalence class for

a�L b if and only if 9n2N; (log[n] a� log[n] b).

Exp-log classes

Let H be a Hardy field with composition with exp; log2H. Set

E := fexp[n] � (log[n]� 1) :n2Ng�H>R:

Then each EL(f) is the convex hull of E � f = fg � f : g 2Eg.

MARKER-MILLER: EL classes in Han;exp and Rhhxii are parametrized by integers. Each
f lies in EL(exp[n]) for a unique n2Z called the level of f . Write �n=EL(f).

Note that log�n=�n¡1 for all n2Z.
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More levels 13/25

Let us come back to the field T!. Write

�! :=EL(exp!), �¡! :=EL(log!), and �r :=EL(exp[r]) for all r2R.

We have

�!>�Z, �¡!<�Z, and 8r; s2R; (�r<�s() r <s):

We also have levels !¡ 1, !+1, . . . with

�R<�!¡1= log(�!)<�!<�!+1= exp(�!)

and so on. . .
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Even more levels 14/25

For ';  2TP>R, we have

EL(exp! � ')<EL(exp! �  ) () E � (exp! � ')< E � (exp! �  )
() (log! � E � exp!) � '< (log! � E � exp!) �  :

Set g=exp[n]�(log[n]+1)2E . Since log!0 � /1 id, the mean value theorem for log! gives

id+ 1
log[n¡1] � exp!

< log! � g � exp!< id+ 1
log[n] � exp!

:

If '+
�

1

log[N] � exp! � '

�
< , then EL(exp! � ')<EL(exp! �  ). The EL class � /1 ! of

exp! �
�
log!+

1
log!

�

is �infinitesimal�, i.e. larger than �0 but smaller than each �r for r 2R>.
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All levels 15/25

Tentative description of all possible levels in models of Rexp using Conway's field No of
surreal numbers:

EL classes in (No; exp) are in canonical order isomorphism with (No; <) itself.

There is an order embedding No¡!No>R ; z 7! �z such that each surreal number
lies in EL(�z) for a unique z 2No.

Theorem (BERARDUCCI-MANTOVA, 2015)

They defined a canonical derivation @ on No such that (No; @) is a Liouville-closed H-
field. It is an elementary extension of TLE (ASHCENBRENNER-VDDRIES-VDHOEVEN, '17).

Every model of Rexp embeds into (No; exp).

Question. Is any real-closed Hardy field H closed under exp and log an elementary
extension of Rexp?
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Goal 16/25

BERARDUCCI-MANTOVA (2017) defined a composition law

�:Rhhxii�No>R¡!No:

Rhhxii naturally embeds into No by sending f to f �! for a certain ! 2No>R.

The composition law does not extend to No�No>R in a compatible way with respect
to @. So let us leave the surreal realm.

! Can we �directly� build a field of generalized power series involving transexponential
and sublogarithmic behavior?

! Can we do so while solving the functional equations

E � (x+1)= ex �E and L¡ 1=L � log x ?

! Do we also get a formal version of the conjecture for those fields?
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Formal hyperlogarithms 17/25

Let us build a structure (L; @; �) which contains a solution `!x to

`!x¡ 1= (`!x) � (`1x): (5)

We gather symbols `x;  <!2 with `0x=x is the identity, `1x is the logarithm, and

8m;n2N; `!m+nx=(`1x)[n] � (`!x)[m]:

Differentiating (5), we get

(`!x)0 =
1
x
� (`!x)0 � (`1x)
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Let us build a structure (L; @; �) which contains a solution `!x to

`!x¡ 1= (`!x) � (`1x): (10)

We gather symbols `x;  <!2 with `0x=x is the identity, `1x is the logarithm, and
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Logarithmic hyperseries 18/25

So one needs to have, as basic symbols, formal products

l :=
Y
<!2

(`x)l ; for (l)<!22R!2:

Gathering those in a lexicographically ordered group L<!2 yields a Hahn series field

L<!2=R[[L<!2]]:

The derivation is defined by extending the rule (`!x)0=
Q
n<! (`nx)

¡1.

For any ordinal �, we similarly have a field L<�, and a class sized field

L :=
[

�2On
L<�

called the field of logarithmic hyperseries (VDD-VDH-KAPLAN).
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Main properties of L 19/25

There is a composition law �:L�L>R¡!L with `!�+1x¡ 1= (`!�+1x) � (`!�x)
for all ordinals �. (L; @) is an H-field with small derivation and surjective derivation.
We have the chain rule for (�; @).

Theorem [VDDRIES-VDHOEVEN-KAPLAN - 2018]

How is (`!x) � g defined at say g=x+1? Using Taylor series:

For f ; �2L and g2L>R with �� g, we have the following Taylor expansion around g:

f � (g+ �)=
X
k2N

f (k) � g
k!

�k:

Theorem [VDDRIES-VDHOEVEN-KAPLAN - 2018]
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k2N

f (k)

k!
:

Theorem [VDDRIES-VDHOEVEN-KAPLAN - 2018]



Hyperexponential closure 20/25

Write L! for the strictly increasing function L<!2
>R ¡!L<!2

>R ; f 7! (`!x) � f .

Its right inverse E! is partially defined. E.g. E!(x) is undefined. We close L<!2
>R under

E! by adjoining formal monomials e!
' to L<!2, for certain series '.

When should E!(') be a new monomial e!
'? If E!(') is defined and

"� 1
(`nx) �E!(')

for some n2N, then E!('+ ") is given by Taylor expansions around '.

! It is enough to add E!
' for representatives ' in each convex hull

L(g) :=Conv
��

g� 1
(Lnx) �E!

' :n2N

��
:

For any two distinct representatives ';  , the EL-classes of e!
' and e!

 should be disjoint.
This determines an ordering of the extension of L<!2 by monomials e!

'.
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Extending derivations and compositions 21/25

There are a minimal extension L~ of L, and an extension �:L�L~ >R¡!L~ of the
composition law on L, for which each L!�:L~ >R¡!L~ >R for ordinals � is bijective.

Theorem [B.-VDHOEVEN-KAPLAN]

L~ is obtained by iteratively adjoining hyperexponentials E!�
' of hyperseries '. Any f 2L~

has a concrete expression involving `x's, e's, real numbers, and transfinite sums.

We have everything we need to define:

There is a derivation @~:L~ ¡!L~ such that (L~ ; @~) is an elementary extension of the
ordered, valued, differential field TLE of log-exp transseries.

Work in progress [B.]

There is a composition law �~:L~ �L~ >R¡!L~ such that (@~;�~) satisfies the chain rule.

Work in progress [B.]
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Strongly linear algebra 22/25

The derivation and composition (on the right) should be strongly linear, i.e. commute
with transfinite sums. For instance X

n2N
n! e!

P
k>n`kx

!
�
�
x+ 1

e!x

�
=
X
n2N

n!E!

 X
k>n

(`kx) �
�
x+ 1

e!x

�!
:

Problem: making sense of those transfinite sums. We use strongly linear algebra: a set
of order theoretic results regarding a formal notion of summability.

Idea: Hahn series fields are �formal� Banach spaces. Two results of VAN DER HOEVEN:

� If 	:R[[M]]¡!R[[M]] is strongly linear with 	(s)� s for all s=/ 0, then Id+	
has a strongly linear functional inverse

(Id+	)[¡1](s)=
X
k2N

(¡1)k	[k](s):

� We have a strongly linear implicit function theorem.
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The ordered group (L~ >R; �; x;<) 23/25

The class (L~ >R;�; x;<) is a linearly bi-ordered group: f 2L~ >R has an inverse in L~ >R

and each function L~ >R¡!L~ >R; g 7! f � g is strictly increasing.

Work in progress [B.]: bi-ordered group of hyperseries

This reflects in particular the monotonicity properties of germs in Hardy fields.

Any two series f ; g 2L~ >R with f ; g >x are conjugate, i.e. satisfy

V � f = g �V

for a certain V 2L~ >R.

Work in progress [B.]: conjugacy

For instance, the series ex and x+1 are conjugate via V = `!x:

(`!x) � ex= `!x+1:



The ordered group (L~ >R; �; x;<) 23/25

The class (L~ >R;�; x;<) is a linearly bi-ordered group: f 2L~ >R has an inverse in L~ >R

and each function L~ >R¡!L~ >R; g 7! f � g is strictly increasing.

Work in progress [B.]: bi-ordered group of hyperseries

This reflects in particular the monotonicity properties of germs in Hardy fields.

Any two series f ; g 2L~ >R with f ; g >x are conjugate, i.e. satisfy

V � f = g �V

for a certain V 2L~ >R.

Work in progress [B.]: conjugacy

For instance, the series ex and x+1 are conjugate via V = `!x:

(`!x) � ex= `!x+1:



The ordered group (L~ >R; �; x;<) 23/25

The class (L~ >R;�; x;<) is a linearly bi-ordered group: f 2L~ >R has an inverse in L~ >R

and each function L~ >R¡!L~ >R; g 7! f � g is strictly increasing.

Work in progress [B.]: bi-ordered group of hyperseries

This reflects in particular the monotonicity properties of germs in Hardy fields.

Any two series f ; g 2L~ >R with f ; g >x are conjugate, i.e. satisfy

V � f = g �V

for a certain V 2L~ >R.

Work in progress [B.]: conjugacy

For instance, the series ex and x+1 are conjugate via V = `!x:

(`!x) � ex= `!x+1:



The conjecture: formal / geometric 24/25

For all f ; g; �2L~ with g >R, if �� g and (m0 � g) ��m � g for all m2 supp f, then

f � (g+ �)=
X
k2N

f (k) � g
k!

�k:

Work in progress [B.]: Taylor expansions

For each x=/ f 2 L~ >R, there is a unique isomorphism (R;+; <)¡! (C(f); �; <)
sending 1 to f. This is defined by conjugating f with x�1: indeed C(x+1)=x+R.

Work in progress [B.]: real iterates

For all f ; g 2L~ >R f > g[N]>x, we have f � g > g � f.

Work in progress [B.]: solving inequations

Any Hardy field with composition which embeds into L~ satisfies the conjecture.
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