Embedding Hardy fields with composition into transseries

March 15, 2022

including joint work with ELLIOT KAPLAN and JORIS VAN DER HOEVEN.

geometric / formal

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have f(t) = g(t). Equivalence classes are called germs. \mathcal{G} is the ring of germs with pointwise sum and product.

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have f(t) = g(t). Equivalence classes are called germs. \mathcal{G} is the ring of germs with pointwise sum and product.

Further structure for $f, g \in \mathcal{G}$.

Ordering. f < g if f(t) < g(t) for $t \gg 1$. So $g > \mathbb{R}$ if $\lim_{t \to +\infty} g(t) = +\infty$.

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have f(t) = g(t). Equivalence classes are called **germs**. \mathcal{G} is the ring of germs with pointwise sum and product.

Further structure for $f, g \in \mathcal{G}$.

Ordering. f < g if f(t) < g(t) for $t \gg 1$. So $g > \mathbb{R}$ if $\lim_{t \to +\infty} g(t) = +\infty$.

Dominance relation. $f \prec g$ if r |f| < |g| for all $r \in \mathbb{R}^{>0}$.

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have f(t) = g(t). Equivalence classes are called **germs**. \mathcal{G} is the ring of germs with pointwise sum and product.

Further structure for $f, g \in \mathcal{G}$.

Ordering. f < g if f(t) < g(t) for $t \gg 1$. So $g > \mathbb{R}$ if $\lim_{t \to +\infty} g(t) = +\infty$.

Dominance relation. $f \prec g$ if r |f| < |g| for all $r \in \mathbb{R}^{>0}$.

Derivation. If $t \mapsto f(t)$ is differentiable on $(r, +\infty)$ for $r \gg 1$, then f' is the germ of the derivative.

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for $t \gg 1$, we have f(t) = g(t). Equivalence classes are called germs. \mathcal{G} is the ring of germs with pointwise sum and product.

Further structure for $f, g \in \mathcal{G}$.

Ordering. f < g if f(t) < g(t) for $t \gg 1$. So $g > \mathbb{R}$ if $\lim_{t \to +\infty} g(t) = +\infty$.

Dominance relation. $f \prec g$ if r |f| < |g| for all $r \in \mathbb{R}^{>0}$.

Derivation. If $t \mapsto f(t)$ is differentiable on $(r, +\infty)$ for $r \gg 1$, then f' is the germ of the derivative.

Composition. If $g > \mathbb{R}$, then the germ $f \circ g$ of $t \mapsto f(g(t))$ only depends on f and g. We have a *composition law*

$$\circ: \mathcal{G} \times \mathcal{G}^{>\mathbb{R}} \longrightarrow \mathcal{G}.$$

For fixed $g \in \mathcal{G}^{>\mathbb{R}}$, the function $\mathcal{G} \longrightarrow \mathcal{G}$; $f \mapsto f \circ g$ is a strictly increasing morphism of rings.

Hardy fields with composition

Hardy fields

A Hardy field is a subfield H of \mathcal{G} containing \mathbb{R} and closed under derivation of germs.

Hardy fields

A Hardy field is a subfield H of \mathcal{G} containing \mathbb{R} and closed under derivation of germs.

- Each $f \in H$ is either constant or strictly monotonous
- $\forall f \in H, f > \mathbb{R} \Longrightarrow f' > 0.$
- $\bullet \ \forall f \in H, f \preccurlyeq 1 \Longrightarrow \exists r = \lim_{+\infty} f \in \mathbb{R}, f r \prec 1.$

Hardy fields

A Hardy field is a subfield H of \mathcal{G} containing \mathbb{R} and closed under derivation of germs.

- Each $f \in H$ is either constant or strictly monotonous
- $\forall f \in H, f > \mathbb{R} \Longrightarrow f' > 0.$
- $\bullet \ \forall f \in H, f \preccurlyeq 1 \Longrightarrow \exists r = \lim_{+\infty} f \in \mathbb{R}, f r \prec 1.$

Hardy fields with composition

A Hardy field with composition is a Hardy field \mathcal{H} which contains id and which is closed under compositions $(f, g) \mapsto f \circ g$ with $f \in \mathcal{H}$ and $g \in \mathcal{H}^{>\mathbb{R}}$.

Hardy fields

A Hardy field is a subfield H of \mathcal{G} containing \mathbb{R} and closed under derivation of germs.

- Each $f \in H$ is either constant or strictly monotonous
- $\forall f \in H, f > \mathbb{R} \Longrightarrow f' > 0.$
- $\bullet \ \forall f \in H, f \preccurlyeq 1 \Longrightarrow \exists r = \lim_{+\infty} f \in \mathbb{R}, f r \prec 1.$

Hardy fields with composition

A Hardy field with composition is a Hardy field \mathcal{H} which contains id and which is closed under compositions $(f, g) \mapsto f \circ g$ with $f \in \mathcal{H}$ and $g \in \mathcal{H}^{>\mathbb{R}}$.

Examples:

- $\mathbb{R}(id)$: germs of rational functions.
- HARDY's field of L-functions: closure of $\mathbb{R}(\mathrm{id})$ under semialgebraic functions, \exp and $\log.$
- BOSHERNITZAN's field $\mathcal{B} := \cap \{M : M \text{ is a maximal Hardy field}\}.$

Conjecture on (\mathcal{H},\circ)

Let \mathcal{H} be a Hardy field with composition and let $f, g \in \mathcal{H}^{>\mathbb{R}}$.

Conjecture 1. For all $\delta \in \mathcal{H}$ with $\delta \prec g$ and $(f' \circ g) \delta \prec (f \circ g)$, we have

$$f \circ (g + \delta) \sim f \circ g$$

Conjecture 2. The centralizer $C(f) := \{h \in \mathcal{H}^{>\mathbb{R}} : h \circ f = f \circ h\}$ is commutative.

Conjecture 3. If $f > g^{[\mathbb{N}]}$ > id, then $f \circ g > g \circ f$. (iterates)

Conjecture on (\mathcal{H},\circ)

Let \mathcal{H} be a Hardy field with composition and let $f, g \in \mathcal{H}^{>\mathbb{R}}$.

Conjecture 1. For all $\delta \in \mathcal{H}$ with $\delta \prec g$ and $(f' \circ g) \delta \prec (f \circ g)$, we have

$$f \circ (g + \delta) \sim f \circ g$$

Conjecture 2. The centralizer $C(f) := \{h \in \mathcal{H}^{>\mathbb{R}} : h \circ f = f \circ h\}$ is commutative.

Conjecture 3. If $f > g^{[\mathbb{N}]}$ > id, then $f \circ g > g \circ f$. (iterates)

Conjecture 1 holds whenever \mathcal{H} contains exp, but has no transexponential germ.

Let $\mathcal{R} = (\mathbb{R}, +, -, \times, <, ...)$ be a functional expansion of the real ordered ring in a first-order language \mathcal{L} .

Let $\mathcal{R} = (\mathbb{R}, +, -, \times, <, ...)$ be a functional expansion of the real ordered ring in a first-order language \mathcal{L} .

Define:

- $\mathcal{H}_{\mathcal{R}}$ as the set of germs of functions $\mathbb{R} \longrightarrow \mathbb{R}$ that are *definable* with parameters in \mathcal{R} .
- $\mathcal{T}_{\mathcal{R}}$ as the subset of \mathcal{H} of germs of unary functions $r \mapsto t(r)$ for all arity ≤ 1 terms t[u].

Let $\mathcal{R} = (\mathbb{R}, +, -, \times, <, ...)$ be a functional expansion of the real ordered ring in a first-order language \mathcal{L} .

Define:

- $\mathcal{H}_{\mathcal{R}}$ as the set of germs of functions $\mathbb{R} \longrightarrow \mathbb{R}$ that are *definable* with parameters in \mathcal{R} .
- $\mathcal{T}_{\mathcal{R}}$ as the subset of \mathcal{H} of germs of unary functions $r \mapsto t(r)$ for all arity ≤ 1 terms t[u]. Those are partially ordered rings, and even \mathcal{L} -structures under pointwise operations. <u>Moreover</u> $\mathcal{T}_{\mathcal{R}}$ and $\mathcal{H}_{\mathcal{R}}$ are closed under composition.

Let $\mathcal{R} = (\mathbb{R}, +, -, \times, <, ...)$ be a functional expansion of the real ordered ring in a first-order language \mathcal{L} .

Define:

• $\mathcal{H}_{\mathcal{R}}$ as the set of germs of functions $\mathbb{R} \longrightarrow \mathbb{R}$ that are *definable* with parameters in \mathcal{R} .

• $T_{\mathcal{R}}$ as the subset of \mathcal{H} of germs of unary functions $r \mapsto t(r)$ for all arity ≤ 1 terms t[u]. Those are partially ordered rings, and even \mathcal{L} -structures under pointwise operations. <u>Moreover</u> $T_{\mathcal{R}}$ and $\mathcal{H}_{\mathcal{R}}$ are closed under composition.

We will consider in particular $\mathcal{R} = \mathbb{R}_{an,exp}$, and we write $\mathcal{H}_{an,exp} = \mathcal{H}_{\mathbb{R}_{an,exp}}$.

If $\operatorname{Th}(\mathcal{R})$ is *o*-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.

If $\operatorname{Th}(\mathcal{R})$ is *o*-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.

 $\mathcal{M} \succ \mathcal{R}$: non-standard model

 ξ : element of \mathcal{M} with $\xi > \mathbb{R}$.

If $\operatorname{Th}(\mathcal{R})$ is *o*-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.

 $\mathcal{M} \succ \mathcal{R}$: non-standard model

 ξ : element of \mathcal{M} with $\xi > \mathbb{R}$.

There is a natural \mathcal{L} -embedding $\Psi: \mathcal{H}_{\mathcal{R}} \longrightarrow \mathcal{M}$ which sends id to ξ . This map commutes with definable functions $\mathbb{R}^n \longrightarrow \mathbb{R}$.

If $\operatorname{Th}(\mathcal{R})$ is *o*-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.

 $\mathcal{M}\succ \mathcal{R}\text{: non-standard model}$

 ξ : element of \mathcal{M} with $\xi > \mathbb{R}$.

There is a natural \mathcal{L} -embedding $\Psi: \mathcal{H}_{\mathcal{R}} \longrightarrow \mathcal{M}$ which sends id to ξ . This map commutes with definable functions $\mathbb{R}^n \longrightarrow \mathbb{R}$.

There is a unique \mathcal{L} -embedding $\Phi: \mathcal{T}_{\mathcal{R}} \longrightarrow \mathcal{M}$ with $\Phi(id) = \xi$.

If $\operatorname{Th}(\mathcal{R})$ is *o*-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.

$\mathcal{M} \succ \mathcal{R}$: non-standard model

 ξ : element of \mathcal{M} with $\xi > \mathbb{R}$.

There is a natural \mathcal{L} -embedding $\Psi: \mathcal{H}_{\mathcal{R}} \longrightarrow \mathcal{M}$ which sends id to ξ . This map commutes with definable functions $\mathbb{R}^n \longrightarrow \mathbb{R}$.

There is a unique \mathcal{L} -embedding $\Phi: \mathcal{T}_{\mathcal{R}} \longrightarrow \mathcal{M}$ with $\Phi(id) = \xi$.

If $\operatorname{Th}(\mathcal{R})$ has QE and a universal axiomatization

Then any definable function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is given piecewise by (a finite list of) terms. In particular for n = 1, the germ of f lies in $\mathcal{T}_{\mathcal{R}}$. So $\mathcal{T}_{\mathcal{R}} = \mathcal{H}_{\mathcal{R}}$.

If $\operatorname{Th}(\mathcal{R})$ is *o*-minimal

Then $\mathcal{H}_{\mathcal{R}} \succcurlyeq \mathcal{R}$ is a Hardy field with composition.

$\mathcal{M} \succ \mathcal{R} \text{: non-standard model}$

 ξ : element of \mathcal{M} with $\xi > \mathbb{R}$.

There is a natural \mathcal{L} -embedding $\Psi: \mathcal{H}_{\mathcal{R}} \longrightarrow \mathcal{M}$ which sends id to ξ . This map commutes with definable functions $\mathbb{R}^n \longrightarrow \mathbb{R}$.

There is a unique \mathcal{L} -embedding $\Phi: \mathcal{T}_{\mathcal{R}} \longrightarrow \mathcal{M}$ with $\Phi(id) = \xi$.

If $\operatorname{Th}(\mathcal{R})$ has QE and a universal axiomatization

Then any definable function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is given piecewise by (a finite list of) terms. In particular for n = 1, the germ of f lies in $\mathcal{T}_{\mathcal{R}}$. So $\mathcal{T}_{\mathcal{R}} = \mathcal{H}_{\mathcal{R}}$.

Both conditions are satisfied for $\mathcal{R} = \mathbb{R}_{an,exp}$ (vDDMM, '94).

 \mathfrak{L} : group of germs $\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}$ for $\mathfrak{l}_0, \dots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

 \mathfrak{L} : group of germs $\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}$ for $\mathfrak{l}_0, \dots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

 \mathbb{T}_L is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L} . E.g.

$$f_0 = x + \pi (\log x)^3 + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \frac{1}{(\log x)^3} + \dots + \frac{2(\log x)^2}{x}$$
$$f_1 = x + \log x + \log \log x + \dots$$

We have a logarithm $\log: \mathbb{T}_L^{>0} \longrightarrow \mathbb{T}_L$:

$$\log \left(\prod_{k < n} (\log_k x)^{\mathfrak{l}_k} \right) := \underset{\in \mathfrak{L}}{\underset{k < n}{\sum}}$$

 \mathfrak{L} : group of germs $\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}$ for $\mathfrak{l}_0, \dots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

 \mathbb{T}_L is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L} . E.g.

$$f_0 = x + \pi (\log x)^3 + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \frac{1}{(\log x)^3} + \dots + \frac{2(\log x)^2}{x}$$
$$f_1 = x + \log x + \log \log x + \dots$$

We have a logarithm $\log: \mathbb{T}_L^{>0} \longrightarrow \mathbb{T}_L$:

$$\log\left(\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}\right) := \sum_{k < n} \mathfrak{l}_k \log_{k+1} x$$

 \mathfrak{L} : group of germs $\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}$ for $\mathfrak{l}_0, \dots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

 \mathbb{T}_L is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L} . E.g.

$$f_0 = x + \pi (\log x)^3 + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \frac{1}{(\log x)^3} + \dots + \frac{2(\log x)^2}{x}$$
$$f_1 = x + \log x + \log \log x + \dots$$

We have a logarithm $\log: \mathbb{T}_L^{>0} \longrightarrow \mathbb{T}_L$:

$$\log \left(\underset{\in \mathfrak{L}}{\mathfrak{l}} \overset{\in \mathbb{R}}{r} \left(1 + \underset{\prec 1}{\varepsilon} \right) \right) :=$$

 \mathfrak{L} : group of germs $\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}$ for $\mathfrak{l}_0, \dots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

 \mathbb{T}_L is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L} . E.g.

$$f_0 = x + \pi (\log x)^3 + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \frac{1}{(\log x)^3} + \dots + \frac{2(\log x)^2}{x}$$
$$f_1 = x + \log x + \log \log x + \dots$$

$$\log(\mathfrak{l} r (1+\varepsilon)) := \log(\mathfrak{l}) + \log r + \sum_{k>0} \frac{(-1)^{k+1}}{k} \varepsilon^k.$$

 \mathfrak{L} : group of germs $\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}$ for $\mathfrak{l}_0, \dots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

 \mathbb{T}_L is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L} . E.g.

$$f_0 = x + \pi (\log x)^3 + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \frac{1}{(\log x)^3} + \dots + \frac{2(\log x)^2}{x}$$
$$f_1 = x + \log x + \log \log x + \dots$$

We have a morphism $\log: (\mathbb{T}_L^{>0}, \times, <) \longrightarrow (\mathbb{T}_L, +, <).$

 \mathfrak{L} : group of germs $\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}$ for $\mathfrak{l}_0, \dots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering on \mathfrak{L} is lexicographic.

Logarithmic transseries

 \mathbb{T}_L is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L} . E.g.

$$f_0 = x + \pi (\log x)^3 + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \frac{1}{(\log x)^3} + \dots + \frac{2(\log x)^2}{x}$$
$$f_1 = x + \log x + \log \log x + \dots$$

We have a morphism $\log: (\mathbb{T}_L^{>0}, \times, <) \longrightarrow (\mathbb{T}_L, +, <).$

Exponential extensions

log: $\mathbb{T}_{L}^{>0} \longrightarrow \mathbb{T}_{L}$ is not surjective, but \mathbb{T}_{L} can be closed under exponentials: iteratively adjoin formal monomials e^{φ} for certain transseries φ as long as $\exp(\varphi)$ is undefined.

Transseries, introduced by DAHN-GÖRING and ÉCALLE, can be declined in several forms: grid-based, log-exp (\mathbb{T}_{LE}), exp-log,...

We consider *generalized transseries*, which form a class sized Hahn series field $\mathbb{R}\langle\langle x \rangle\rangle \supseteq$ \mathbb{T}_{LE} closed under exp and log.

Transseries, introduced by DAHN-GÖRING and ÉCALLE, can be declined in several forms: grid-based, \log -exp (\mathbb{T}_{LE}), exp-log,...

We consider *generalized transseries*, which form a class sized Hahn series field $\mathbb{R}\langle\langle x \rangle\rangle \supseteq$ \mathbb{T}_{LE} closed under exp and log.

Dervation and composition (SCMHELING, BERARDUCCI-MANTOVA)

The field $\mathbb{R}\langle\langle x \rangle\rangle$ is equipped with a derivation $\partial: \mathbb{R}\langle\langle x \rangle\rangle \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ and a composition law $o: \mathbb{R}\langle\langle x \rangle\rangle \times (\mathbb{R}\langle\langle x \rangle\rangle)^{>\mathbb{R}} \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ whose properties mimic those of Hardy fields with composition.

Transseries, introduced by DAHN-GÖRING and ÉCALLE, can be declined in several forms: grid-based, \log -exp (\mathbb{T}_{LE}), exp-log,...

We consider generalized transseries, which form a class sized Hahn series field $\mathbb{R}\langle\langle x \rangle\rangle \supseteq$ \mathbb{T}_{LE} closed under exp and log.

Dervation and composition (SCMHELING, BERARDUCCI-MANTOVA)

The field $\mathbb{R}\langle\langle x \rangle\rangle$ is equipped with a derivation $\partial: \mathbb{R}\langle\langle x \rangle\rangle \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ and a composition law $o: \mathbb{R}\langle\langle x \rangle\rangle \times (\mathbb{R}\langle\langle x \rangle\rangle)^{>\mathbb{R}} \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ whose properties mimic those of Hardy fields with composition.

$$f_0 = x + \pi \left(\log x\right) + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \frac{1}{(\log x)^3} + \dots + \frac{2(\log x)^2}{x}$$
$$f'_0 = 1 + \frac{\pi}{\pi} - \frac{1}{\pi (\log x)^2} - \frac{2}{\pi (\log x)^3} - \dots - \frac{4x(\log x) - 2x(\log x)^2}{\pi^2}$$

Transseries, introduced by DAHN-GÖRING and ÉCALLE, can be declined in several forms: grid-based, \log -exp (\mathbb{T}_{LE}), exp-log,...

We consider generalized transseries, which form a class sized Hahn series field $\mathbb{R}\langle\langle x \rangle\rangle \supseteq$ \mathbb{T}_{LE} closed under exp and log.

Dervation and composition (SCMHELING, BERARDUCCI-MANTOVA)

The field $\mathbb{R}\langle\langle x \rangle\rangle$ is equipped with a derivation $\partial: \mathbb{R}\langle\langle x \rangle\rangle \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ and a composition law $o: \mathbb{R}\langle\langle x \rangle\rangle \times (\mathbb{R}\langle\langle x \rangle\rangle)^{>\mathbb{R}} \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ whose properties mimic those of Hardy fields with composition.

$$f_1 = x + \log x + \log \log x + \cdots$$

 $f_1 \circ (\log x) = \log x + \log \log x + \log \log \log x + \cdots$

Theorem (VDDRIES-MACINTYRE-MARKER, 1997 and 2001)

There is a unique $\mathcal{L}_{an,exp}$ -embedding $\mathcal{H}_{an,exp} \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ which sends id to x. This embedding also preserves ∂ and \circ .

Theorem (VDDRIES-MACINTYRE-MARKER, 1997 and 2001)

There is a unique $\mathcal{L}_{an,exp}$ -embedding $\mathcal{H}_{an,exp} \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ which sends id to x. This embedding also preserves ∂ and \circ .

This embedding can be used to describe growth orders of germs in $\mathcal{H}_{an,exp}$.
Theorem (VDDRIES-MACINTYRE-MARKER, 1997 and 2001)

There is a unique $\mathcal{L}_{an,exp}$ -embedding $\mathcal{H}_{an,exp} \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ which sends id to x. This embedding also preserves ∂ and \circ .

This embedding can be used to describe growth orders of germs in $\mathcal{H}_{an,exp}$.

Using this, VDDMM showed that:

- the inverse of $t \mapsto (\log t) (\log \log t)$ is not an *L*-function (as conjectured by HARDY).
- no primitive $\int_a^t e^s ds$ of $t \mapsto e^{t^2}$ is definable in $\mathbb{R}_{an,exp}$.

Theorem (VDDRIES-MACINTYRE-MARKER, 1997 and 2001)

There is a unique $\mathcal{L}_{an,exp}$ -embedding $\mathcal{H}_{an,exp} \longrightarrow \mathbb{R}\langle\langle x \rangle\rangle$ which sends id to x. This embedding also preserves ∂ and \circ .

This embedding can be used to describe growth orders of germs in $\mathcal{H}_{an,exp}$.

Using this, VDDMM showed that:

- the inverse of $t \mapsto (\log t) (\log \log t)$ is not an *L*-function (as conjectured by HARDY).
- no primitive $\int_a^t e^s ds$ of $t \mapsto e^{t^2}$ is definable in $\mathbb{R}_{an,exp}$.

We will see that the field $\mathcal{H}_{\mathrm{an,exp}}$ satisfies the conjecture.

Consider the functional, conjugation equation

$$E(t+1) = e^{E(t)}, \quad \text{for } t \gg 1.$$
 (1)

in E, called Abel's equation for exp. Continuous solutions of (1) are transexponential.

Consider the functional, conjugation equation

$$E(t+1) = e^{E(t)}, \quad \text{for } t \gg 1.$$
 (2)

in *E*, called Abel's equation for exp. Continuous solutions of (2) are transexponential. KNESER showed in 1949 that (2) has an analytic solution \exp_{ω} , say with $\exp_{\omega}(0) = 1$. The (germ of the) functional inverse \log_{ω} satisfies the dual equation

 $\log_{\omega}(\log t) = \log_{\omega}(t) - 1$ for $t \gg 1$.

Consider the functional, conjugation equation

$$E(t+1) = e^{E(t)}, \quad \text{for } t \gg 1.$$
 (3)

in *E*, called Abel's equation for exp. Continuous solutions of (3) are transexponential. KNESER showed in 1949 that (3) has an analytic solution \exp_{ω} , say with $\exp_{\omega}(0) = 1$. The (germ of the) functional inverse \log_{ω} satisfies the dual equation

$$\log_{\omega}(\log t) = \log_{\omega}(t) - 1$$
 for $t \gg 1$.

Those functions induce a flow of real-iterates of exp, i.e. a strictly increasing morphism

$$\exp^{[\cdot]}: (\mathbb{R}, +, <) \longrightarrow (\mathcal{G}, \circ, <)$$
$$r \longmapsto \exp^{[r]}:= \exp_{\omega} \circ (\log_{\omega} + r)$$

Consider the functional, conjugation equation

$$E(t+1) = e^{E(t)}, \quad \text{for } t \gg 1.$$
 (4)

in *E*, called **Abel's equation** for exp. Continuous solutions of (4) are transexponential. KNESER showed in 1949 that (4) has an analytic solution \exp_{ω} , say with $\exp_{\omega}(0) = 1$. The (germ of the) functional inverse \log_{ω} satisfies the dual equation

$$\log_{\omega}(\log t) = \log_{\omega}(t) - 1 \quad \text{for } t \gg 1.$$

Those functions induce a flow of real-iterates of exp, i.e. a strictly increasing morphism

$$\exp^{[\cdot]}: (\mathbb{R}, +, <) \longrightarrow (\mathcal{G}, \circ, <)$$
$$r \longmapsto \exp^{[r]}:= \exp_{\omega} \circ (\log_{\omega} + r).$$

Theorem [PADGETT, '22]

There is a Hardy field \mathcal{T}_{ω} with composition which contains \exp_{ω} and \log_{ω} .

Exp-log classes

Given an ordered exponential field F and $a \in F^{>\mathbb{R}}$, the exp-log class EL(a) of $a \in F$ is its equivalence class for

 $\exists a \asymp^L \overline{b}$ if and only if $\exists n \in \mathbb{N}, (\log^{[n]} a \sim \log^{[n]} b).$

Exp-log classes

Given an ordered exponential field F and $a \in F^{>\mathbb{R}}$, the exp-log class EL(a) of $a \in F$ is its equivalence class for

$$a \asymp^L b$$
 if and only if $\exists n \in \mathbb{N}, (\log^{[n]} a \sim \log^{[n]} b)$.

Let \mathcal{H} be a Hardy field with composition with $\exp, \log \in \mathcal{H}$. Set

$$\mathcal{E} := \{ \exp^{[n]} \circ (\log^{[n]} \pm 1) : n \in \mathbb{N} \} \subseteq \mathcal{H}^{>\mathbb{R}}.$$

Then each EL(f) is the convex hull of $\mathcal{E} \circ f = \{g \circ f : g \in \mathcal{E}\}.$

Exp-log classes

Given an ordered exponential field F and $a \in F^{>\mathbb{R}}$, the exp-log class EL(a) of $a \in F$ is its equivalence class for

$$a \asymp^L b$$
 if and only if $\exists n \in \mathbb{N}, (\log^{[n]} a \sim \log^{[n]} b)$.

Let \mathcal{H} be a Hardy field with composition with $exp, \log \in \mathcal{H}$. Set

$$\mathcal{E} := \{ \exp^{[n]} \circ (\log^{[n]} \pm 1) : n \in \mathbb{N} \} \subseteq \mathcal{H}^{>\mathbb{R}}.$$

Then each EL(f) is the convex hull of $\mathcal{E} \circ f = \{g \circ f : g \in \mathcal{E}\}.$

MARKER-MILLER: EL classes in $\mathcal{H}_{an,exp}$ and $\mathbb{R}\langle\langle x \rangle\rangle$ are parametrized by integers. Each f lies in $\mathrm{EL}(\exp^{[n]})$ for a unique $n \in \mathbb{Z}$ called the level of f. Write $\lambda_n = \mathrm{EL}(f)$.

Exp-log classes

Given an ordered exponential field F and $a \in F^{>\mathbb{R}}$, the exp-log class EL(a) of $a \in F$ is its equivalence class for

$$a \asymp^L b$$
 if and only if $\exists n \in \mathbb{N}, (\log^{[n]} a \sim \log^{[n]} b)$.

Let \mathcal{H} be a Hardy field with composition with $\exp, \log \in \mathcal{H}$. Set

$$\mathcal{E} := \{ \exp^{[n]} \circ (\log^{[n]} \pm 1) : n \in \mathbb{N} \} \subseteq \mathcal{H}^{>\mathbb{R}}.$$

Then each EL(f) is the convex hull of $\mathcal{E} \circ f = \{g \circ f : g \in \mathcal{E}\}.$

MARKER-MILLER: EL classes in $\mathcal{H}_{an,exp}$ and $\mathbb{R}\langle\langle x \rangle\rangle$ are parametrized by integers. Each f lies in $\mathrm{EL}(\exp^{[n]})$ for a unique $n \in \mathbb{Z}$ called the level of f. Write $\lambda_n = \mathrm{EL}(f)$.

Note that $\log \lambda_n = \lambda_{n-1}$ for all $n \in \mathbb{Z}$.

More levels

Let us come back to the field \mathcal{T}_{ω} . Write

 $\lambda_{\omega} := \operatorname{EL}(\exp_{\omega}), \qquad \lambda_{-\omega} := \operatorname{EL}(\log_{\omega}), \qquad \text{and} \ \lambda_r := \operatorname{EL}(\exp^{[r]}) \text{ for all } r \in \mathbb{R}.$

More levels

Let us come back to the field \mathcal{T}_{ω} . Write

 $\lambda_{\omega} := \mathrm{EL}(\exp_{\omega}), \qquad \lambda_{-\omega} := \mathrm{EL}(\log_{\omega}), \qquad \text{and} \ \lambda_r := \mathrm{EL}(\exp^{[r]}) \text{ for all } r \in \mathbb{R}.$

We have

$$\lambda_{\omega} > \lambda_{\mathbb{Z}}, \qquad \lambda_{-\omega} < \lambda_{\mathbb{Z}}, \qquad ext{and} \quad \forall r, s \in \mathbb{R}, (\lambda_r < \lambda_s \Longleftrightarrow r < s),$$

More levels

Let us come back to the field \mathcal{T}_{ω} . Write

 $\lambda_{\omega} := \operatorname{EL}(\exp_{\omega}), \quad \lambda_{-\omega} := \operatorname{EL}(\log_{\omega}), \quad \text{and } \lambda_r := \operatorname{EL}(\exp^{[r]}) \text{ for all } r \in \mathbb{R}.$

We have

 $\lambda_{\omega} > \lambda_{\mathbb{Z}}, \quad \lambda_{-\omega} < \lambda_{\mathbb{Z}}, \quad \text{and} \quad \forall r, s \in \mathbb{R}, (\lambda_r < \lambda_s \iff r < s).$

We also have levels $\omega - 1$, $\omega + 1$,... with

$$\lambda_{\mathbb{R}} < \lambda_{\omega-1} = \log(\lambda_{\omega}) < \lambda_{\omega} < \lambda_{\omega+1} = \exp(\lambda_{\omega})$$

and so on . . .

For $arphi,\psi\in\mathcal{T}_P^{>\mathbb{R}}$, we have

 $EL(\exp_{\omega}\circ\varphi) < EL(\exp_{\omega}\circ\psi) \iff \mathcal{E}\circ(\exp_{\omega}\circ\varphi) < \mathcal{E}\circ(\exp_{\omega}\circ\psi)$ $\iff (\log_{\omega}\circ\mathcal{E}\circ\exp_{\omega})\circ\varphi < (\log_{\omega}\circ\mathcal{E}\circ\exp_{\omega})\circ\psi.$

For $\varphi, \psi \in \mathcal{T}_{\omega}^{>\mathbb{R}}$, we have

 $EL(\exp_{\omega}\circ\varphi) < EL(\exp_{\omega}\circ\psi) \iff \mathcal{E}\circ(\exp_{\omega}\circ\varphi) < \mathcal{E}\circ(\exp_{\omega}\circ\psi)$ $\iff (\log_{\omega}\circ\mathcal{E}\circ\exp_{\omega})\circ\varphi < (\log_{\omega}\circ\mathcal{E}\circ\exp_{\omega})\circ\psi.$

For $\varphi, \psi \in \mathcal{T}_{\omega}^{>\mathbb{R}}$, we have

$$EL(\exp_{\omega}\circ\varphi) < EL(\exp_{\omega}\circ\psi) \iff \mathcal{E}\circ(\exp_{\omega}\circ\varphi) < \mathcal{E}\circ(\exp_{\omega}\circ\psi) \\ \iff (\log_{\omega}\circ\mathcal{E}\circ\exp_{\omega})\circ\varphi < (\log_{\omega}\circ\mathcal{E}\circ\exp_{\omega})\circ\psi.$$

Set $g = \exp^{[n]} \circ \overline{(\log^{[n]} + 1)} \in \mathcal{E}$. Since $\log'_{\omega} \approx \frac{1}{id}$, the mean value theorem for \log_{ω} gives

$$\mathrm{id} + \frac{1}{\log^{[n-1]} \circ \exp_{\omega}} < \log_{\omega} \circ g \circ \exp_{\omega} < \mathrm{id} + \frac{1}{\log^{[n]} \circ \exp_{\omega}}.$$

For $\varphi, \psi \in \mathcal{T}_{\omega}^{>\mathbb{R}}$, we have

$$EL(\exp_{\omega}\circ\varphi) < EL(\exp_{\omega}\circ\psi) \iff \mathcal{E}\circ(\exp_{\omega}\circ\varphi) < \mathcal{E}\circ(\exp_{\omega}\circ\psi) \\ \iff (\log_{\omega}\circ\mathcal{E}\circ\exp_{\omega})\circ\varphi < (\log_{\omega}\circ\mathcal{E}\circ\exp_{\omega})\circ\psi.$$

Set $g = \exp^{[n]} \circ (\log^{[n]} + 1) \in \mathcal{E}$. Since $\log_{\omega} \approx \frac{1}{id}$, the mean value theorem for \log_{ω} gives

$$\mathrm{id} + \frac{1}{\log^{[n-1]} \circ \exp_{\omega}} < \log_{\omega} \circ g \circ \exp_{\omega} < \mathrm{id} + \frac{1}{\log^{[n]} \circ \exp_{\omega}}.$$

If $\varphi + \left(\frac{1}{\log^{[\mathbb{N}]} \circ \exp_{\omega} \circ \varphi}\right) < \psi$, then $\operatorname{EL}(\exp_{\omega} \circ \varphi) < \operatorname{EL}(\exp_{\omega} \circ \psi)$. The EL class $\lambda_{\scriptscriptstyle 1/\omega}$ of $\exp_{\omega} \circ \left(\log_{\omega} + \frac{1}{\log_{\omega}}\right)$

is "infinitesimal", i.e. larger than λ_0 but smaller than each λ_r for $r \in \mathbb{R}^{>}$.

Tentative description of all possible levels in models of \mathbb{R}_{exp} using Conway's field No of surreal numbers:

Theorem (BERARDUCCI-MANTOVA, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, <) itself.

There is an order embedding $\mathbf{No} \longrightarrow \mathbf{No}^{>\mathbb{R}}$; $z \mapsto \lambda_z$ such that each surreal number lies in $\mathrm{EL}(\lambda_z)$ for a unique $z \in \mathbf{No}$.

Tentative description of all possible levels in models of \mathbb{R}_{exp} using Conway's field No of surreal numbers:

Theorem (BERARDUCCI-MANTOVA, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, <) itself.

There is an order embedding $\mathbf{No} \longrightarrow \mathbf{No}^{>\mathbb{R}}$; $z \mapsto \lambda_z$ such that each surreal number lies in $\mathrm{EL}(\lambda_z)$ for a unique $z \in \mathbf{No}$.

They defined a canonical derivation ∂ on **No** such that (No, ∂) is a Liouville-closed H-field. It is an elementary extension of \mathbb{T}_{LE} (ASHCENBRENNER-VDDRIES-VDHOEVEN, '17).

Tentative description of all possible levels in models of \mathbb{R}_{exp} using Conway's field No of surreal numbers:

Theorem (BERARDUCCI-MANTOVA, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, <) itself.

There is an order embedding $\mathbf{No} \longrightarrow \mathbf{No}^{>\mathbb{R}}$; $z \mapsto \lambda_z$ such that each surreal number lies in $\mathrm{EL}(\lambda_z)$ for a unique $z \in \mathbf{No}$.

They defined a canonical derivation ∂ on **No** such that (No, ∂) is a Liouville-closed H-field. It is an elementary extension of \mathbb{T}_{LE} (ASHCENBRENNER-VDDRIES-VDHOEVEN, '17).

Every model of \mathbb{R}_{exp} embeds into (No, exp).

Tentative description of all possible levels in models of \mathbb{R}_{exp} using Conway's field No of surreal numbers:

Theorem (BERARDUCCI-MANTOVA, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, <) itself.

There is an order embedding $\mathbf{No} \longrightarrow \mathbf{No}^{>\mathbb{R}}$; $z \mapsto \lambda_z$ such that each surreal number lies in $\mathrm{EL}(\lambda_z)$ for a unique $z \in \mathbf{No}$.

They defined a canonical derivation ∂ on **No** such that (No, ∂) is a Liouville-closed H-field. It is an elementary extension of \mathbb{T}_{LE} (ASHCENBRENNER-VDDRIES-VDHOEVEN, '17).

Every model of \mathbb{R}_{exp} embeds into (No, exp).

Question. Is any real-closed Hardy field H closed under exp and \log an elementary extension of \mathbb{R}_{exp} ?

BERARDUCCI-MANTOVA (2017) defined a composition law

 $\circ: \mathbb{R}\langle\langle x \rangle\rangle \times \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}.$

 $\mathbb{R}\langle\langle x \rangle\rangle$ naturally embeds into No by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{No}^{\mathbb{R}}$.

BERARDUCCI-MANTOVA (2017) defined a composition law

 $\circ: \mathbb{R}\langle\langle x \rangle\rangle \times \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}.$

 $\mathbb{R}\langle\langle x \rangle\rangle$ naturally embeds into **No** by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{No}^{>\mathbb{R}}$.

The composition law does not extend to $No \times No^{\mathbb{R}}$ in a compatible way with respect to ∂ . So let us leave the surreal realm.

BERARDUCCI-MANTOVA (2017) defined a composition law

 $\circ: \mathbb{R}\langle\langle x \rangle\rangle \times \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}.$

 $\mathbb{R}\langle\langle x \rangle\rangle$ naturally embeds into **No** by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{No}^{>\mathbb{R}}$.

The composition law does not extend to $No \times No^{\mathbb{R}}$ in a compatible way with respect to ∂ . So let us leave the surreal realm.

 \rightarrow Can we "directly" build a field of generalized power series involving transexponential and sublogarithmic behavior?

BERARDUCCI-MANTOVA (2017) defined a composition law

 $\circ: \mathbb{R}\langle\langle x \rangle\rangle \times \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}.$

 $\mathbb{R}\langle\langle x \rangle\rangle$ naturally embeds into **No** by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{No}^{>\mathbb{R}}$.

The composition law does not extend to $No \times No^{\mathbb{R}}$ in a compatible way with respect to ∂ . So let us leave the surreal realm.

 \rightarrow Can we "directly" build a field of generalized power series involving transexponential and sublogarithmic behavior?

 \rightarrow Can we do so while solving the functional equations

 $E \circ (x+1) = e^x \circ E$ and $L-1 = L \circ \log x$?

BERARDUCCI-MANTOVA (2017) defined a composition law

 $\circ: \mathbb{R}\langle\langle x \rangle\rangle \times \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}.$

 $\mathbb{R}\langle\langle x \rangle\rangle$ naturally embeds into **No** by sending f to $f \circ \omega$ for a certain $\omega \in \mathbf{No}^{>\mathbb{R}}$.

The composition law does not extend to $No \times No^{\mathbb{R}}$ in a compatible way with respect to ∂ . So let us leave the surreal realm.

 \rightarrow Can we "directly" build a field of generalized power series involving transexponential and sublogarithmic behavior?

 \rightarrow Can we do so while solving the functional equations

 $E \circ (x+1) = e^x \circ E$ and $L-1 = L \circ \log x$?

 \rightarrow Do we also get a formal version of the conjecture for those fields?

Let us build a structure $(\mathbb{L},\partial,\circ)$ which contains a solution $\ell_\omega x$ to

$$\ell_{\omega} x - 1 = (\ell_{\omega} x) \circ (\ell_1 x). \tag{5}$$

Let us build a structure $(\mathbb{L},\partial,\circ)$ which contains a solution $\ell_\omega x$ to

$$\ell_{\omega} x - 1 = (\ell_{\omega} x) \circ (\ell_1 x). \tag{6}$$

We gather symbols $\ell_{\gamma} x, \gamma < \omega^2$ with $\ell_0 x = x$ is the identity, $\ell_1 x$ is the logarithm, and

$$\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x = (\ell_1 x)^{[n]} \circ (\ell_{\omega} x)^{[m]}.$$

Let us build a structure $(\mathbb{L},\partial,\circ)$ which contains a solution $\ell_\omega x$ to

$$\ell_{\omega} x - 1 = (\ell_{\omega} x) \circ (\ell_1 x). \tag{7}$$

We gather symbols $\ell_{\gamma} x, \gamma < \omega^2$ with $\ell_0 x = x$ is the identity, $\ell_1 x$ is the logarithm, and

$$\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x = (\ell_1 x)^{[n]} \circ (\ell_{\omega} x)^{[m]}.$$

Differentiating (7), we get

$$(\ell_{\omega} x)' = \frac{1}{x} \times (\ell_{\omega} x)' \circ (\ell_1 x)$$

Let us build a structure $(\mathbb{L},\partial,\circ)$ which contains a solution $\ell_\omega x$ to

$$\ell_{\omega} x - 1 = (\ell_{\omega} x) \circ (\ell_1 x). \tag{8}$$

We gather symbols $\ell_{\gamma} x, \gamma < \omega^2$ with $\ell_0 x = x$ is the identity, $\ell_1 x$ is the logarithm, and

$$\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x = (\ell_1 x)^{[n]} \circ (\ell_{\omega} x)^{[m]}.$$

Differentiating (8), we get

$$(\ell_{\omega} x)' = \frac{1}{x} \times (\ell_{\omega} x)' \circ (\ell_1 x)$$
$$= \frac{1}{x (\ell_1 x) \cdots (\ell_n x)} \times (\ell_{\omega} x)' \circ (\ell_{n+1} x)$$

Let us build a structure $(\mathbb{L},\partial,\circ)$ which contains a solution $\ell_\omega x$ to

$$\ell_{\omega} x - 1 = (\ell_{\omega} x) \circ (\ell_1 x). \tag{9}$$

We gather symbols $\ell_{\gamma} x, \gamma < \omega^2$ with $\ell_0 x = x$ is the identity, $\ell_1 x$ is the logarithm, and

$$\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x = (\ell_1 x)^{[n]} \circ (\ell_{\omega} x)^{[m]}.$$

Differentiating (9), we get

$$(\ell_{\omega} x)' = \frac{1}{x} \times (\ell_{\omega} x)' \circ (\ell_1 x)$$
$$= \frac{1}{x (\ell_1 x) \cdots (\ell_n x)} \times o\left(\frac{1}{\ell_n x}\right)$$

Let us build a structure $(\mathbb{L},\partial,\circ)$ which contains a solution $\ell_\omega x$ to

$$\ell_{\omega} x - 1 = (\ell_{\omega} x) \circ (\ell_1 x). \tag{10}$$

We gather symbols $\ell_{\gamma} x, \gamma < \omega^2$ with $\ell_0 x = x$ is the identity, $\ell_1 x$ is the logarithm, and

$$\forall m, n \in \mathbb{N}, \ell_{\omega m+n} x = (\ell_1 x)^{[n]} \circ (\ell_{\omega} x)^{[m]}.$$

Differentiating (10), we get

$$(\ell_{\omega} x)' \stackrel{?}{=} \prod_{n < \omega} (\ell_n x)^{-1}.$$

So one needs to have, as basic symbols, formal products

$$\mathfrak{l} := \prod_{\gamma < \omega^2} (\ell_{\gamma} x)^{\mathfrak{l}_{\gamma}}, \quad \text{for } (\mathfrak{l}_{\gamma})_{\gamma < \omega^2} \in \mathbb{R}^{\omega^2}.$$

So one needs to have, as basic symbols, formal products

$$\mathfrak{l} := \prod_{\gamma < \omega^2} (\ell_{\gamma} x)^{\mathfrak{l}_{\gamma}}, \quad \text{for } (\mathfrak{l}_{\gamma})_{\gamma < \omega^2} \in \mathbb{R}^{\omega^2}.$$

Gathering those in a lexicographically ordered group $\mathfrak{L}_{<\omega^2}$ yields a Hahn series field

$$\mathbb{L}_{<\omega^2} = \mathbb{R}[[\mathfrak{L}_{<\omega^2}]].$$

So one needs to have, as basic symbols, formal products

$$\mathfrak{l} := \prod_{\gamma < \omega^2} (\ell_{\gamma} x)^{\mathfrak{l}_{\gamma}}, \quad \text{for } (\mathfrak{l}_{\gamma})_{\gamma < \omega^2} \in \mathbb{R}^{\omega^2}.$$

Gathering those in a lexicographically ordered group $\mathfrak{L}_{<\omega^2}$ yields a Hahn series field

$$\mathbb{L}_{<\omega^2} = \mathbb{R}[[\mathfrak{L}_{<\omega^2}]].$$

The derivation is defined by extending the rule $(\ell_{\omega} x)' = \prod_{n < \omega} (\ell_n x)^{-1}$.

So one needs to have, as basic symbols, formal products

$$\mathfrak{l} := \prod_{\gamma < \omega^2} (\ell_{\gamma} x)^{\mathfrak{l}_{\gamma}}, \quad \text{for } (\mathfrak{l}_{\gamma})_{\gamma < \omega^2} \in \mathbb{R}^{\omega^2}.$$

Gathering those in a lexicographically ordered group $\mathfrak{L}_{<\omega^2}$ yields a Hahn series field

$$\mathbb{L}_{<\omega^2} = \mathbb{R}[[\mathfrak{L}_{<\omega^2}]].$$

The derivation is defined by extending the rule $(\ell_{\omega} x)' = \prod_{n < \omega} (\ell_n x)^{-1}$.

For any ordinal α , we similarly have a field $\mathbb{L}_{<\alpha}$, and a class sized field

$$\mathbb{L} := \bigcup_{\alpha \in \mathbf{On}} \mathbb{L}_{<\alpha}$$

called the field of logarithmic hyperseries (VDD-VDH-KAPLAN).
There is a composition law $\circ: \mathbb{L} \times \mathbb{L}^{>\mathbb{R}} \longrightarrow \mathbb{L}$ with $\ell_{\omega^{\mu+1}} x - 1 = (\ell_{\omega^{\mu+1}} x) \circ (\ell_{\omega^{\mu}} x)$ for all ordinals μ . (\mathbb{L}, ∂) is an H-field with small derivation and surjective derivation. We have the chain rule for (\circ, ∂) .

There is a composition law $\circ: \mathbb{L} \times \mathbb{L}^{>\mathbb{R}} \longrightarrow \mathbb{L}$ with $\ell_{\omega^{\mu+1}} x - 1 = (\ell_{\omega^{\mu+1}} x) \circ (\ell_{\omega^{\mu}} x)$ for all ordinals μ . (\mathbb{L}, ∂) is an H-field with small derivation and surjective derivation. We have the chain rule for (\circ, ∂) .

How is $(\ell_{\omega} x) \circ g$ defined at say g = x + 1? Using Taylor series:

There is a composition law $\circ: \mathbb{L} \times \mathbb{L}^{>\mathbb{R}} \longrightarrow \mathbb{L}$ with $\ell_{\omega^{\mu+1}} x - 1 = (\ell_{\omega^{\mu+1}} x) \circ (\ell_{\omega^{\mu}} x)$ for all ordinals μ . (\mathbb{L}, ∂) is an H-field with small derivation and surjective derivation. We have the chain rule for (\circ, ∂) .

How is $(\ell_{\omega} x) \circ g$ defined at say g = x + 1? Using Taylor series:

Theorem [VDDRIES-VDHOEVEN-KAPLAN - 2018]

For $f, \delta \in \mathbb{L}$ and $g \in \mathbb{L}^{>\mathbb{R}}$ with $\delta \prec g$, we have the following Taylor expansion around g:

$$f \circ (g + \delta) = \sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^k.$$

There is a composition law $\circ: \mathbb{L} \times \mathbb{L}^{>\mathbb{R}} \longrightarrow \mathbb{L}$ with $\ell_{\omega^{\mu+1}} x - 1 = (\ell_{\omega^{\mu+1}} x) \circ (\ell_{\omega^{\mu}} x)$ for all ordinals μ . (\mathbb{L}, ∂) is an H-field with small derivation and surjective derivation. We have the chain rule for (\circ, ∂) .

How is $(\ell_{\omega} x) \circ g$ defined at say g = x + 1? Using Taylor series:

Theorem [VDDRIES-VDHOEVEN-KAPLAN - 2018]

For $f, \delta \in \mathbb{L}$ and $g \in \mathbb{L}^{>\mathbb{R}}$ with $\delta \prec g$, we have the following Taylor expansion around g:

$$f \circ (g + \delta) = \sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^k.$$

In particular

$$f \circ (x+1) = \sum_{k \in \mathbb{N}} \frac{f^{(k)}}{k!}.$$

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^2}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^2}^{>\mathbb{R}}; f \mapsto (\ell_{\omega} x) \circ f$.

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^2}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^2}^{>\mathbb{R}}; f \mapsto (\ell_{\omega} x) \circ f$.

Its right inverse E_{ω} is partially defined. E.g. $E_{\omega}(x)$ is undefined. We close $\mathbb{L}_{<\omega^2}^{>\mathbb{R}}$ under E_{ω} by adjoining formal monomials e_{ω}^{φ} to $\mathfrak{L}_{<\omega^2}$, for certain series φ .

Write $\overline{L_{\omega}}$ for the strictly increasing function $\mathbb{L}_{<\omega^2}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^2}^{>\mathbb{R}}; f \mapsto (\ell_{\omega} x) \circ f$. Its right inverse E_{ω} is partially defined. E.g. $E_{\omega}(x)$ is undefined. We close $\mathbb{L}_{<\omega^2}^{>\mathbb{R}}$ under E_{ω} by adjoining formal monomials e_{ω}^{φ} to $\mathfrak{L}_{<\omega^2}$, for certain series φ .

When should $E_{\omega}(\varphi)$ be a new monomial e_{ω}^{φ} ? If $E_{\omega}(\varphi)$ is defined and

$$\varepsilon \prec \frac{1}{(\ell_n x) \circ E_\omega(\varphi)}$$

for some $n \in \mathbb{N}$, then $E_{\omega}(\varphi + \varepsilon)$ is given by Taylor expansions around φ .

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^2}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^2}^{>\mathbb{R}}; f \mapsto (\ell_{\omega} x) \circ f$. Its right inverse E_{ω} is partially defined. E.g. $E_{\omega}(x)$ is undefined. We close $\mathbb{L}_{<\omega^2}^{>\mathbb{R}}$ under E_{ω} by adjoining formal monomials e_{ω}^{φ} to $\mathfrak{L}_{<\omega^2}$, for certain series φ .

When should $E_{\omega}(\varphi)$ be a new monomial e_{ω}^{φ} ? If $E_{\omega}(\varphi)$ is defined and

$$\varepsilon \prec \frac{1}{(\ell_n x) \circ E_\omega(\varphi)}$$

for some $n \in \mathbb{N}$, then $E_{\omega}(\varphi + \varepsilon)$ is given by Taylor expansions around φ .

 \rightarrow It is enough to add E^{φ}_{ω} for representatives φ in each convex hull

$$\mathcal{L}(g) := \operatorname{Conv}\left(\left\{g \pm \frac{1}{(L_n x) \circ E_{\omega}^{\varphi}} : n \in \mathbb{N}\right\}\right).$$

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^2}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^2}^{>\mathbb{R}}$; $f \mapsto (\ell_{\omega} x) \circ f$. Its right inverse E_{ω} is partially defined. E.g. $E_{\omega}(x)$ is undefined. We close $\mathbb{L}_{<\omega^2}^{>\mathbb{R}}$ under E_{ω} by adjoining formal monomials e_{ω}^{φ} to $\mathfrak{L}_{<\omega^2}$, for certain series φ .

When should $E_{\omega}(\varphi)$ be a new monomial e_{ω}^{φ} ? If $E_{\omega}(\varphi)$ is defined and

$$\varepsilon \prec \frac{1}{(\ell_n x) \circ E_\omega(\varphi)}$$

for some $n \in \mathbb{N}$, then $E_{\omega}(\varphi + \varepsilon)$ is given by Taylor expansions around φ .

 \rightarrow It is enough to add E^{φ}_{ω} for representatives φ in each convex hull

$$\mathcal{L}(g) := \operatorname{Conv}\left(\left\{g \pm \frac{1}{(L_n x) \circ E_{\omega}^{\varphi}} : n \in \mathbb{N}\right\}\right).$$

For any two distinct representatives φ, ψ , the EL-classes of e^{φ}_{ω} and e^{ψ}_{ω} should be disjoint. This determines an ordering of the extension of $\mathfrak{L}_{\langle \omega^2 \rangle}$ by monomials e^{φ}_{ω} .

There are a minimal extension $\tilde{\mathbb{L}}$ of \mathbb{L} , and an extension $\circ: \mathbb{L} \times \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}$ of the composition law on \mathbb{L} , for which each $L_{\omega^{\mu}}: \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$ for ordinals μ is bijective.

There are a minimal extension $\tilde{\mathbb{L}}$ of \mathbb{L} , and an extension $\circ: \mathbb{L} \times \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}$ of the composition law on \mathbb{L} , for which each $L_{\omega^{\mu}}: \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$ for ordinals μ is bijective.

 $\tilde{\mathbb{L}}$ is obtained by iteratively adjoining hyperexponentials $E_{\omega^{\mu}}^{\varphi}$ of hyperseries φ . Any $f \in \tilde{\mathbb{L}}$ has a concrete expression involving $\ell_{\gamma} x$'s, e_{γ} 's, real numbers, and transfinite sums.

We have everything we need to define:

There are a minimal extension $\tilde{\mathbb{L}}$ of \mathbb{L} , and an extension $\circ: \mathbb{L} \times \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}$ of the composition law on \mathbb{L} , for which each $L_{\omega^{\mu}}: \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$ for ordinals μ is bijective.

 $\tilde{\mathbb{L}}$ is obtained by iteratively adjoining hyperexponentials $E_{\omega^{\mu}}^{\varphi}$ of hyperseries φ . Any $f \in \tilde{\mathbb{L}}$ has a concrete expression involving $\ell_{\gamma} x$'s, e_{γ} 's, real numbers, and transfinite sums.

We have everything we need to define:

Work in progress [B.]

There is a derivation $\tilde{\partial}: \mathbb{\tilde{L}} \longrightarrow \mathbb{\tilde{L}}$ such that $(\mathbb{\tilde{L}}, \tilde{\partial})$ is an elementary extension of the ordered, valued, differential field \mathbb{T}_{LE} of \log -exp transseries.

There are a minimal extension $\tilde{\mathbb{L}}$ of \mathbb{L} , and an extension $\circ: \mathbb{L} \times \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}$ of the composition law on \mathbb{L} , for which each $L_{\omega^{\mu}}: \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$ for ordinals μ is bijective.

 $\tilde{\mathbb{L}}$ is obtained by iteratively adjoining hyperexponentials $E_{\omega^{\mu}}^{\varphi}$ of hyperseries φ . Any $f \in \tilde{\mathbb{L}}$ has a concrete expression involving $\ell_{\gamma} x$'s, e_{γ} 's, real numbers, and transfinite sums.

We have everything we need to define:

Work in progress [B.]

There is a derivation $\tilde{\partial}: \mathbb{\tilde{L}} \longrightarrow \mathbb{\tilde{L}}$ such that $(\mathbb{\tilde{L}}, \tilde{\partial})$ is an elementary extension of the ordered, valued, differential field \mathbb{T}_{LE} of \log -exp transseries.

Work in progress [B.]

There is a composition law $\tilde{\circ}: \mathbb{\tilde{L}} \times \mathbb{\tilde{L}}^{>\mathbb{R}} \longrightarrow \mathbb{\tilde{L}}$ such that $(\tilde{\partial}, \tilde{\circ})$ satisfies the chain rule.

The derivation and composition (on the right) should be strongly linear, i.e. commute with transfinite sums. For instance

$$\left(\sum_{n\in\mathbb{N}} n! e_{\omega}^{\sum_{k\geqslant n}\ell_k x}\right) \circ \left(x + \frac{1}{e_{\omega}^x}\right) = \sum_{n\in\mathbb{N}} n! E_{\omega} \left(\sum_{k\geqslant n} \left(\ell_k x\right) \circ \left(x + \frac{1}{e_{\omega}^x}\right)\right).$$

The derivation and composition (on the right) should be strongly linear, i.e. commute with transfinite sums. For instance

$$\left(\sum_{n\in\mathbb{N}} n! e_{\omega}^{\sum_{k\geqslant n}\ell_k x}\right) \circ \left(x + \frac{1}{e_{\omega}^x}\right) = \sum_{n\in\mathbb{N}} n! E_{\omega} \left(\sum_{k\geqslant n} \frac{(\ell_k x) \circ \left(x + \frac{1}{e_{\omega}^x}\right)}{\operatorname{Taylor}}\right).$$

The derivation and composition (on the right) should be strongly linear, i.e. commute with transfinite sums. For instance

$$\left(\sum_{n \in \mathbb{N}} n! e_{\omega}^{\sum_{k \ge n} \ell_k x}\right) \circ \left(x + \frac{1}{e_{\omega}^x}\right) = \sum_{n \in \mathbb{N}} n! E_{\omega} \left(\sum_{k \ge n} \frac{(\ell_k x) \circ \left(x + \frac{1}{e_{\omega}^x}\right)}{\text{Taylor}}\right)$$

Problem: making sense of those transfinite sums. We use *strongly linear algebra*: a set of order theoretic results regarding a formal notion of summability.

The derivation and composition (on the right) should be strongly linear, i.e. commute with transfinite sums. For instance

$$\left(\sum_{n\in\mathbb{N}} n! e_{\omega}^{\sum_{k\geqslant n}\ell_k x}\right) \circ \left(x + \frac{1}{e_{\omega}^x}\right) = \sum_{n\in\mathbb{N}} n! E_{\omega} \left(\sum_{k\geqslant n} \frac{(\ell_k x) \circ \left(x + \frac{1}{e_{\omega}^x}\right)}{\text{Taylor}}\right)$$

Problem: making sense of those transfinite sums. We use *strongly linear algebra*: a set of order theoretic results regarding a formal notion of summability.

Idea: Hahn series fields are "formal" Banach spaces. Two results of VAN DER HOEVEN:

• If $\Psi: \mathbb{R}[[\mathfrak{M}]] \longrightarrow \mathbb{R}[[\mathfrak{M}]]$ is strongly linear with $\Psi(s) \prec s$ for all $s \neq 0$, then $\mathrm{Id} + \Psi$ has a strongly linear functional inverse

$$(\mathrm{Id} + \Psi)^{[-1]}(s) = \sum_{k \in \mathbb{N}} (-1)^k \Psi^{[k]}(s).$$

• We have a strongly linear implicit function theorem.

Work in progress [B.]: bi-ordered group of hyperseries

The class $(\tilde{\mathbb{L}}^{>\mathbb{R}}, \circ, x, <)$ is a linearly bi-ordered group: $f \in \tilde{\mathbb{L}}^{>\mathbb{R}}$ has an inverse in $\tilde{\mathbb{L}}^{>\mathbb{R}}$ and each function $\tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$; $g \mapsto f \circ g$ is strictly increasing.

Work in progress [B.]: bi-ordered group of hyperseries

The class $(\tilde{\mathbb{L}}^{>\mathbb{R}}, \circ, x, <)$ is a linearly bi-ordered group: $f \in \tilde{\mathbb{L}}^{>\mathbb{R}}$ has an inverse in $\tilde{\mathbb{L}}^{>\mathbb{R}}$ and each function $\tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$; $g \mapsto f \circ g$ is strictly increasing.

This reflects in particular the monotonicity properties of germs in Hardy fields.

Work in progress [B.]: bi-ordered group of hyperseries

The class $(\tilde{\mathbb{L}}^{>\mathbb{R}}, \circ, x, <)$ is a linearly bi-ordered group: $f \in \tilde{\mathbb{L}}^{>\mathbb{R}}$ has an inverse in $\tilde{\mathbb{L}}^{>\mathbb{R}}$ and each function $\tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$; $g \mapsto f \circ g$ is strictly increasing.

This reflects in particular the monotonicity properties of germs in Hardy fields.

Work in progress [B.]: conjugacy Any two series $f, g \in \mathbb{\tilde{L}}^{>\mathbb{R}}$ with f, g > x are conjugate, i.e. satisfy $V \circ f = g \circ V$

for a certain $V \in \tilde{\mathbb{L}}^{>\mathbb{R}}$.

For instance, the series e^x and x + 1 are conjugate via $V = \ell_{\omega} x$:

$$(\ell_{\omega} x) \circ e^x = \ell_{\omega} x + 1.$$

Work in progress [B.]: Taylor expansions

For all $f, g, \delta \in \tilde{\mathbb{L}}$ with $g > \mathbb{R}$, if $\delta \prec g$ and $(\mathfrak{m}' \circ g) \delta \prec \mathfrak{m} \circ \overline{g}$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$f \circ (g + \delta) = \sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^k.$$

Work in progress [B.]: Taylor expansions

For all $f, g, \delta \in \tilde{\mathbb{L}}$ with $g > \mathbb{R}$, if $\delta \prec g$ and $(\mathfrak{m}' \circ g) \delta \prec \mathfrak{m} \circ g$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$f \circ (g + \delta) = \sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^k.$$

Work in progress [B.]: real iterates

For each $x \neq f \in \mathbb{\tilde{L}}^{>\mathbb{R}}$, there is a unique isomorphism $(\mathbb{R}, +, <) \longrightarrow (\mathcal{C}(f), \circ, <)$ sending 1 to f. This is defined by conjugating f with $x \pm 1$: indeed $\mathcal{C}(x+1) = x + \mathbb{R}$.

Work in progress [B.]: Taylor expansions

For all $f, g, \delta \in \tilde{\mathbb{L}}$ with $g > \mathbb{R}$, if $\delta \prec g$ and $(\mathfrak{m}' \circ g) \delta \prec \mathfrak{m} \circ g$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$f \circ (g + \delta) = \sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^k.$$

Work in progress [B.]: real iterates

For each $x \neq f \in \tilde{\mathbb{L}}^{>\mathbb{R}}$, there is a unique isomorphism $(\mathbb{R}, +, <) \longrightarrow (\overline{\mathcal{C}}(f), \circ, <)$ sending 1 to f. This is defined by conjugating f with $x \pm 1$: indeed $\mathcal{C}(x+1) = x + \mathbb{R}$.

Work in progress [B.]: solving inequations

For all $f, g \in \tilde{\mathbb{L}}^{>\mathbb{R}}$ $f > g^{[\mathbb{N}]} > x$, we have $f \circ g > g \circ f$.

Work in progress [B.]: Taylor expansions

For all $f, g, \delta \in \tilde{\mathbb{L}}$ with $g > \mathbb{R}$, if $\delta \prec g$ and $(\mathfrak{m}' \circ g) \delta \prec \mathfrak{m} \circ g$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$f \circ (g + \delta) = \sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^k.$$

Work in progress [B.]: real iterates

For each $x \neq f \in \tilde{\mathbb{L}}^{>\mathbb{R}}$, there is a unique isomorphism $(\mathbb{R}, +, <) \longrightarrow (\overline{\mathcal{C}}(f), \circ, <)$ sending 1 to f. This is defined by conjugating f with $x \pm 1$: indeed $\mathcal{C}(x+1) = x + \mathbb{R}$.

Work in progress [B.]: solving inequations

For all $f, g \in \widetilde{\mathbb{L}}^{>\mathbb{R}}$ $f > g^{[\mathbb{N}]} > x$, we have $f \circ g > g \circ f$.

Any Hardy field with composition which embeds into $\mathbb{\tilde{L}}$ satisfies the conjecture.

Bibliography

Thanks to these:

- [1] M. Aschenbrenner, L. van den Dries, and J. van der Hoeven. The surreal numbers as a universal H-field. Journal of the European Mathematical Society, 21(4), 2019.
- A. Berarducci and V. Mantova. Surreal numbers, derivations and transseries. JEMS, 20(2):339-390, 2018.
- [2] [3] A. Berarducci and V. Mantova. Transseries as germs of surreal functions. Transactions of the American Mathematical Society, 371:3549-3592, 2019.
- M. Boshernitzan. New "orders of infinity". J. d. Analyse Math., 41:130-167, 1981.
- B. Dahn and P. Göring. Notes on exponential-logarithmic terms. Fundamenta Mathematicae, 127(1):45-50, 1987.
- [4] [5] [6] L. van den Dries, J. van der Hoeven, and E. Kaplan. Logarithmic hyperseries. *Transactions of the American Mathematical Society*, 372, 2019.
- [7] L. van den Dries, A. Macintyre, and D. Marker. The elementary theory of restricted analytic fields with exponentiation. Annals of Mathematics, 140(1):183-205, 1994.
- [8] L. van den Dries, A. Macintyre, and D. Marker. Logarithmic-exponential power series. Journal of the London Mathematical Society, 56(3):417-434, 1997.
- L. van den Dries, A. Macintyre, and D. Marker. Logarithmic-exponential series. Annals of Pure and Applied Logic, 111:61–113, [9] 07 2001.
- [10] J. Ecalle. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. Actualités Mathématiques. Hermann. 1992.
- [11] G. H. Hardy. Orders of infinity, the 'Infinitärcalcül' of Paul du Bois-Reymond. Cambridge University Press edition, 1910.
- [12] H. Kneser. Reelle analytische Lösung der Gleichung $\phi(\phi(x)) = e^x$ und verwandter Funktionalgleichungen. Journal Für Die Reine Und Angewandte Mathematik, 1950:56-67, 01 1950.
- [13] D. Marker and C. Miller. Levelled o-minimal structures. Revista Matemática de la Universidad Complutense de Madrid, 10(Special Issue suppl.):241-249, 1997.
- A. Padgett. TBA. PhD thesis, UC Berkeley, 2022. [14]
- [15] M. C. Schmeling. Corps de transséries. PhD thesis, Université Paris-VII, 2001.

and thank you!