From multiple polylogarithms to the universal vector extension of an elliptic curve

Tiago J. Fonseca

IMECC - Unicamp, FAPESP

2021-2022 Fields Number Theory Seminar

- Joint work in progress with Nils Matthes.
- Some algebro-geometric aspects on an elliptic analogue of the theory of multiple polylogarithms (Brown-Levin).
- Algebraic de Rham fundamental group of punctured elliptic curves, over an arbitrary base.
- Classification of unipotent connections on punctured elliptic curves (Levin-Racinet, Hain, Enriquez-Etingof).
- Goal of the talk: make a case for the universal vector extension of an elliptic curve as the right framework to study these questions (Deligne).
- Polylogarithms:

$$
L i_{k}(z)=\sum_{n>0} \frac{z^{n}}{n^{k}}
$$

Example: $L i_{1}(z)=-\log (1-z)$.

- Multiple polylogarithms:

$$
L i_{k_{1}, \ldots, k_{r}}(z)=\sum_{n_{1}>\cdots>n_{r}>0} \frac{z^{n_{1}}}{n_{1}^{k_{1}} \cdots n_{r}^{k_{r}}}
$$

- Arithmetic phenomena when $z \in \overline{\mathbb{Q}}$.

Example (Special values of Dedekind zeta functions)

Zagier's conjecture:

$$
\zeta_{F}^{*}(1-m) \sim \operatorname{det}\left(\mathcal{L}_{m}\left(\xi_{j}^{\sigma}\right)\right),
$$

where $\mathcal{L}_{m}(z)$ are 'single-valued polylogarithms', e.g.

$$
\mathcal{L}_{2}(z)=-2 i \operatorname{Im}\left(L i_{2}(z)\right)+2 \log |z| \log (1-\bar{z})
$$

($m=2,3,4$ proved by Zagier, Goncharov, Goncharov-Rudenko.)
Example (Multiple zeta values)

$$
\zeta\left(k_{1}, \ldots, k_{r}\right)=\sum_{n_{1}>\cdots>n_{r}>0} \frac{1}{n_{1}^{k_{1}} \cdots n_{r}^{k_{r}}}
$$

Theorem (Brown '11): $\zeta\left(k_{1}, \ldots, k_{r}\right)$ with $k_{i} \in\{2,3\}$ span the \mathbb{Q}-vector space of MZVs.

MPLs are solutions of differential equations which come from Algebraic Geometry.
Example
MPLs are iterated integrals of algebraic differential forms on $X=\mathbb{A}^{1} \backslash\{0,1\}=\mathbb{P}^{1} \backslash\{0,1, \infty\}:$

$$
L i_{2}(z)=\int_{0}^{z} L i_{1}(y) \frac{d y}{y}=\int_{0}^{z} \int_{0}^{y} \frac{d x}{x-1} \frac{d y}{y}
$$

Define a connection $\nabla: \mathcal{O}_{X}^{\oplus 3} \rightarrow \Omega_{X}^{1} \otimes \mathcal{O}_{X}^{\oplus 3}$ by

$$
\nabla=d+A_{0} \frac{d t}{t}+A_{1} \frac{d t}{t-1}, \quad A_{0}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), A_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right)
$$

Fundamental system of solutions:

$$
\left(\begin{array}{ccc}
1 & \log z & -L i_{2}(z) \\
0 & 1 & -L i_{1}(z) \\
0 & 0 & 1
\end{array}\right)
$$

Let X be a smooth variety over a field k.

- A connection on a vector bundle \mathcal{V} on X is a morphism of sheaves $\nabla: \mathcal{V} \rightarrow \Omega_{X / k}^{1} \otimes \mathcal{V}$ satisfying

$$
\nabla(f s)=d f \otimes s+f \nabla(s)
$$

where f (resp. s) is a section of $\mathcal{O}_{X}($ resp. $\mathcal{V})$. When $\mathcal{V}=\mathcal{O}_{X} \otimes V$, we can write

$$
\nabla=d+A, \quad A \in \Gamma\left(X, \Omega_{X / k}^{1}\right) \otimes \operatorname{End}_{k}(V)
$$

We say that ∇ is integrable (or flat) if $\nabla \circ \nabla=0$, i.e.,

$$
d A+A \wedge A=0
$$

- We say that (\mathcal{V}, ∇) is unipotent if there exists a filtration

$$
0=\left(\mathcal{V}_{0}, \nabla_{0}\right) \subset\left(\mathcal{V}_{1}, \nabla_{1}\right) \subset \cdots \subset\left(\mathcal{V}_{n}, \nabla_{n}\right)=(\mathcal{V}, \nabla)
$$

such that

$$
\left(\mathcal{V}_{i}, \nabla_{i}\right) /\left(\mathcal{V}_{i-1}, \nabla_{i-1}\right) \cong\left(\mathcal{O}_{X}, d\right) .
$$

Theorem

Let k be a field of characteristic zero. Every unipotent vector bundle with integrable connection on $X=\mathbb{P}_{k}^{1} \backslash\{0,1, \infty\}$ is canonically isomorphic to some

$$
\left(\mathcal{O}_{X} \otimes V, d+\frac{d t}{t} \otimes A_{0}+\frac{d t}{t-1} \otimes A_{1}\right)
$$

where V is a finite dimensional k-vector space, and $A_{0}, A_{1} \in \operatorname{End}_{k}(V)$ are nilpotent.

Remark

- Analytically, flat sections are given by MPLs.
- Related to KZ equations (Knizhnik-Zamolodchikov).
$-\pi_{1}^{\mathrm{dR}}(X, x) \cong \operatorname{Spec}\left(\bigoplus_{n \geq 0}\left(k \frac{d t}{t} \oplus k \frac{d t}{t-1}\right)^{\otimes n}\right)$ canonically.

Proof.

Let (\mathcal{V}, ∇) be a unipotent vector bundle with integrable connection on X. By unipotency, (\mathcal{V}, ∇) is regular singular at infinity and it extends canonically to a unipotent vector bundle with integrable logarithmic connection

$$
\bar{\nabla}: \overline{\mathcal{V}} \rightarrow \Omega_{\mathbb{P}_{k}^{1}}^{1}(\log \{0,1, \infty\}) \otimes \overline{\mathcal{V}}
$$

Since $\overline{\mathcal{V}}$ is unipotent and

$$
H^{0}\left(\mathbb{P}_{k}^{1}, \mathcal{O}\right)=k, \quad H^{1}\left(\mathbb{P}_{k}^{1}, \mathcal{O}\right)=\operatorname{Ext}^{1}(\mathcal{O}, \mathcal{O})=0
$$

the canonical map $\mathcal{O} \otimes V \rightarrow \overline{\mathcal{V}}$ is an isomorphism, where $V=\Gamma\left(\mathbb{P}_{k}^{1}, \overline{\mathcal{V}}\right)$. Thus,

$$
\nabla=d+A
$$

where $A \in \Gamma\left(\mathbb{P}_{k}^{1}, \Omega_{\mathbb{P}_{k}^{1}}^{1}(\log \{0,1, \infty\})\right) \otimes \operatorname{End}_{k}(V)$.To conclude, we remark that

$$
\Gamma\left(\mathbb{P}_{k}^{1}, \Omega_{\mathbb{P}_{k}^{1}}^{1}(\log \{0,1, \infty\})\right)=k \frac{d t}{t} \oplus k \frac{d t}{t-1} .
$$

Elliptic versions of multiple polylogarithms?

- We are looking for analogues of $L i_{k_{1}, \ldots, k_{n}}(z)$ defined over $E \backslash\{O\}$, where E is an elliptic curve and O is the origin.
- Elliptic dilogarithm (Bloch): write $E=\mathbb{C}^{\times} / q^{\mathbb{Z}}$ and define

$$
D_{E}(x)=\sum_{m=-\infty}^{\infty} \mathcal{L}_{2}(q x)
$$

- Computes $L\left(E_{/ \mathbb{Q}}, 2\right)$ (Bloch, Beilinson, Goncharov-Levin).
- Elliptic polylogarithmic sheaves and the Eisenstein symbol (Beilinson, Levin, Deninger, etc.)

Brown-Levin's multiple elliptic polylogarithms ('11):

- Consider the Kronecker function

$$
F_{\tau}(z, w)=\frac{\theta_{\tau}^{\prime}(0) \theta_{\tau}(z+w)}{\theta_{\tau}(z) \theta_{\tau}(w)}
$$

- Let $r(z)=\operatorname{Im}(z) / \operatorname{Im}(\tau)$, and consider the 1-forms

$$
\nu_{B L}=2 \pi i d r, \quad \omega_{B L}^{(n)}, \quad n \geq 0
$$

where

$$
e^{2 \pi i r(z) w} F_{\tau}(z, w)=\sum_{n \geq 0} \omega_{B L}^{(n)} w^{n-1}
$$

Example: $\omega_{B L}^{(0)}=d z, \omega_{B L}^{(1)}=d \log \theta_{\tau}(z)+2 \pi i r(z) d z, \ldots$

- MEPLs are iterated integrals of $\nu_{B L}, \omega_{B L}^{(n)}$ (agrees with q-averaging MPLs).

Where does $r(z)=\operatorname{Im}(z) / \operatorname{Im}(\tau)$ come from?

- Let \mathcal{V} be the vector bundle on $X=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$ given by

$$
(m+n \tau) \cdot\left(v_{1}, v_{2}, z\right)=\left(v_{1}+n v_{2}, v_{2}, z+m+n \tau\right)
$$

- We have a short exact sequence

$$
0 \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{V} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

- A splitting corresponds to a function $f: X \rightarrow \mathbb{C}$ satisfying

$$
f(z+m+n \tau)=f(z)+n
$$

- No such holomorphic f, but we can consider the real-analytic function r.

How to algebraize?

- Consider \mathbb{C}^{2} with coordinates (z, r), and lift the action of $\mathbb{Z}+\mathbb{Z} \tau$ by

$$
(m+n \tau) \cdot(z, r)=(z+m+n \tau, r+n)
$$

- The quotient $\mathbb{C}^{2} /(\mathbb{Z}+\mathbb{Z} \tau)$ has a natural structure of algebraic variety such that the induced projection to $\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$ is algebraic!
- The universal vector extension of an elliptic curve $f: E \rightarrow S$ is a commutative group scheme $g: E^{\natural} \rightarrow S$ which sits into an exact sequence

$$
0 \rightarrow \mathbb{V}\left(R^{1} f_{*} \mathcal{O}_{E}\right) \rightarrow E^{\natural} \xrightarrow{\pi} E \rightarrow 0
$$

and is universal for extensions of E by vector groups. (Rosenlicht, Serre, Grothendieck, Mazur-Messing, etc.)

- $g: E^{\natural} \rightarrow S$ is a smooth group scheme of rel. dimension 2 (not proper neither affine!).

Theorem (Laumon '96)

If S is of characteristic zero, then $g_{*} \mathcal{O}_{E^{\natural}} \cong \mathcal{O}_{S}$ and $R^{n} g_{*} \mathcal{O}_{E^{\natural}}=0$ for $n \geq 1$.

- Use it to classify (relatively) unipotent vector bundles with integrable connection on $E^{\natural} \backslash D$, where $D=\pi^{-1}(O)$.
- Need to understand relative differential forms on E^{\natural} with log poles along D.
Theorem (F.-Matthes '21)
There is a canonical decomposition

$$
g_{*} \Omega_{E^{\natural} / S}^{1}(\log D)=g_{*} \Omega_{E \sharp / S}^{1} \oplus \bigoplus_{n \geq 1} \mathcal{K}^{(n)}
$$

where $\mathcal{K}^{(n)}$ are rank 1 subbundles uniquely determined by

1. $d \mathcal{K}^{(n)}=g_{*} \Omega_{E^{\natural} / S}^{1} \wedge \mathcal{K}^{(n-1)}$, where $\mathcal{K}^{(0)}:=f_{*} \Omega_{E / S}^{1}$,
2. $\mathcal{K}^{(n)} \wedge \mathcal{K}^{(0)}=0$,
3. $\operatorname{Res}_{D}\left(\mathcal{K}^{(n)}\right)$ has degree $n-1$.

If $\nu, \omega^{(0)}$ trivializes $g_{*} \Omega_{E^{\natural} / S}^{1}$, with $\omega^{(0)}$ in $\mathcal{K}^{(0)}$, then there are unique trivializations $\omega^{(n)}$ of $\mathcal{K}^{(n)}$ such that

1. $d \omega^{(n)}=\nu \wedge \omega^{(n-1)}$,
2. $\omega^{(n)} \wedge \omega^{(0)}=0$,
3. $\operatorname{Res}_{D}\left(\omega^{(n)}\right)=\frac{t^{n-1}}{(n-1)!}$, where $t: D \xrightarrow{\sim} \mathbb{A}_{S}^{1}$ is induced by ν.

Theorem (F.-Matthes '21)

Every relatively unipotent vector bundle with integrable connection on $E^{\natural} \backslash D$ over S is canonically isomorphic to some

$$
\left(g^{*} \mathcal{W}, d+A \otimes \nu+B_{0} \otimes \omega^{(0)}+\sum_{n \geq 1} a d_{A}^{n}\left(B_{0}\right) \otimes \omega^{(n)}\right)
$$

where \mathcal{W} is a vector bundle over S, and A, B_{0} are nilpotent endomorphisms of \mathcal{W}.
Note: pullback by $\pi: E^{\natural} \rightarrow E$ gives a classification of relatively unipotent vector bundles with integrable connection on $E \backslash\{O\}$.

- Let $S=\operatorname{Spec}(k)$. Using that $H^{0}\left(E^{\natural}, \Omega^{1}\right) \cong H_{d R}^{1}(E / k)$, get canonical isomorphism

$$
\pi_{1}^{d R}(E \backslash\{0\}, x) \cong \operatorname{Spec}\left(\bigoplus_{n \geq 0} H_{d R}^{1}(E / k)^{\otimes n}\right)
$$

- Take $k=\mathbb{C}, E(\mathbb{C}) \cong \mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$. Thus $E^{\natural} \cong \mathbb{C}^{2} /(\mathbb{Z}+\mathbb{Z} \tau)$ and we have a real-analytic section

$$
\begin{aligned}
& E^{\natural}(\mathbb{C}) \\
& \mathcal{S}\left(\downarrow_{\rrbracket} \quad \mathcal{S}(z)=(z, \operatorname{Im}(z) / \operatorname{Im}(\tau))\right. \\
& E(\mathbb{C})
\end{aligned}
$$

Then

$$
\mathcal{S}^{*} \nu=\nu_{B L}, \quad \mathcal{S}^{*} \omega^{(n)}=\omega_{B L}^{(n)}, \quad n \geq 1
$$

- Real-analytic flat sections of unipotent vector bundles with integrable connection on $E(\mathbb{C}) \backslash\{O\}$ are given by Brown-Levin's MEPLs.

Comments on KZB:

- Last theorem is related to the 'universal elliptic KZB equation' (Knizhnik-Zamolodchikov-Bernard), which lives on $\mathcal{M}_{1,2}$.
- Calaque-Enriquez-Etingof, Levin-Racinet, Hain:
9.2. The formula. The connection is defined by a 1 -form

$$
\omega \in \Omega^{1}(\mathbb{C} \times \mathfrak{h}, \log \Lambda) \hat{\otimes} \text { End } \mathfrak{p}
$$

via the formula

$$
\nabla f=d f+\omega f
$$

where $f: \mathbb{C} \times \mathfrak{h} \rightarrow \mathfrak{p}$ is a (locally defined) section of (9.1). Specifically,

$$
\omega=\frac{1}{2 \pi i} d \tau \otimes \mathbf{a} \frac{\partial}{\partial \mathbf{t}}+\psi+\nu
$$

where

$$
\psi=\sum_{m \geq 1}\left(\frac{(2 \pi i)^{2 m+1}}{(2 m)!} G_{2 m+2}(\tau) d \tau \otimes \sum_{\substack{j+k=2 m+1 \\ j, k>0}}(-1)^{j}\left[\operatorname{ad}_{\mathbf{t}}^{j}(\mathbf{a}), \operatorname{ad}_{\mathbf{t}}^{k}(\mathbf{a})\right] \frac{\partial}{\partial \mathbf{a}}\right)
$$

and

$$
\nu=\mathbf{t} F(\xi, \mathbf{t}, \tau) \cdot \mathbf{a} d \xi+\frac{1}{2 \pi i}\left(\frac{1}{\mathbf{t}}+\mathbf{t} \frac{\partial F}{\partial \mathbf{t}}(\xi, \mathbf{t}, \tau)\right) \cdot \mathbf{a} d \tau .
$$

- Algebraicity results (Hain, Luo) rely on explicit formulas and well-chosen \mathbb{Q}-structures.
- We can give a purely algebraic construction of KZB. Formulas reflect the geometry of the universal vector extension.
- Key structure: 'crystalline nature' of universal vector extensions.

Theorem (F.-Matthes '21)
Assume that S is a smooth k-scheme. Then

$$
0 \rightarrow \Omega_{S / k}^{1} \rightarrow g_{*} \Omega_{E^{\natural} / k}^{1}(\log D) \rightarrow g_{*} \Omega_{E^{\natural} / S}^{1}(\log D) \rightarrow 0
$$

is exact and has a canonical splitting.

- Example on the uniformization:

$$
\tilde{\omega}^{(1)}=\left(\frac{\theta_{\tau}^{\prime}(z)}{\theta_{\tau}(z)}+2 \pi i r\right) d z+\frac{1}{2 \pi i}\left(\frac{1}{2} \frac{\theta_{\tau}^{\prime \prime}(z)}{\theta_{\tau}(z)}-\frac{1}{6} \frac{\theta_{\tau}^{\prime \prime \prime}(0)}{\theta_{\tau}^{\prime}(0)}-\frac{(2 \pi i r)^{2}}{2}\right) d \tau
$$

Further commments and directions:

- Universal Mixed Elliptic Motives (Hain-Matsumoto).
- Case $E \backslash E[n]$. Analogous to theory of cyclotomic MZV and cyclotomic KZ equation. Algebraicity of level n KZB?
- Motivic theory (à la Brown) of elliptic multiple zeta values. Action of motivic Galois group. Explanation of modular/elliptic phenomena of MZVs.

