Surreal ordered exponential fields

Elliot Kaplan

Fields Institute / McMaster University

January 25, 2022

Kaplan (Fields / McMaster)

Surreal ordered exponential fields

The class of surreal numbers (No) are generated as follows:

Construction

If *L* and *R* are two sets of surreal numbers and no member of *L* is \ge any member of *R*, then {*L* | *R*} is a surreal number.

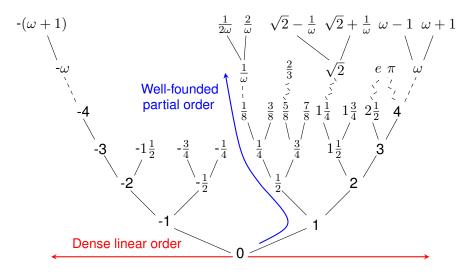
The *simplest* surreal number is $0 = \{ | \}$. After constructing 0, we can construct $1 = \{0 | \}$ and $-1 = \{ | 0 \}$.

We use $\{L \mid R\}$ to denote the *simplest* number lying between L and R, so $\{-1 \mid 1\} = 0$ has already been constructed. Using our numbers 0, 1, and -1, we can construct four *new* numbers:

$$-2 := \{ | -1 \}, \quad -\frac{1}{2} := \{ -1 | 0 \}, \quad \frac{1}{2} := \{ 0 | 1 \}, \quad 2 := \{ 1 | \}.$$

The surreal number tree

The surreal numbers are best visualized as a tree:



Adding and multiplying surreal numbers

Given a surreal number $x = \{L \mid R\}$, we use x^L to denote a typical element of *L*, and x^R to denote a typical element of *R*.

We define x + y by

$$x+y \ := \ \{x^L+y, \ x+y^L \mid x^R+y, \ x+y^R\}.$$

The idea is that $x^L < x$, so $x^L + y < x + y$, and so on.

We define xy by

$$xy \ := \ \left\{ \begin{matrix} x^L y + xy^L - x^L y^L, \\ x^R y + xy^R - x^R y^R \end{matrix} \right| \begin{array}{c} x^L y + xy^R - x^L y^R, \\ x^R y + xy^L - x^R y^L \end{matrix} \right\}.$$

Since $x - x^L, y^R - y > 0$, we should have

$$(x-x^L)(y^R-y) \; = \; x^Ly + xy^R - x^Ly^R - xy \; > \; 0,$$

and so $xy < x^Ly + xy^R - x^Ly^R$.

The surreals admit an *exponential function*, that is, an ordered group isomorphism $\exp: \mathbf{No} \to \mathbf{No}^>$.

This exponential was defined by Gonshor: $\exp x$ is given by

$$\Big\{0, \ (\exp x^L)[x-x^L]_n, \ (\exp x^R)[x-x^R]_{2n+1} \ \Big| \ \frac{\exp x^L}{[x^L-x]_{2n+1}}, \ \frac{\exp x^R}{[x^R-x]_n}\Big\},$$

where $[y]_n := \sum_{k \leq n} \frac{y^k}{k!}$, and $[y]_{2n+1}$ is only included when it is positive.

Theorem (van den Dries-Ehrlich, 2001)

The surreal ordered exponential field is an elementary extension of the real ordered exponential field.

A subclass $X \subseteq No$ is said to be **initial** if it is downward-closed under the well-founded partial order $<_s$.

An **ordered exponential field** is an ordered field *K* with an ordered group isomorphism $\exp: K \to K^>$. An **ordered logarithmic field** is an ordered field *K* with an ordered group *embedding* $\log: K^> \to K$.

In recent work, Philip Ehrlich and I consider the following question:

Question

Which ordered exponential fields are isomorphic to initial exponential subfields of No?

Before giving an answer, I'll briefly discuss the analogous question for *ordered fields*, which was answered by Ehrlich in 2001.

Let Γ be an ordered abelian group (possibly a proper class). The **Hahn** field $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ consists of all transfinite series $\sum_{\beta < \alpha} r_{\beta} t^{\gamma_{\beta}}$, where $(\gamma_{\beta})_{\beta < \alpha}$ is a decreasing sequence in Γ and each r_{β} is in $\mathbb{R} \setminus \{0\}$.

A truncation of $\sum_{\beta < \alpha} r_{\beta} t^{\gamma_{\beta}} \in \mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ is an element of the form $\sum_{\beta < \alpha_0} r_{\beta} t^{\gamma_{\beta}}$ for some $\alpha_0 \leq \alpha$. The **cross-section** of $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ is the multiplicative group t^{Γ} .

Theorem (Conway, 1976)

 $\mathbb{R}((t^{\mathbf{No}}))_{\mathbf{On}}$ is isomorphic to \mathbf{No} , via a map sending t to ω .

Thus, we may represent each $x \in \mathbf{No}$ as a series $x = \sum_{\beta < \alpha} r_{\beta} \omega^{\gamma_{\beta}}$. We sometimes write $\mathbf{No} = \mathbb{R}((\omega^{\mathbf{No}}))_{\mathbf{On}}$.

Initial subfields of No

Let K be a subfield of No. Then $K \subseteq \mathbb{R}((\omega^{\mathbf{No}}))_{\mathbf{On}}$, so take Γ smallest with $K \subseteq \mathbb{R}((\omega^{\Gamma}))_{\mathbf{On}}$. Suppose K is initial. Then:

- $\sum_{\beta < \alpha_0} r_\beta \omega^{\gamma_\beta} \leq_s \sum_{\beta < \alpha} r_\beta \omega^{\gamma_\beta}$ for any $\alpha_0 \leq \alpha$, so *K* is *truncation closed*, i.e. any truncation of $x \in K$ belongs to *K*.
- Suppose $\sum_{\beta < \alpha} r_{\beta} \omega^{\gamma_{\beta}} \in K$ and let $\beta_0 < \alpha$. Then $\sum_{\beta < \beta_0} r_{\beta} \omega^{\gamma_{\beta}}$ and $\sum_{\beta_0 \leq \beta < \alpha} r_{\beta} \omega^{\gamma_{\beta}}$ belong to K. Since $\omega^{\gamma_{\beta_0}} \leq_s \sum_{\beta_0 \leq \beta < \alpha} r_{\beta} \omega^{\gamma_{\beta}}$, we see that $\omega^{\gamma_{\beta_0}} \in K$. Thus, K is *cross-sectional*, i.e. $\omega^{\Gamma} \subseteq K$.
- It follows that Γ is an initial sub*group* of K.

This turns out to be enough:

Theorem (Ehrlich, 2001)

A subfield $K \subseteq \mathbf{No}$ is initial if and only if it is a truncation closed, cross-sectional subfield of $\mathbb{R}((\omega^{\Gamma}))_{\mathbf{On}}$ for some initial subgroup $\Gamma \subseteq \mathbf{No}$.

Corollary

An ordered field *K* is isomorphic to an initial subfield of \mathbf{No} if and only if it is isomorphic to a truncation closed, cross-sectional subfield of $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$, where Γ is isomorphic to an initial ordered subgroup of \mathbf{No} .

Explicitly, $K \subseteq \mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ be truncation closed and cross-sectional, let $\iota: \Gamma \to \mathbf{No}$ be an initial ordered group embedding, and let ι^* be the map:

$$\sum_{\beta < \alpha} r_{\beta} t^{\gamma_{\beta}} \mapsto \sum_{\beta < \alpha} r_{\beta} \omega^{\iota(\gamma_{\beta})} \colon \mathbb{R}((t^{\Gamma}))_{\mathbf{On}} \to \mathbf{No}.$$

Then $\iota^*(K)$ is initial.

Corollary

An initial map ι always exists if Γ is divisible, so any real closed ordered field initially embeds into No by Mourgues-Ressayre.

It follows that the initial exponential subfields of No are exactly the truncation closed, cross-sectional subfields of $\mathbb{R}((\omega^{\Gamma}))_{On}$, where Γ is an initial subgroup of No. This is not a very satisfying answer.

Using the identification $No \simeq \mathbb{R}((\omega^{No}))_{On}$, we can give a nicer description of exp in terms of its restrictions:

- exp maps $\mathbb{R}((\omega^{No^{>}}))_{On}$, the *purely infinite elements*, onto ω^{No} .
- \exp restricts to the real exponential on $\mathbb{R} \subseteq \mathbf{No}$.
- For $\varepsilon \in \mathbf{No}^{\prec}$, the class of *infinitesimal elements*, we have

$$\exp \varepsilon \ = \ \sum_{k=0}^{\infty} \frac{\varepsilon^k}{k!} \ \in \ 1 + \mathbf{No}^{\prec}.$$

• As $No = \mathbb{R}((\omega^{No^{>}}))_{On} \oplus \mathbb{R} \oplus No^{\prec}$, this determines exp.

A logarithmic Hahn field is a Hahn field $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ equipped with an ordered group embedding $\log : \mathbb{R}((t^{\Gamma}))_{\mathbf{On}}^{\geq} \to \mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ where:

- $\log x \leqslant x 1$ for all $x \in \mathbb{R}((t^{\Gamma}))^{>}_{\mathbf{On}}$;
- log maps t^{Γ} into $\mathbb{R}((t^{\Gamma^{>}}))_{\mathbf{On}}$;
- \log restricts to the real logarithm on $\mathbb{R}^>$;
- If ε is infinitesimal, then

$$\log(1+\varepsilon) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\varepsilon^k}{k}.$$

We may naively guess that an ordered exponential field is isomorphic to an initial exponential subfield of No if and only if it is isomorphic to a truncation closed, cross-sectional exponential subfield of a logarithmic Hahn field.

We use the following approach, pioneered by Ressayre (1993) and van den Dries-Macintyre-Marker (1994).

Let *K* be a truncation closed, cross-sectional exponential subfield of a logarithmic Hahn field $\mathbb{R}((t^{\Gamma}))_{On}$. Let K_0 be a truncation closed logarithmic subfield of *K*, and assume that

$$\sum_{\beta < \alpha} r_{\beta} t^{\gamma_{\beta}} \in K_0 \implies t^{\gamma_{\beta}} \in K_0 \text{ for all } \beta.$$

Assume we have an initial logarithmic field embedding $\iota: K_0 \to \mathbf{No}$ which preserves monomials and infinite sums.

- If $x = \sum_{\beta < \alpha} r_{\beta} t^{\gamma_{\beta}} \in K$, α is a limit ordinal, and every proper truncation of x is in K_0 , then ι can be extended to include x.
- If $x \in K^>$ and $\log x \in K_0$, then ι can be extended to include x.

Assume K_0 is maximal with respect to the previous extensions and let $x = t^{\gamma} \in K \setminus K_0$. Define $(x_n)_{n \in \mathbb{N}}$ as follows:

$$x_0 := x, \qquad x_{n+1} := |\log x_n - a_n|$$

where a_n is the maximal truncation of $\log x_n$ in K_0 .

Let
$$y := \left\{ \iota(K_0^{< x}) \mid \iota(K_0^{> x}) \right\}$$
 and set
 $y_0 := y, \qquad y_{n+1} := |\log y_n - \iota(a_n)|.$

Fact

Under mild assumptions, $y_n \in \omega^{No}$ for each n.

Definition (Schmeling, 2001)

A transseries field is a logarithmic Hahn field $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ such that for all sequences $(\gamma_n)_{n\in\mathbb{N}}$ in Γ and $(a_n)_{n\in\mathbb{N}}$ in K, if a_n is a truncation of $\log t^{\gamma_n}$ and $\log t^{\gamma_n} - a_n = rt^{\gamma_{n+1}} + \cdots$, then $\log t^{\gamma_n} - a_n = \pm t^{\gamma_{n+1}}$ for nsufficiently large.

If $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ is a transseries field and $(x_n)_{n\in\mathbb{N}}$ is as above, then $x_n \in t^{\Gamma}$ for *n* sufficiently large.

Theorem (Ehrlich-K., 2021)

An ordered exponential field *K* is isomorphic to an initial exponential subfield of **N**o if and only if it is isomorphic to a truncation closed, cross-sectional subfield of a transseries field $\mathbb{R}((t^{\Gamma}))_{On}$.

Fact (van den Dries-Macintyre-Marker, 1994)

Any Hahn field $\mathbb{R}((t^{\Gamma}))_{On}$ with Γ divisible can be expanded to an elementary extension of \mathbb{R}_{an} , the real field with restricted analytic functions. This is done using Taylor expansion.

Theorem (Ehrlich-K., 2021)

Any elementary extension of $\mathbb{R}_{an,exp}$ admits a truncation closed, cross-sectional exponential field embedding into a transseries field $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ which preserves restricted analytic functions.

Corollary (First shown by Fornasiero, 2013)

Any elementary extension of $\mathbb{R}_{an,exp}$ admits an initial elementary embedding into the surreals.

The same holds when restricted analytic functions are replaced with any *Weierstrass system* which includes the restricted exponential.

Open Question

Let $K \models Th(\mathbb{R}_{exp})$. Does K admit an initial embedding into No?

The obvious approach is to use an embedding result by Ressayre (1993), which gives a truncation closed, cross-sectional field embedding ι of any such K into a Hahn field.

The issue is that for ε infinitesimal, it may not happen that

$$\iota(\log \varepsilon) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{\iota(\varepsilon)^k}{k}.$$

This is really the only obstruction.

In proving the main theorem, we show the following:

Corollary (First shown by Berarducci-Mantova, 2018) The surreals are a transseries field.

Let $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ be a transseries field. An embedding $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}} \to \mathbf{No}$ is called **transserial** if it preserves logarithms, infinite sums, products, and monomials.

Open Question

Which transseries fields admit initial transserial embeddings into No? Which logarithmic fields are isomorphic to initial logarithmic subfields of No?

Looking at the main theorem in a different way, we see that any transseries field which has a truncation closed, cross-sectional exponential subfield admits an initial transserial embedding into No.

Corollary

Any transseries field admits a truncation closed transserial embedding into No.

Proof.

Schmeling showed that any transseries field $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}}$ extends to a transseries field $\mathbb{R}((t^{\Gamma^*}))_{\mathbf{On}}$ which is closed under exponentiation. Any initial transserial embedding $\mathbb{R}((t^{\Gamma^*}))_{\mathbf{On}} \to \mathbf{No}$ induces a truncation closed embedding $\mathbb{R}((t^{\Gamma}))_{\mathbf{On}} \to \mathbf{No}$.

Logarithmic-exponential transseries and derivations

Let \mathbb{T} be the field of logarithmic-exponential transseries. There is a canonical embedding $\mathbb{T} \to \mathbf{No}$ sending x to ω .

This is even an *elementary embedding of differential fields*, with the derivation on No as defined by Berarducci-Mantova (2018).

Theorem (Ehrlich-K., 2021)

The image of the canonical embedding $\mathbb{T} \to \mathbf{No}$ is initial.

Open Question

Which ordered differential fields admit initial embeddings into No?

This question is difficult. There are many possible derivations on No, and while the theory of No as a differential field is understood thanks to Aschenbrenner-van den Dries-van der Hoeven (2017 and 2019), it is still quite complicated.

