
Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)

An analytic distributionD onM is a coherent subsheaf of the sheaf of sections of TM.

At each point p, the stalk Dp is generated by a finite set of germs of vector fields fX1;: : :;
Xkg.

A (singular) foliation is an analytic distribution F which is involutive

Namely,

8X;Y 2Fx: [X;Y ]2Fx

For p2M , let TpF�TpM denote the subspace fX1(p); : : : ;Xk(p)g (where fXig generates
the stalk).

Note that p!dimTpF is an upper semi-continuous function.

The dimension of F is generic dimension of TpF

A leaf of F is a maximal connected immersed submanifold L�M such that

8p2L: TpL=TpF

Integrability Theorem (Sussman): There exists a leaf of F through each point p2M .



Classical Frobenius Theorem: Let p2M be such that F locally defines a subbundle of
the tangent bundle TM (i.e. TF is locally of constant dimension d).

Then, there exists local coordinates (x1; : : : ; xn) such that

The leafs of F are locally given by

xd+1= � � �=xn= const

where d= dimTpF.

Singular example (with degeneracy of the rank): D is generated by x @

@x
+ y @

@y
and @

@z



In this course, we will be mostly interested in foliations by curves

In this context, we can assume the subsheaf D to be locally generated by a single vector
field.

A singular foliation by curves F on M is defined by a collection f(Ui; @i)gi2I where

1) (Ui)i2I is an open covering of M

2) @i is an analytic vector field in Ui

Such that, for each i; j 2 I, we have

@i= 'ij @j

for some non-zero analytic function 'ij 2O?(Ui\Uj).

Each @i will be called a local generator of F .

More generally, each vector field @ with domain an open set U �M is a local generator if

@ jUi\U='i @i

for some 'i 2O?(Ui\U).

Remark: In general, we cannot expect to have a single global generator for a foliation.



We authorize reparametrizations of time
for the solution curves

In the real analytic setting, we usually demand that 'ij> 0.



In local coordinates x=(x1; : : : ; xn), each local generator can be written

@= a1
@
@x1

+ � � �+ an
@
@xn

with a1; : : : ; an analytic functions.

The singular set of F is the locally defined by the vanishing locus of the ideal generated
by (a1; : : : ; an)

Sing(F)=Z(a1; : : : ; an)

Some simple examples . . .

Example 1:

@= f(x) @
@x



Example 2:

@= f(x2+ y2)
�
x
@
@x

+ y
@
@y

�



Example 2:

@= f(x2+ y2)
�
x
@
@x

+ y
@
@y

�

flow box

In these examples, Sing(F) is a codimension one analytic subset.

We could potentially consider the so-called saturated foliation Fsat, defined by 1

f
@



Example 3:

@= f(x2+ y2)
�
x
@
@x

+ y
@
@y

�
+
�
¡y @

@x
+x @

@y

�

limit cycle



Example 4: (�singular perturbation problems�) R3 with coordinates (x; y; ")

@= f(x2+ y2)
�
x
@
@x

+ y
@
@y

�
+ "
�
¡y @

@x
+x @

@y

�

"

1-parameter family of limit cycles

Invariant fibration f"= constg



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

2) Classify foliations Ck or topologically

3) Determine the asymptotic behaviour of a typical leaf.

4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on M nSing(F).

We would like to understand the foliation in the vicinity of its singular points.

Thom: The singularities are the organizing centers of the dynamics .

As a first step, we would like to describe the transverse behaviour of the foliation by
looking at its so-called

Holonomy Groupoid
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any path p! q on L can be lifted to nearby leafsp

q



L




�

hol: (�; p)! (
; q)

hol2Diff!(�!
)



Adding a singularity on the path. . .




�

Sing

hol2/ Diff!(�;
)

In general, there is an intrinsic multivaluedness for such map.

This is a very well-studied problem for foliations in surfaces.

It is in the heart of the Hilbert's XVIth's problem.

(see the course of Patrick. . . )



Elementary germs - and some words about classical normal forms. . . (over C)

A germ of vector field @ at p2M defines a derivation of the local ring (O;m)=(Op;mp).

Namely, in local coordinates x=(x1; : : : ; xn) we can write

@= a1
@
@x1

+ � � �+ an
@
@xn

with a1; : : : ; an2O and @ defines a linear C-endomorphism of O by

f 7¡! @f = a1
@f

@x1
+ � � �+ an

@f

@xn

which moreover satisfies the Leibniz rule @(fg)= (@f) g+ f(@g). We note @ 2Der(O).

The germ is singular if a1; : : : ; an vanish at p (i.e. a1; : : : ; an2m)

This is equivalent to require that

@(m)�m; where m=(x1; : : : ; xn)O

(i.e. that @ 2EndC(O) stabilizes the maximal ideal)



Non-singular case: Assume that @(m)�m.

Flow-box Theorem Then, there exists local analytic coordinates (f ; g1;:::; gn¡1) such
that

@f =1 and @g1= � � �= @gn¡1=0

i.e. @= @

@f
.

Proof. Choose a local coordinate f 2m such that @f =u (unit).

Let us assume that u=1 to simplify.

We complete f to a local system of coordinates (f ; g1; : : : ; gn¡1),

and consider the linear operator O!O given by

�= I ¡ f@+ � � �+(¡1)nf
n

n!
@n+ � � �

Notice that, for all h2O,

@(�h)= @
X
n>0

(¡1)nf
n

n!
@nh=0

Therefore f ;�(g1); : : : ;�(gn¡1) is the required new coordinate system.



Singular case: Assume that now that @(m)�m.

Then, (by Leibniz' rule) @(mk+1)�mk+1 for each k 2N, and @ induces an sequence of
endomorphism f@kgk on the jet spaces

Jk=O/mk+1

which is compatible with projections �kl: Jk!J l (k > l).

By considering the inverse limit (under Krull completion), of the classical Jordan decom-
positions of the finite dimensional endomorphisms @k, we obtain a unique Jordan
decomposition

@= @s+ @n; [@s; @n] = 0

where

� @s is semi-simple

� @n is asymptotically nilpotent (i.e. nilpotent restricted to each jet space).

Moreover, @s and @n are derivations of Ô = lim
 ¡

Jk (see Jean Martinet - Exposé Bour-
baki'81).



By the semi-simplicity of @s, we have direct sum decompositions

8k 2N: Jk=
M
�2C

Gr�(Jk; @s)

where Gr�(Jk; @)= ff 2Jk j @f =�f g:

with the compatibility condition

8k > l: �kl(Gr�(Jk; @s))=Gr�(J l; @s)

derived from the commutative diagram

JkJk

Jk¡1 Jk¡1

@k

@k¡1

�k;k¡1�k;k¡1



Definition. A germ of vector field @ is elementary if:

� either @(m)�m (i.e. in appropriate local coordinates @= @

@x
)

� Or @(m)�m and

@s=/ 0

Poincaré-Dulac normalisation: (overC) Suppose that @(m)�m. Then, there exists
formal coordinates (x1; : : : ; xn) which diagonalize the semi-simple part of @, namely such
that

@s=
X
i

�ixi
@
@xi

In these coordinates, each eigenspace of the direct sum decomposition

Ô=
M
�2C

Gr�(Ô; @s)

is generated (over C) by the monomials xk=x1
k1: : :xn

kn such that hk; �i=�.



What can we say about @n?

The set of diagonal vector fields

L(�)=
X
i=1

n

�ixi
@
@xi

; �2Cn

forms an abelian Lie C-subalgebra, i.e. [L(�); L(�)]= 0.

We say that it is a maximal toral subalgebra of Der(O).

Writing @ = @s+ @n, and assuming @s= L(�) (as in the Theorem), the commutativity
relation

[@s; @n] = 0

implies that @n can be expanded as

@n=
X
k

xkL(�k)

where k ranges over the subset Zn n f0g such that h�; ki=0. These are the resonant
monomials.



Example. (1:1) saddle. Consider a vector field having an initial expansion (in arbitrary
coordianates)

@=(x+ : : :) @
@x
¡ (y+ � � �) @

@y

Then, Spec(@ jJ1)= f1;¡1g and the resonant monomials are (xy)k, k 2Z.

The Poincaré-Dulac Theorem says that, up to a formal change of coordinates, we can
write

@=
�
x
@
@x
¡ y @

@y

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

@s

+
X
k>1

(xy)k
�
akx

@
@x

+ bk y
@
@y

�
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@n

where u=xy is the generator of the subring ker(@s). By further reductions, we can write

(1+F )
��

x
@
@x
¡ y @

@y

�
+ un

1+ �un

�
x
@
@x

+ y
@
@y

��
or (1+F )

�
x
@
@x
¡ y @

@y

�

for some F 2C[[u]] of order >1, n> 1 and �2C.



Application: Integrability of Poincaré-Dulac normal forms

@=(1+F )
��
x
@

@x
¡ y @

@y

�
+ un

1+ �un

�
x
@

@x
+ y

@

@y

��
Up to reparametrization of time, we can assume that F =0.

Consider the new variables u=xy; v=x/y and get

@(u)= 2 un+1

1+ �un
; @(v)= 2v

which is a fully integrable system.

The corresponding differential system is given by�
1

un+1
+ �

1
u

�
du= dv

v

and, by direct integration,

I = 1
nun

+ � lnu¡ ln v

is a first integral of the vector field (namely, @I =0). It is an element of Ran;exp.



Example: (�: �)-saddle.

@=(�x+ : : :) @
@x
¡ (�y+ � � �) @

@y

Then, Spec(@ jJ1)= f�;¡�g

�k+ �l=0
l

k

If �/�2/Q then the Poincaré-Dulac normal form is

@=�x @
@x
¡ �y @

@y

and the first integral is simply I =x�y�.



Two saddles (�: �) and (�0: �0) have exactly the same topological phase portrait over R2

but they are completely different over C2 for �/�=/ �0/�0.

fy= 0g

Over C2: There are several rigidity phenomena

E.g. Some analytic invariants are topologically determined (for instance, linearizability).



Transverse behaviour of the foliation in the vicinity of a saddle point.

There are two holonomy maps of interest:

1)

�


D

Corner transitionmap

2) In the complex setting . . .


C

�?
�The� Holonomy map

We can recover the (orbital) analytic class of the saddle from the analytic class of one of
these maps (once we fix the ratio �/�)



Definition: Two germs of vector fields

@; @~2Der(O)

(seen as derivations of the local ring)

are analytically conjugated if there exists an automorphism

'2Aut(O)

(i.e. an C-endomorphism of the local ring such that '(fg)= '(f)'(g)) such that

'¡1 @'= @~

Definition: Two germs of vector fields @; @~ are orbitally analytic equivalent if there
exists a unit u2Cfxg such that @ is analytically conjugated to u@~.






rotation

Dynamics of the complex holonomy map as an element of Diff(C; 0)

parabolic fixed point

Perez¡Marco0s
hedgehogs



Classification Problem: �Describe� the orbits of the action of Aut(Cfxg) on Der(Cfxg)
by conjugation

('; @) 7¡! ' � @= '¡1 @'

I.e. local analytic changes of coordinates.

@

Invariant

Aut(Cfxg) � @

@� @~() Invariant(@)= Invariant(@~)

The problem is reasonably well-understood for elementary singularities in dimension
two (modulo some very hard small divisor problems) see e.g. Dulac,Ecalle,Ilyashenko,Mar-
tinet,Ramis,Yoccoz and Perez Marco, . . . works.

This problem is much less understood for vector fields higher dimensions.



What about the local transverse behaviour in the vicinity of non-elementary singular-
ities?

Example: (Cerveau-Moussu 1988) The cuspidal singularity

@=2y @
@x

+3x2 @
@y

+�

00Almost00first integral: f(x; y)= y2¡x3

@s=0; Jac(0;0)=
�
0 2
0 0

�

For � of (2,3)-quasi homogeneous order >2, there exists a local analytic coordinate
change such that, up to division by a unit,

@=2y @
@x

+3x2 @
@y

+ r(x; y)
�
2x @

@x
+3y @

@x

�
; r 2m

@(f)= 6rf .

The cusp ¡= ff =0g is an invariant curve.



¡

Dout



¡

DintDout

There are two distinct corner transition maps.






The holonomy map does not






The holonomy map does not
classify the singularity



Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

d(y2¡x3)

Blow-up 1: x! x; y!xy

d(x2(y2¡x))

Blow-up 2: x! xy; y! y

d(x2y3(y¡x))

Blow-up 3: x! x; y!xy

d(x6y3(y¡ 1))

(1: 2)

(1: 6)

(3: 1)



All singularities are now elementary saddles.



All singularities are now elementary saddles.

The foliation is now organized in a neighborhood of the exceptional divisor..





Can we recover the analytic moduli from the transverse behaviour?



Can we recover the analytic moduli from the transverse behaviour?



Can we recover the analytic moduli from the transverse behaviour?

�

(Moussu) The vanishing holonomy Hol(F ; L)= hf ; g 2Diff(C; 0) j f2= g3= idi
characterizes the analytic class of the germ of foliation.

L=P1 n fs1; s2; s3g



Nilpotent locus for foliations by curves

The nilpotent locus of a foliated manifold is the subset Nilp(M;F) of points where F is
not elementary.

Claim: Nilp(M;F) is an analytic (or algebraic) subset of M .

(in fact, p 2Nilp(M;F) () @(mp)�mp and @1 2EndC(mp/mp
2) is a nilpotent endo-

morphism, for @ some arbitrarily chosen local generator).

Alternatively,

p2Nilp(M;F)()8k 2N9n2N : (@k)n=0

where @k: Jk!Jk is the induced derivation on the kth jet.



Suppose that (M;F) is further equipped with a normal crossings divisor E.

Definition:We say that F is adapted toE each irreducible component is invariant by F.

More precisely, for each point p2M , consider

� @ a local generator of F, and

�f an equation for a local irreducible component of E,

Then

8i2N : @(hf ii)�hf ii

We further say that F is tightly adapted to D if there exists an index i such that

@(hf ii)�hf i+1i



In other words, for E=(x1: : :xk=0),

@=
X
i=1

k

ai

�
xi

@
@xi

�
+
X

i=k+1

n

ai
@
@xi

with a1; : : : ; an2Cfxg such that ha1; : : : ; ani� hxii, for each i=1; : : : ; k.



Example: E=(x=0)

@= ax @
@x

+ b @
@y

with ha; bi� hxi

b=/ 0: The generic point on the divisor is non-singular

b=0: The generic point on the divisor is an elementary singularity

(The singular set of the foliation can have codimension one components)

F is tightly adapted to E() no irreducible component of E lies onNilp(M;F)



The problem of elimination of the nilpotent locus

A singularly foliated manifold is a triple (M;E;F) formed by a manifold M , equipped
with

� A normal crossings divisor E and

� A singular foliation by curves F which is tightly adapted to E.

such that Nilp(M;F) has codimension greater or equal than two.

Problem: For each relatively compact subset M0�M , find a finite sequence of blowing-
ups

(M0; E0;F0) ¡
�1 � � � ¡�n (Mn; En;Fn)

such that:

1) The center Ci of �i has normal crossings with Ei and is contained in Nilp(Mi;Fi)

2) Nilp(Mn;Fn)= ;.



How to compute the transform of a foliation by blowing-up?

via local generators, In local coordinates

x1! x1; x2!x1x2 : : : xn! x1xn

It is easier to compute the strict transform of the logarithmic basis
n
x1

@

@x1
;:::; xn

@

@xn

o
.

x1
@
@x1
¡!x1

@
@x1
¡x2

@
@x1
¡ � � � ¡xn

@
@xn

x2
@

@x2
!x2

@

@x2
; : : : ; xn

@

@xn
!xn

@

@xn

(or via de dual basis of logarithmic one-forms
n
dx1
x1
; : : : ;

dxn
xn

o
)



Example: (�: �)¡ linear saddle, �; �> 0

�x
@
@x
¡ �y @

@y
(�: �)

Under the substitution x!x; y! xy

�

�
x
@
@x
¡ y @

@y

�
¡ �y @

@y
(�:�+ �)

Under the substitution x!xy; y! y

�x
@
@x
¡ �
�
y
@
@y
¡x @

@x

�
(�+ �: �)

We can never get rid of saddle points...



Example: node

x
@
@x

+ �y
@
@y

; �> 0

�> 1

�< 1

�=1
(dicritical situation)

�~= �¡ 1

�~= 1

�
¡ 1

�= �0+
1

�1+
1
� � �

We can never get rid of a node if �2/Q.



Example: saddle-nodes

xkx
@
@x

+ y
@
@y

k> 1

After m directional blowing-ups: x!x; y! xy

xk
�
x
@
@x
¡my @

@y

�
+ y

@
@y

This model is completely stable. It is a final model.

First integral h=(xmy) exp
�

1
kxk

�



Blowing-up centers with tangencies with the foliation can create non-elemen-
tary points.

@= @
@x

+xk @
@y
; k> 1

In logarithmic basis:

x¡1
�
x
@
@x

�
+xk y¡1

�
y
@
@y

�

Center (x=0): @~=x@=x @
@x

+xk+1 @
@y

Center (y=0): @~= y@= y
@
@x

+xk
�
y
@
@y

�
(nilpotent singularity)



Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for
singularly foliated surfaces.

But. . . It is false for dimM > 3.

Example of Sanz and Sancho-Salas:

@=
�
y
@
@x

+xz @
@y

�
+ �z

�
x
@
@x

+ y
@
@y

�
¡ z
�
¡x @

@x
+2z @

@z

�
+�z @

@x

is tangent to the Whitney umbrella W = y2¡ zx2.

y= z
p

x

pintch point



Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for
singularly foliated surfaces.

But. . . It is false for dimM > 3.

Example of Sanz and Sancho-Salas:

@=
�
y
@
@x

+xz @
@y

�
+ �z

�
x
@
@x

+ y
@
@y

�
¡ z
�
¡x @

@x
+2z @

@z

�
+�z @

@x

with � 2/ 1

2
Z>0; �2C?.

pintch point

x= �(z)=
P
�nz

n; �n�� (n!)2

y= �(z)=
P
�nz

n; �n�� (n!)2

Formal expansion of the �handle�

We cannot take the handle as a blowing-up center because it is non-analytic.



Weighted blowing-up

Fix some ! 2 (Z>0)n and consider the orbits of the action of C? on Cn n f0g by

(t; x) 7¡! t �x= t!x=(t!1x1; : : : ; t!nxn)

The orbit space is the so-called weighted projective space

�:Cn n f0g¡!P!
n¡1

x! orbit through x

We consider the graph of the quotient mapping as a subset of Cn�P!
n¡1

Graph(�)�Cn�P!
n¡1

The blowed-up space is its Zariski-closure

Me =Graph(�) Zar

and the projection �:Me !Cn is the weighted blowing-up of the origin in Cn.



Me



Structure of P!
n¡1: The hyperplanes fxi=1g are slices for the torus action modulo the

action of a group of symmetries.

slice fx=1g

Z/2Z

!=(2; 1)

We have to take into account the quotient by Z/2Z.

y�¡yt � (x; y)= (t2x; ty)

Example



The charts of a weighted-blowing up

The x1-directional chart is given by

x1 ! y1
!1

x2 ! y1
!1 y2

��� ���
xn ! y1

!n yn

We interpret (y1;::; yn) as an orbifold chart onMe . Namely the affine space Cn equipped
with an action of the cyclic group Z/!1Z, defined by

y1! �y1; For 26 k6n: yk¡! �¡!k yk

where � is a !1th-primitive root of unity. The other charts are defined analogously.

The glueing of these charts equipps Me with the structure of an orbifold.



Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie
groupoids)

Let M be a paracompact Hausdorff space.

An orbifold chart on M is given by triple (U ;G; �) where U is a connected open subset
of Rn (or Cn), G is a finite subgroup of Diff(U) and �:U!M is an open map

which induces a homeomorphism U /G! �(U).

An embedding �: (V ;H;  ) ,! (U ;G; �) between orbifold charts on M is an embedding
�:V !U such that � ��=  (this induces an injective homomorphism H!G).

Two orbifold charts (U ;G; �) and (V ;H; ) onM are compatible if for any z2�(U)\ (v)
there exists an orbifold chart (W ;K; �) defined near z and embeddings

(W ;K; �) ,! (U ;G; �); (W ;K; �) ,! (V ;H;  )

An orbifold atlas onM is a collection U =f(Ui;Gi; �i)gi2I of pairwise compatible orbifold
charts such that f�(Ui)gi2I forms an open cover of M .

An orbifold is a pair (M;U) where M is paracompact Hausdorff topological space and
U is a maximal orbifold atlas on M .

A sub-variety Y �M is a sub-orbifold if for each point p2Y there exists a local chart
(U ;G; �) such that �¡1(Y \U) is a G-invariant submanifold of U .



Important: 1) The local group actions are part of the structure.

�Remember the group�

2) The underlying topological space can be a singular.

Example: X =C2/G, G=Z/2Z

(x; y)¡! (¡x;¡y)

X =SpecC[x; y]G (ring of invariants)

C[x; y]G=C[x2; xy; y2]

X = specC[u; v; w]/(v2¡uw )

X is the quadratic cone.



General idea: The weighted blowing-up allows to take into account some natural
quasi-homogeneous filtration of the initial object.

Example: Let us blow-up the origin in C3 with weight ! = (1; 2; 2) and look at the
pull-back of the Whitney umbrella w= y2¡ zx2

In the z-directional chart we obtain

x! zx; y! z2 y; z! z2

and w= z4(y2¡x2) becomes a normal crossings divisor.

This is the orbifold chart (C3;Z/2Z; �), where the action is (x; y; z)! (¡x; y;¡z)



Over R: We can alternatively work in the category of manifold with corners

The spherical blowing-up of Rn at the origin with weight ! is the real analytic map

�:R>0�Sn¡1¡!Rn

given by �(t; x�)= t!x�. The exceptional divisor is the boundary

boundary(R>0�Sn¡1)= f0g�Sn¡1

In general, we require the blowing-up center to have normal crossings with the boundary.

(advantage: stay in the category of smooth manifolds)

(drawback: we �forget the group� and potentially loose information about the local syme-
tries)

(c.f. Melrose's �Analysis on manifolds with corners� - online)



Example: Spherical blowing-up of the (real) Whitney umbrella

�:R>0�S2¡!R3

Two z-directional �slices�:

z=1

z=¡1

fz > 0g-chart: x! zx; y! z2y, z! z2: f = z4(y2¡x2)

fz < 0g-chart: x! z2x; y! z2y, z!¡z2: f = z4(y2+x2)

fx> 0g-chart: x!�x; y!x2y, z!x2z: f =x4(y2¡ z)



Weighted blowing-up along global centers

If we consider the torus action

(t; x) 7¡! t �x= t!x=(t!1x1; : : : ; t!kxk; xk+1; : : : ; xn)

Then the above construction leads to a local blowing-up with center C =Z(x1; : : : ; xk).

We need to understand how to glue-up these local actions in order to obtain globally
defined blowing-up with center C.

C



Existence of global Weighted blowing-ups

A weighted blowing-up of a point p2M is fully determined by a quasi-homogeneous
filtration of the local ring. Namely a filtration

Op=O0�O1�O2� � � � Ok �Ol�Ok+l;

such that in appropriate coordinates (x1; : : : ; xn), we have x12O!1; ..,xn2O!n.

In other words, Ok is the subring of functions of quasi-homogeneous weight >k.

In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) C �
M , we need to require the existence of a global trivialization of C

Such that the diffeomorphisms between the transition charts respects the local quasi-
homogeneous filtration. This is a non-trivial topological restriction.

More abstractly: This amounts to the existence of a global weighted filtration of the
structure sheaf . Namely a sequence of nested of ideal sheafs

O=F0�F1� � � �

such that FiFj �Fi+j and such that, for each point p on the support, the stalk of this
filtration coincides with a quasi-homogeneous filtration as defined above.



Example: C =Z(x; y)�C3

!=(1; �; 0)2Z3

� > 1

All automorphisms of the form

x!x+ �ym; y! y+ �xl; l> �

preserve the (1; �; 0)-filtration of C[x; y; z].

More generally, all automorphisms obtained by integrating the Lie algebra (over C)
generated by �

x
@
@x
; y

@
@y
; xl

@
@y
; ym

@
@x

j m> 1; l> �
�



Weighted blowing-up of vector fields

x1! x1
!1; For 26 k6n: xk!x1

!kxk

Transformation of the logarithmic basis

x1
@
@x1
¡! 1

!1

�
x1

@
@x1
¡!2x2

@
@x2
¡ � � � ¡!nxn

@
@xn

�

xk
@
@xk
¡!xk

@
@xk

Example: @=x @

@x
+ny @

@y
, n2Z>0.

x!x; y!xny

@=x @
@x

The solution curves of @ are precisely the orbits of the torus action t � (x; y)= (tx; tny).



Example: weighted resolution of the cuspidal singularity

@=2y @
@x

+3x2 @
@y

+�

Based on the quasi-homogeneity the almost first integral y2¡ x3, we consider the blow-
up with weight (2; 3).

We write @ in the logarithmic basis

@=2x¡1y
�
x
@
@x

�
+3x2y¡1

�
y
@
@y

�
+�

In the x-chart: x!x2; y!x3y: (Using the assumption of the (2; 3)-order of �)

@=xy
�
x
@

@x
¡ 3y @

@y

�
+3xy¡1

�
y
@

@y

�
+x2�=x

�
xy

@

@x
+3(1¡ y2) @

@y

�
+x2�

The divisor fx=0g is contained in the nilpotent locus. We factor out x and write

@1=xy
@
@x

+3(1¡ y2) @
@y

+�1



In the y-chart: x! y2x; y! y3:

The original cuspidal foliation

@=2x¡1y
�
x
@
@x

�
+3x2y¡1

�
y
@
@y

�
+�

transforms into

@=2x¡1y
�
x
@
@x

�
+x2y

�
y
@
@y
¡ 2x @

@x

�
+ y2�= y

�
2(1¡x3) @

@x
+x2y @

@y

�
+ y2�

and, factoring out y, we obtain

@2=2(1¡x3) @
@x
¡x2y @

@y
+�2

The resulting perturbation � is of quadratic order along E (does not change the eingen-
values at the singular point)



Local symmetries of the foliated orbifold

C2;Z/2Z

C2/Z/3Z
L=P(2;3)

1 n fsg




�

The fundamental group of the (orbi-)leaf L is

�1(L)= f
; �; �j 
2= �3=1; �= 
�g

w= z3

�



@1=xy
@
@x

+3(1¡ y2) @
@y

Z/2Z

g �x=¡x; g � y!¡y

g � @1=¡@1

Other chart

@2=2(1¡x3) @
@x
¡x2y @

@y

g �x= �¡2x; g � y= � y; (�3= id)

g � @2= �2@2



x̄

x̄ > 0

x̄ > 0

x̄ < 0

x̄ < 0

ȳ

1



Elimination of nilpotent points in dimension two - Classical proof

Van der Essen's proof (c.f. Ilyashenko-Yakovenko's book) We write @= a @

@x
+ b @

@y

Suppose that the germ is singular. We can assume that a; b2Cfx; yg have no common
factor and consider

m(0)=dimC
Cfx; yg
(a; b)

> 1; �(0)=min
k
f(Jka; Jkb)=/ (0; 0)g

(m(0) is the local intersection multiplicity of the curves Z(a) and Z(b) at 0)

After a blowing-up, the Noether's formula give,X
m(p~j)=m(0)¡ l2+ l+1

where fp~jg are the singular points of the blowed-up vector field and

l=
�
�(a; b) if @ is non-dicritic
�(a; b)+ 1 if @ is dicritic

� If l(0)> 2 then m(p~j)<m(p)

� If l(0)= 1 then this is a special case which has to be treated separately. . .



Example of �special case�.

y
@
@x

+xM @
@y

�=1;m=M > 3

x! x; y! xy

xy
@
@x

+(xM¡1¡ y2) @
@y

�=2;m=M +1

The �invariant� increases and this case needs to be treates separately...



Using weighted blowing-ups (modified version of a proof by M.Pelletier).

Initial setup: (M; E; F), where M is a two-dimensional real analytic manifold with
corners,

boundary(M)=E

is a normal crossings divisor and F is a foliation tangent to E such that

Nilp(M;F) is of codimension two (i.e. consists of isolated points).

Definition: The local desingularization strategy at a point p 2Nilp(M;F) is the
choice of a quasi-homogeneous filtration of the local ring.

which will define the blowing-up. . .



Intermezzo: The Newton polyhedron of a germ of vector field

Let us fix local coordinates (x1; : : : ; xn). We can write @= a1
@

@x1
+ � � �+ an @

@xn
.

Instead, We expand @ is the logarithmic basis
n
x1

@

@x1
; : : : ; xn

@

@xn

o
as

@= b1x1
@
@x1

+ � � �+ bnxn
@
@xn

;

where each bi=xi
¡1ai has potentially a pole along (xi=0).

We can reorder the expansion and write the monomial expansion

@=
X
k2Zn

xkL(�k)

where, we recall, each L(�)=
P
�ixi

@

@xi
is a diagonal vector field, i.e. an element of the

C-maximal toral subalgebra

t=
�
x1

@
@x1

; : : : ; xn
@
@xn

�
defined by (x1; : : : ; xn).



@=
X
k2Zn

xkL(�k)

The support of @ with (respect to x) is defined by suppx(@)= fkj �k=/ 0g and

Newx(@)= conv(suppx(@))+R>0
n

is the Newton polyhedron of @ (with respect to the coordinates x).

Example: (cuspidal case) @=2y @

@x
+3x2 @

@y
+�

@=2x¡1y
�
x
@
@x

�
+3x2y¡1

�
y
@
@y

�
+�

(¡1; 1)

(2;¡1)

Newx(@)



Remarks: 1) Newx(@) is always contained in the convex region

N =¡(fk 2N>0j jk j6 1g)|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
P

+R>0
n

P

¡P

2) The hypersurface (xi=0) is invariant by @ if and only if suppx(@)�fk: ki> 0g.

3) The hypersurface (xi=0) is tightly invariant by @ if and only if

suppx(@)�fk: ki> 0g ^ suppx(@)\fk: ki=0g= ;



Example. @= ax @

@x
+ by @

@y

(x=0) invariant () @(hxi)�hxi ()a2Cfx; yg() [(k; l)2 supp(@)=) k> 0]

(x=0) not tightly invariant () (@(hxi)�hxi2

()(ax; bxy)�hxi2() [(k; l)2 supp(@)=) k> 1]



Very classical idea (see Newton, I. 1676):

The resolution of singularities should correspond to a combinatorial game based on the
Newton polyhedron.

Can we recognize a �final situation� (a.k.a. an elementary germ) by looking at Newx(@)?

Proposition: @ 2Der(O) is a nilpotent germ if and only if there exists a local system of
coordinates x=(x1; : : : ; xn) such that 02/ Newx(@).

Proof: Assume that 02/Newx(@). Then there exists a nonzero !2Q>0n and �2Q>0 such
that

Newx(@)�H = fh!; �i>�g

(indeed, if some !i< 0 then for v 2 suppx(@), h!; v+ teii!¡1 as t!+1).



We can assume that ! 2Z>0n n f0g and consider the quasi-homogeneous graduation of O
associated to the torus action �:C?!Aut(O)

�(t) �xi= t!ixi; i=1; : : : ; n

(or, equivalently, the graduation associted to the infinitesimal semisimple generator �=P
!ixi

@

@xi
). This action is diagonalizable and we have a direct sum decomposition

O=
M
�

Gr�(O; �)=
M
�

Gr�(O; �)

where Gr�(O; �)= ff :�(t) � f = t�f g= ff : �(f)=�f g is the module of !-quasi homoge-
neous germs of degree �.

This induces an action of C? on Der(O) given by conjugation

�(t) � @=�(t) @�(t)¡1

and equally induces a direct sum decomposition Der=
L

�Gr�(Der; �).

And, naturally @ 2Gr�; f 2Gr�=) @f 2Gr�+�.



@ 2Gr�(Der; �)() suppx(@)�fk: h!; ki=�g

h!; �i= const

By the above hypothesis, our original derivation satisfies

suppx(@)�fk: h!; ki>�g=) @ 2Gr>�(Der; �)

Since this is a filtration, @22Gr>2� ,.., @r 2Gr>r� for all r> 1.

and if if f 2Gr>�(O; �) then @r(f)2Gr>r�+�(O; �).

As a consequence, for m= hx1; : : : ; xmi the maximal ideal, for each s there exists a r> 1
such that

@r(ms)�ms+1

(because for k 2Z>0n ; jk j> h!; ki/max f!ig). Hence, @ is nilpotent.



Reciprocally, assume that @ is nilpotent. Then, @(m)�m and @S=0. There exists a

local coordinate system such that @ jJ1=
0BBBBBBBB@
0
1 0

1 �� �
1 0

1CCCCCCCCA, i.e. such that

@(xi)= "ixi+1 (modm2)

where "i2f0; 1g. In other words, in the logarithmic basis, we obtain

@=
X

i6n¡1
"ixi+1xi

¡1
�
xi

@
@xi

�
+R

where R is a derivation with of degree >1 with respect the usual homogeneous filtration

associated to the derivation h=x1
@

@x1
+ � � �+xn @

@xn
=L(1), with weights 1=(1; : : : ; 1).

We now consider the weight-vector �= (¡n/2; : : : ; n/2), or any other rational vector
satisfying.

h1; �i=0; h�; ei+1¡ eii> 0; ei=(0; : : : ; 1; : : : 0)

Then, for all sufficiently small "2Q>0, the semi-simple derivation !=h+ "L(�) defines
a half-space which separates Newx(@) from 0.

(because for jk j> 2; h!; ki> 2¡n"jk j, and Newx(@) has finitely many vertices)



Geometrically, we have used. . . The hinge method

x¡1y
�
x
@

@x

�

(1; 1)¡ homogeneous
of degree 0

h=(1; 1)



Geometrically, we have used. . . The hinge method

x¡1y
�
x
@

@x

�

(1; 1)¡ homogeneous
of degree 0

h=(1; 1) �=(¡1/2; 1/2)



Geometrically, we have used. . . The hinge method

x¡1y
�
x
@

@x

�

(1; 1)¡ homogeneous
of degree 0

h=(1; 1) �=(¡1/2; 1/2)
hinge !=h+ "�



Geometrically, we have used. . . The hinge method

x¡1y
�
x
@

@x

�

(1; 1)¡ homogeneous
of degree 0

h=(1; 1) �=(¡1/2; 1/2)
hinge !=h+ "�



Geometrically, we have used. . . The hinge method

x¡1y
�
x
@

@x

�

(1; 1)¡ homogeneous
of degree 0

h=(1; 1) �=(¡1/2; 1/2)
hinge !=h+ "�



Geometrically, we have used. . . The hinge method

x¡1y
�
x
@

@x

�

(1; 1)¡ homogeneous
of degree 0

h=(1; 1) �=(¡1/2; 1/2)
hinge !=h+ "�



Geometrically, we have used. . . The hinge method

x¡1y
�
x
@

@x

�

(1; 1)¡ homogeneous
of degree 0

h=(1; 1) �=(¡1/2; 1/2)
hinge !=h+ "�

Newx(@)

@ 2Gr>0(Der; !)



Alternative proof of one of the implications of the Theorem

Claim: Suppose that @ is elementary (i.e. not-nilpotent). Then, for all choices of coordi-
nate systems (x1; : : : ; xn),

02Newx(@)

Indeed, the hypothesis means that either @(m)�m or that @(m)�m and @s=/ 0 .

Consider the second case. Then we can find a nonzero f 2 m̂ such that

@(f)=uf

for some unit u2 Ô.

Let Gr be the graduation defined by an arbitrary one-parameter group �, with positive
weights (i.e. such that m̂�Gr>0). Then f 2Gr>� and @ 2Gr>� implies that @(f) 2
Gr>�+�.

By the above choice of f , we conclude that �=0 (because u2Gr>0 nGr>1)

The case @(m)�m is even easier. In fact, @(m)�m if and only if

9i2f1; : : : ng: ¡ ei=(0; : : : ;¡1; : : : ; 0)2Newx(@) (0; 0)



Example: @= y
@

@x
+x2 @

@y
. The graduation defined by the one parameter group

t � (x; y)= (t2x; t3y)

is such that @ 2Gr>1. (write x¡1y
�
x
@

@x

�
+x2y¡1

�
y
@

@y

�
and x¡1y; x2y¡12Gr1)

Newx(@)

If we make the coordinate change y! y+ �x, the action on the polygon corresponds to
a �sliding� of the vertices along the (1;¡1) direction.

(¡1; 1)

(¡1; 1)

In these new coordinates, 02New(x;y)(@).



Back to the proof in dimension two

Initial setup: (M; E; F), where M is a two-dimensional real analytic manifold with
corners,

boundary(M)=E

is a normal crossings divisor and F is a foliation tangent to E

Notation: 06 e(p)6 2 is the number of local irreducible componets of E at p2M .

Definition: A coordinate system (x; y) at p 2E is adapted if locally E = (x= 0) or
E=(xy=0).

e(p)=1 e(p)=2

Inclusion into the divisor: We can always assume that Nilp(M; F)� E by eventually
blowing-up these points with an arbitrary weight.

To simplify, we will assume that e(p)= 1 for all points p2Nilp(M;F).

(otherwise it suffices to slightly modify the invariant by including e(p) lexicographically).



Suppose that p2E. In adapted coordinates (x; y), the Newton polygon has the form

main vertex

xh
�
ax

@

@x
+ by @

@y

�
2 suppx(@)m

Invariance of (x=0) implies that @ 2Gr>0
�
�; x @

@x

�
(i.e. @(hxi)�hxi )

Claim: p2Nilp(M;@)() h> 1 (which is equivalent to say that 02/ New(x;y)(@))

Indeed, if 02New(@) then the initial (1,1)-homogeneous part of @ would be either

b
@
@y

(caseh=¡1); or ax
@
@x

+ by @
@y

+ cxy ¡1
�
y
@
@y

�
(caseh=0)

where for some constants a; b; c such that (a; b)=/ (0; 0).

� In the first case, @(m)�m.

� In this second case, it is obvious that Spec(@s)= fa; bg=/ 0.



Definition: hx(@) := h will be called the height of the main vertex.

Claim: h is does not depend on the choice of (adapted) coordinates.

In fact, the group of local automorphisms (preserving x=0) has the form

x!xf(x; y); y! g(x; y)

f unit; @g/@y(0; 0)=/ 0. Its Lie algebra is generated by vector fields with support in

xkylx
@
@x
; xuyv y

@
@y
; k+ l> 0; u+ v> 0

k; l> 0 and v>¡1. This Lie algebra lies in Gr>0
�
�; x @

@x

�
\Gr>0

�
�; x @

@x
+ y

@

@y

�
.

Hence, the main vertex is preserved.



Final touch (and essential idea to generalize to dim.3)

e=main edge
m

(�; �)

Definition: The main edge of New(@) is the edge e determined by the intersection

New\f(i; j): j= h¡ 1/2g

Important: Notice that e= ex(@) potentially depends on the choice of coordinates.

Let wt(e)=�x @

@x
+ �y

@

@x
denote the irreducible weight-vector determined by e.



Action of the blowing-up with weight (�; �) on the polygon

x!x�

y!x�y @! 1

xr
@

=) =)

Translation

y! y+ �

=)

Shearing Sliding

�

e

p~p

We would like to prove that, for each p~2�¡1(p); h~6 h¡1 (i.e. the invariant decreases)

This is obvious for p~= (1: 0)2P1... But . . .

We can have a full compensation phenomena in the �sliding phase�.



Example: @=(y+ �xk)h
�
�
�
x
@

@x
¡ �kxk @

@y

�
+ �(y+ �xk) @

@y

�
, (�; �)=/ 0, h; k> 1; �=/ 0

(up to a unit, this is the unique family where full compensation happens)

@ 2Grkh(Der; !), where !=x @

@x
+ ky @

@y
(i.e. [!; @] = kh @)

Blow-up: x!x; y!xky

(y+ �xk)h¡!xkh (y+ �)h

x
@
@x
¡!

�
x
@
@x
¡ ky @

@y

�
; xk

@
@y
¡! @

@y

(y+ �xk) @
@y
¡! (y+ �) @

@y

@~=x¡kh@=(y+ �)h
�
�x

@
@x

+(�¡ k�)(y+ �) @
@y

�
Translation y! y¡ �

@~= yh
�
�x

@
@x

+(�¡ k�)y @
@y

�
=) h~ = h



How to prevent this? The main edge e should be stable.

Definition. We say that New(x;y)(@) is edge-unstable if there exists a polynomial
change of coordinates of the form

y! y+ �x
�

� =: y1

such that New(x;y1)(@)\ e=fmg. Otherwise, we say that New(x;y)(@) are edge-stable.

Notice that New(x;y)(@) is always edge-stable if �/�2Z>1.

The above map slides the monomials in the direction of the main edge.



Theorem (Local resolution) Suppose that New(x;y)(@) is edge stable, and let

�:M~ !M

be the blowing-up of p2Nilp(M;F) with weight wt(e). Then,

8p~2�¡1(p): h~6 h¡ 1:

(very simple) Proof: Firstly, we do not have to care about the y-directional chart

x! y�x; y! y�

as p~= (0: 1) will always be elementary.

=) h~ =0



We look the x-directional chart

x! x�; y!x�y

Suppose that h~ =h. Then, there should exists a non-zero constant � such that the trans-
lation (in blowed-up coordinates)

y! y+ �

gives a Newton polyhedron with main vertex m~ =m. We split into two cases:

� �/�2Q>0 nZ>0.

� �/�2Z>0

In the latter case, the above map corresponds (in the original coordinates), to the poly-
nomial map y! y+ �x�/� (just write y!x¡�y; x!x1/�).

The assumption h~ = h is equivalent to say that New(x;y)(@) is edge-unstable, which con-
tradicts the hypothesis of the Theorem.



In the former case (i:e:�/�2/ Z), the e-initial form of @ has a gap at height h¡ 1.

m

h¡ 1 (=

Example: �/�=2/3

After blowing-up, followed by an arbitrary translation y! y+ �, we have

(yh)
�
�x

@
@x

+ �y
@
@y

�
+ terms in y6h¡2¡! (y+ �)h

�
�x

@
@x

+ �(y+ �) @
@y

�
+ � � �

which gives a monomial on the support at height h¡ 1.

(Abhyankar called this argument the �lazy Tschirnhaussen�).



What is �behind� this argument?

To simplify, let us look at the case of function germs:

f 2Op is �elementary� ifff is a unit (i.e. iff 02New(x;y)(f)).

Supposing that m=(0; h), the e-initial part of f is a (�; �)-homogeneous polynomial

fe= cyh+
X

�i+�j=d
j>1

cijx
iyj

(i.e. fe is a section a line (orbi)-bundle L! P(�;�)
1 , equal to OP1(d) in the classical

homogeneous case).

We can look at the divisor Div(fe)=
P
mi[�i] on P(�;�)

1 (write fe(1; y)=
Q
(y¡ �i)mi)

The choice of e implies that Div(fe) =/ h[(1: 0)]. (i.e. the support of the divisor is not
concentrated at [(1: 0)])

New(x;y)(f) is edge-unstable iff Div(fe)=h [�] (i.e. the support of the divisor is a point
�=/ (1: 0). In this case:

(1) This point is necessarily unique and,

(2) �/�2Z>0



Simply because there is a Z/�Z-symmetry on the divisor.

Symmetry breaking

y! �¡�y

��=1



It remains to prove that the following

Theorem (on edge stabilization)

(Existence) There exists adapted coordinates (x; y) such that

New(x;y)(@)

is edge stable.

(Uniqueness of the associated filtration) Let (x; y); (x0; y 0) be coordinates such that
New(x;y)(@) and New(x0;y 0)(@) are edge stable. Then the local resolution algorithm (i.e.
the local filtration of the local ring) defined throught these coordinates coïncide.

In other words, the filtration is intrinsically determined by @ (and the divisor E).

Proof: We start with an arbitrary adapted coordinate system (x; y0).

1) If New(x;y0)(@) is edge-stable, we stop

2) If New(x;y0)(@) is edge-unstable, we choose a polynomial coordinate change (x; y0)!
(x; y1), where

y1= y0+ �0x
k0; k0= �0/�0

eliminates the main edge e0.



We now consider the new coordinates (x; y1) and apply the same argument. I claim
that this procedure eventually stops with an edge stable situation.

Indeed, assume the contrary. Then, we end-up with an infinite sequence of coordinate
changes

yi+1= yi+ �ix
ki; i> 1

where fki= �i/�ig forms an strictly increasing sequence of integers, corresponding to the
successive slopes of the edges ei.

ei

m

e0 e1

The composition of these maps converges to a formal coordinate change y1b = y0+
P
�ix

ki

In these coordinates,

New(x;y1)(@)
m

i.e. (y1b =0)�Nilp(M;F). Contradiction.



Uniqueness of the filtration. Suppose that New(x;y)(@); New(x0;y 00)(@) are edge stable

New(x;y)(@) New(x0;y 0)(@)

write x0=xf(x; y), y 0= g(x; y). We claim that this map preserves the wt(e) filtration.

Let us write g(x; y) = g0(x) + yG(x; y). Then, the change of coordinates preserves the
filtration if and only if

g0(x)=O
�
x
�

�

�
Suppose that this is not the case. Then, looking at the smallest order term of g0, we find
a polynomial change of coordinates y1= y+ �xk with �=/ 0 and k < �

�
such that

New(x;y1)(@)

is has a main edge e0 of slope k< �/� (because the action of y! y+ �xk on New(x;y)(@)
is effective).



However, New(x;y1)(@) should also be edge-stable.

(because the (1; k)-initial part of @ with respect to (x; y1) equals its e0-initial part with
respect to (x0; y 0), which is stable by the hypothesis).

But this contradicts the fact that the inverse transformation y= y1¡ �xk eliminates
the main edge.



Some general remarks:

1) We cannot expect to obtain a fully convergent Tchirnhaussen preparation (or,
more generally, a maximal contact hypersurface which would allow to use induction in
the dimension)

Recall that, in the classical case of a germ of singular hypersurface S, this corresponds
to choose a local equation of the form

f(x; y)= yh+
X

ai(x)yh¡i

and eliminate the term in yh¡1 by the local change of coordinates y! y¡ 1

h
a1 (Tschirn-

haussen transformation)

m=(0; h)

H = fy=0g is a maximal contact hypersurface

supp(x;y)(f)\ (Zn¡1�fh¡ 1g)= ;

As a consequence, simply because (@/@y)h¡1f = y , the multiplicity h-locus Singh(f)
is contained in the hypersurface H = fy=0g

and this remains true for all blowings-up with center on Singh(f).



Analogous question for vector fields, say in dim. 2:

@= yh
�
ax

@
@x

+ by @
@y

�
+
X

yh¡ia(x)

The differential operator
�

@

@y

�
acts on Der(O) by Lie brackets.

�=(ad@/@y)h@=
��

@
@y
; �
��

h

@= (h+1)!by @
@y

+h!ax @
@x

+ (terms of higher order)

In this situation, the analogous of a maximal contact surface should be

an invariant curve for � of the form H = fy= f(x)g.

i.e. satisfying

�(y¡ f)�hy¡ f i



Example (Euler's equation): Assume that �= ad(@/@y)r(@) has the form

�=x2 @
@x

+(y¡x) @
@y

supp(x;y)(�)\ (Z�fh¡ 1g)

(¡1; 1)

(0; 0) (1; 0)

y! y¡x



Example (Euler's equation): Assume that �= ad(@/@y)r(@) has the form

�=x2 @
@x

+(y¡x2) @
@y

supp(x;y)(�)\ (Z�fh¡ 1g)

y! y¡x2



Example (Euler's equation): Assume that �= ad(@/@y)r(@) has the form

�=x2 @
@x

+(y¡ 2x3) @
@y

supp(x;y)(�)\ (Z�fh¡ 1g)

y! y¡ 2x3



Example (Euler's equation): Assume that �= ad(@/@y)r(@) has the form

�=x2 @
@x

+(y¡ 3x4) @
@y

supp(x;y)(�)\ (Z�fh¡ 1g)



At the �Krull�-limit, we obtain

H =
(
y=

X
n>1

(n¡ 1)!xn
)

which is the so-called �center manifold� of the Euler's equation.

In this case, the maximal contact surface is a formal, non-convergent curve.

But which is a C1-curve, lying on the pfaffian extension of Ran.



What comes next:

1) How to generalize these ideas to eliminate the nilpotent locus for foliations in dimension
three?

2) What to do with the final models in dimension three? (There is no such well developped
theory)

3) Interesting particular case for the Hilbert's 16^th problem: The case �2+1�.

Attainable goal: stuty of one-parameter families of planar analytic foliations.

� Full catalog of final cases

� Study of normal forms

� Finite cyclicity conjecture for one-parameter families of planar analytic foliations.

4) New ideas for dimension greater or equal than four (The Kempf's unstability approach)



Some new phenomena in for

final models in dimension three . . .



1) Center manifolds are not necessarily C1.

Example (van Strien 1979 - further simplyfied by M. Mcquillan)

a.k.a. �THE MONSTER�

@=xy @
@y

+
�
z ¡ y

1¡ y

�
@
@z

C = fz= f(x; y)g;
�
1¡xy @

@y

�
f = y

1¡ y

f =
X

ak(x)yk=) ak=
1

1¡ kx

x=1/k

resonant node

z� ykln y

x

y

z



2) Geometric Theory of Singular perturbations (Dumortier-Roussarie)

Example of (2+1) foliations: Singularly perturbed van der Pol's equation

@";a=
�
y¡ x

2

2
¡ x

3

3

�
@
@x

+ " (a¡x) @
@y
; (x; y)2R2; "2R>0

"=0

Sing= fy=P (a)g

canard limitcycles

"

a

a= c0(")+ e¡K/"

Sing(@0;a)= fy¡P (x)= 0g

�slow curve�



ε
εε

ε

ε

ε

ε



Resolution (in families). We assume a=0 to simplify

�
y¡ x

2

2
¡ x

3

3

�
@
@x
¡ "x @

@y
=
�
x¡1y¡ x

2
¡ x

2

3

��
x
@
@x

�
¡ "xy¡1

�
y
@
@y

�

Is a three dimensional foliation Tangent to the fibration: F = fd"=0g

Choice of weights: ¡wt(x)+wt(y)=wt(x); wt(")+wt(x)¡wt(y)=wt(x)

wt(x)= 1;wt(y)=2;wt(")= 2

Γ

F3

F2

F1

ε, a

F1



Some computations . . .

"¡ directional blowing up: x! "x, y! "2y; "! "2�
y¡ x

2

2
¡ "x

3

3

�
@
@x
¡x @

@y
; F = fd"=0g

In the classical singular perturbation theory, this is the so-called a rescaling .

y¡ directional blowing up: x! yx, y! y2 ; "! y2"�
1¡ x

2

2
¡ x

3y
3

�
@
@x
¡ "x

2

�
y
@
@y
¡x @

@x
¡ 2" @

@"

�
; F = fd(y2")= 0g



"

y

D= fy=0g
x

Fiber fy2"=0g



"

y

x

Centermanifold

(matching of asymptotic expansions)



"

y

x

limit cycle

nearby fiber
y2"� 0



Smale's 13th Problem

Prove the finite cyclicity for the Liénard family x00+ p(x)x0+x=0, or equivalently

(y¡P (x)) @
@x
¡x @

@y
(Lien)

where P =
Z
p is a real polynomial of degree 2n+1 with P (0)=0.

x2+ y2� 1



Smale's 13th Problem (particular case of Hilbert's 16th Problem)

Prove the finite cyclicity for the Liénard family x00+ p(x)x0+x=0, or equivalently

(y¡P (x)) @
@x
¡x @

@y
(Lien)

where P =
Z
p is a real polynomial of degree 2n+1 with P (0)= 0

x2+ y2� 1

T :R+!R+

For fixed P , the Poincaré first return map T is analytic, up to the origin (for P (x)=o(x))



 



Elimination of nilpotent points in dimension three

(M;E;F)

M a three dimensional real analytic manifold with corners

E is the boundary of M

F is a singular foliation by curves, tangent to E and such that

codimNilp(M;F)> 2

To explain the invariant, let us consider the following typical situation

� M =(R(x;y;z)
3 ; 0), and that 02Nilp(M;F)

� The divisor E is given either by fx=0g or by fxy=0g

� The vertical axis fx= y=0g is not entirely contained in Nilp(M;F)

Let N =New(x;y;z)(@) be the Newton polyhedron of F with respect to these coordinates.

Definition: The higher vertex is the vertex h 2N which is minimal with respect to
the lexicographical ordering in Z3.

By the above assumptions, we have h=(0; h2; h3), with h2; h32Z>¡1

(because h1> 0=)fx=0g2Nilp(M;F)).



Moreover, the intersection of N with the plane fv2R3:v1=0g is in one of the situations
illustrated below

(because otherwise fx= y=0g�Nilp(M;F))

Definition: � Cases (a) and (b) are called regular configurations and case (c) is called
nilpotent configuration.

� The main vertex of N is given by m=h in the regular configurations and by m=n
in the nilpotent configuration.



We now consider the intersection

N 0=N \
�
v 2R3: v3=m3¡

1
2

�
which we will call the derived polygon.

Letm0=
¡
m1
0 ;m2

0 ;m3¡ 1

2

�
be the minimal vertex of N 0 (with respect to the lexicograph-

ical ordering), and write the vertical displacement vector m0¡m as 1

2
(�1;�2;¡1)

�=(�1;�2)2Q2



Remark: We observe that if the main vertex m is such that m3> 1 then the derived
polgon is non-empty.

Indeed, if this where not the case, the Newton polyhedron should be contained in the
region

fv 2R3 j v3> 1g

But this would imply that fz=0g�Nilp(M;F), contradicting the hypothesis that the
nilpotent locus has codimension greater or equal than two.



Comparison of the derived polygonN 0 with Hironaka's characteristic polygon

Consider the vector field

@=(z3x+xyz2) @
@x

+xz3 @
@y

+ y7
@
@z

N 00

m

N 0



The invariant

The main invariant of F (with respect to the coordinates (x; y; z)) is the 6-uple of
natural numbers

inv=(h;m2+1;m3; e¡ 1; ��1; �max f0;�2g)

where

� �=(m3+1)!

� e2f1; 2g is the number of local irreducible components of E at the origin

� The virtual height h is the natural number defined by

h=

8>><>>:
bm3+1¡ 1/�2c ; if m2=¡1 and �1=0

m3 , if m2=0 or �1> 0



Example:

@=x2y @
@x

+(z4+xz) @
@y

+ y4
@
@z



The main face and the local desingularization strategy

Let m0=(m1
0 ; m2

0 ; m3¡ 1/2) be the main vertex of the derived polygon N 0. The main
side of N 0 is defined (according to the figure below) by

f(N 0)=

8>><>>:
e0 if m1

0 > 0

e1 if m1
0 =0



The main edge of N is the edge e containing the segment [m;m0].

The main face of N is the unique face F �N such that F \N 0= f(N 0)

F



We recall that the vertical displacement vector is given by �=m0¡m

The main side can be uniquely written

f(N 0)= fm0+ t(C;¡1; 0): t2 Ig

for some C 2Q >0=Q>0[f1g.

We say that (C;¡1; 0) is the horizontal displacement vector of N .

m m m

F

F F





Why the height of the main vertex is not the first entry in the invariant?

Example: @=(y2+xz3)@/@y+ z3@/@z, and inv=(h;m2+1;m3; : : : )= (2; 1; 2; : : : )

After a x-directional blowing-up, we get @~= (y2+ z3)@/@y+ z3@/@z

and invf =(h~;m2e +1;m3e ; : : : )= (2; 0; 3; : : : ).

Here, invf <lex inv because m2e =¡1< 0=m2.



As in the case of dimension two, we need to compute the invariant with respect to stable
coordinates.

As we shall see, for (x; y; z) given as above, a stable coordinate system (x~; y~; z~) will be
obtained by an analytic change of coordinates in the triangular form

x~=x; y~= y+G(x); z~= z+F (x; y) (?)

The invariant, when computed with respect to a stable coordinate system, will be intrin-
sically attached to the germ of F, up to an additional geometric structure on the ambient
space, called an axis.

The local strategy of blowing-up will be read out from the Newton polyhedron and the
main invariant . . .

Provided that these objects are computed with respect to a stable coordinate system.

Remark 1. The notion of stable coordinates is similar to the notions of well-prepared and
very well-prepared coordinates in Hironaka's paperDesingularization of excellent surfaces.

..But new diffulties appear in the context of vector fields because the action of the Lie
group defined by (?) is much harder to study.



Comparison of the derived polygonN 0 with Hironaka's characteristic polygon

Consider the vector field

@=(z3x+xyz2) @
@x

+xz3 @
@y

+ z7 @
@z

N 00

m

N 0



The Axis

The main goal is to rigidify the choice of local coordinates.

Definition: An axis for (M; E; F) is a pair Ax= (U ;A), where U �M is an open
neighborhood of Nilp(M;F) and A is an analytic foliation by curves defined on U such
that:

� A is tangent to the divisor E

� Sing(A)= ; (i.e. A is everywhere non-singular)

� For each point p2E \U , if (x; y; z) are local coordinates such that A=
D
@

@z

E
then

I(Nilp(M;F))�hx; yi

(i.e. the nilpotent locus of F does not contains the axis through p)

� For each point p2U nE, if (x; y; z) are local coordinates such that A=
D
@

@z

E
then

@(hx; yi)�hx; yi

where @ is a local generator of F (i.e.the axis through p is not an invariant curve for F)



A

Nilp(M;F)



Remark: Notice that an axis cannot exist if there exists a point p2Nilp(M;F) such that

e(p)= 3

e=1 e=2 e=3

(because the tangency to E would force p2Sing(A)).

We say that (M;E;F) is controllable if there exist an axis Ax as above. The 4-uple

(M;E;F;Ax)

will be called a controlled singularly foliated manifold.



Proposition: Let (M; E;F) be a singularly foliated manifold such that E = ;. Then,
there exists an axis for (M;E;F).

Sketch of the proof: Since E = ;, this amounts to choose a regural one-dimensional
foliation in the vicinity of Nilp(M;F) which contains no invariant curve of F.

By an easy perturbation argument this can be easily done locally at each point p 2
Nilp(M;F).

Using partitions of unity, we can glue together and define a C1 foliation A~ satisfying all
the requirements.

Then, we use Grauert's embedding theorem to approach A~ by an analytic foliation
satisfying all the requirements.

Remark: This last statement does not hold in the complex setting because not every
complex manifold is Stein. Thus, in the resolution of singularities for vector fields over
C (joint work with M. Mcquillan), we need to introduce the weaker notion of �quasi axis�.



Adapted local charts

Let (M;E;F;Ax) be a controlled singular foliated manifold, where Ax= (U ;A) is the
axis.

We shall also fix a tagging of E, namely a bijection

� : f1; : : : ; ng!firreducible compotents of Eg

which defines an enumeration of the irreducible components. (The tag will record the
year of creation of the divisor component in the resolution process).

A local chart (x; y; z) centered at a point p2U is adapted if

� A is locally generated by @/@z

� If e(p)= 1 then E= fx=0g

� If e(p)= 2 and E=Di[Dj with i > j then Di= fx=0g and Dj= fy=0g

In other words, the divisor fx=0g is always younger than the divisor fy=0g.



Let us see how the concept of adapted local charts rigidifies the choice of local coordinates.

Proposition: Let (x; y; z) and (x0; y 0; z 0) be local adapted charts at a point p2U . Then,
the transition map has the form

x0=F (x; y); y 0=G(x; y); z 0= f(x; y)+ zw(x; y; z)

where @(F ;G)/@(x; y)(0; 0)=/ 0 and w is a unit.

Moreover,

� if e(p)= 1 then F (x; y)=xu(x; y) and G(x; y)= g(x)+ yv(x; y)

� if e(p)= 2 then F (x; y)=xu(x; y) and G(x; y)= yv(x; y)

where u; v are units.

Proof: The coordinate change (x; y; z)! (x0; y 0; z 0) should map the vector field @/@z to

U
@
@z 0

where U is a unit. This implies that x0; y 0 cannot depend upon z.

The other assertions are easily deduced from the fact that the components of the divisor
(and their tagging) should be preserved.



From now on, we will only consider adapted coordinate sytems.

Let p2Nilp(M;F)\E and New(x;y;z)(@) be the Newton polyhedron at p with respect
to (x; y; z).

We recall the definition of the main vertexm, the displacement vectors �2Q2, C 2Q>0
and the main face F .

We denote by N�;C
m the set of all polyhedra having a same main vertex m and displace-

ment vectors �; C. (but possibly with different main faces). We denote by G�;c the
group of polynomial changes of coordinates

x~=x; y~= y+ g(x); z~= z+ f(x; y)

which respects the quasi-homogeneous graduation determined by F .



x~=x; y~= y+ g(x); z~= z+ f(x; y)

i.e. wt(z)=wt(f) and wt(y)=wt(g). In other words, such that

supp(f)�f(a; b)2�+ s(C;¡1) j s2Q>0g\N2; if�1=0

supp(f)�f�g\N2; if�1> 0

and

supp(g)�fCg\N; if�1=0

supp(g)= ;; if�1> 0

y! y+ �xC

z! z+ f(x; y)

F



Denote by (f ; g)2G�;C the element corresponding to the map

x~=x; y~= y+ g(x); z~= z+ f(x; y)

We split G�;C as a semi-direct sum

G�;C=G�;C
+ oG�

where G�= f(f ; g)2G�;C j g=0; f = �x�1y�2; � 2Rg is and

G�;C
+ = f(f ; g)2G�;Cj �2 supp(f)g

is a the subgroup of edge-preserving maps.

z! z+ �x�1y�2

e

z! z+ �x�1y�2

e

(f ; 0)2G� (f ; g)2G�;C+



Let (x; y; z) be an (adapted) system of coordinates at p2Nilp(M;F)\E, and suppose
that

New(x;y;z)(@)2N�;C
m

Definiton: We say that (x; y; z) is a stable system of coordinates (for (M;F; E;Ax))
at p if for all (f ; g)2G�;C,

New(x;y+g;z+f)(@)2N�;C
m

In other words, the action of the group G�;C cannot modify supporting plane of the main
face.



Using stable coordinates, we can now identify the final situations

Proposition. Suppose that (x; y; z) is a stable coordinate system at p2Nilp(M;F)\E.
Then, none of the following configurations can occur for New(x;y;z)(@).

because 02New(@) �irremovably� in each one of these cases (i.e. p is elementary).



Intrinsic definition of the invariant and local strategy

We recall that the invariant is given by

inv(x;y;z)=(h;m2+1;m3; e¡ 1; ��1; �max f0;�2g)

Theorem 1: Suppose that (x; y; z) and (x0; y 0; z 0) are stable coordinates at a point
p2Nilp(M;F)\E. Then,

� The invariants inv(x;y;z) and inv(x0;y 0;z 0) coïncide.

� The change of coordinates (x; y; z)! (x0; y 0; z 0) preserves the quasi-homogeneous fil-
tration Gr> determined by the main face F .

Definition. Let (x; y; z) be an arbitrary stable coordinate system.

1) The invariant at p is the 6-uple invp(M;E;F;Ax)= inv(x;y;z)

2) the local resolution strategy at p is the weighted blowing-up defined by the main
face F of New(x;y;z)(@):



The local resolution theorem

Theorem 2: Let (M;E;F;Ax) be a controlled singularly foliated manifold. Consider
the local blowing-up at p2Nilp(M;F)\E

�:M~ !M

which is determined by the local strategy, and let E~ ;F~ ;Axe denote the strict transforms
of E;F;Ax by this map.

Then, for each point p2�¡1(p)\Nilp(M~ ;F~),

invp~(M~ ; E~ ;F~ ;Axe )<lex invp(M;E;F;Ax)



Remark: The local center is always contained in Nilp(M;F).

1) �1> 0.

F

!

!=(!1; 0; !3)= (1; 0;�1)

C= fx= z=0g�Nilp(M;F)

2) �1=0; C =1

!=(0; !2; !3)= (0; 1;�2)

C = fy= z=0g�Nilp(M;F)
F



Remark. The strict transform of the axis Ax by the local blowing-up determined by the
local strategy

�:M~ !M

defines an axis Axe for (M~ ; E~ ;F~).

A

�

�¡1(A)

The unique two singular points of �¡1(A) occurs at the points p�=(0: 0:�1)2�¡1(p).

But, by construction, p�2/ Nilp(M~ ;F~).



F

Final situation



Edge stabilization by the action of G�



Face stabilisation by the action of G�;C
+



Generically, points in Nilp(M;F) will be equireducible.

Namely, there is a discrete set of points N �Nilp(M;F) such that,

8 p2Nilp(M;F)nN

� The germ Nilp(M;F)p is a locally smooth curve.

� A weighted blowing-up with center C=Nilp(M;F)p (and appropriate weights) reduces
the invariant.

� Each nilpotent point which is infinitely near p satisfies the same conditions.

The initial step of the algorithm, so-called distinguished vertex blowing-up consists in
including all non-equireducible points into the divisor by taking them as blowing-up
centers.



Example: @= z
@

@y
¡ y2 @

@z
, with �2Gr>2

�
�; 2y @

@y
+3z @

@z

�

(0;¡1; 1)

(0; 2;¡1)

The curve C = fy= z=0g2Nilp is equireducible

Example: @= z
@

@y
¡ f(x)y2 @

@z
, f(x)=xk

(0;¡1; 1)

(k; 2;¡1)

The curve C = fy= z=0g2Nilp is equireducible for x=/ 0



A new strategy via GIT (work in progress . . . )

The previous strategy cannot be easily adapted to higher-dimensions

� The axis does not behave so-well under blowings-up. (We remark in passing that Haüser
defined a notion of �local flag� which generalizes this concept for higher dimensions)

� The presence of negative vertices makes it very hard to capture a good filtration of the
local ring and define a good invariant (intrinsic, upper semicontinuous, etc.).

Basic goal:

we have to look for an invariant and a filtration which are intrinsically attached to the
local object, such that

� (Local resolution) The local blowing-up with the center determined by the filtration
strictly reduces the invariant.

� (Global resolution) The invariant is upper semi-continuous with respect to the analytic
(or Zariski) topology.

Guiding principle: To treat �on an equal footing� germs of vector fields than germs of
function?

They are both differential operators.

By observing things from this more general perspective, we will see a broader panorama...



Example of singular differential operator: Laplace equation on open manifolds.

(M; g) a Riemannian manifold and �=�g the Laplace-Beltrami operator

�f =0

metric g

M

Compactification

M�

singular metric

The associated Laplace-Beltramy operator becomes singular at the new boundary.



Differential operators on manifolds (or orbifolds)

Consider a manifold (real analytic or holomorphic) M and two vector bundles

M

FE

A (E; F )-differential operator is a C¡ linear map �: E !F between (local) sections
E =¡(E);F =¡(F ) of these bundles.

Example: For a global holomorphic function f 2O(M), the multiplication operator

�f:O!O

defined by �f(g)= fg is a (O;O)-differential operator.

More generally, for any bundle E, as E is a sheaf of O-modules, the multiplication by
f defines a differential operator �f: E!E .



The order of a differential operator

We say that � has order 0 if it commutes with the (local) multiplication operator,
namely

�f �=��f ; 8f 2O

More generally, we say that � is of order d if

[�fd+1; � � �[�f2;[�f1;�]]]= 0; 8f1; : : : ; fd2O

Examples: 1) A global holomorphic function h2O(M) defines a differential operator

�h:O!O

of order 0. Since [�f ; �h] = fh¡hf =0 for all f 2O.

2) A global vector field @ defines a differential operator of order 1

@:O!O

Since

[�f ; @](g)= f@g¡ @fg=¡(@f)g= �¡@f(g)



By fixing local coordinates (x1; : : : ; xn), a differential operator of order d can be written

�=
X
jkj6d

'k(x)
�
@
@x

�
k

where 'k are rkF � rkE matrices of holomorphic maps.

In what follows, I will only consider the case where rkE = rkF =1 (i.e. E; F are line-
bundles), and therefore 'k are germs of holomorphic functions.

Some problems in the theory:

Local resolubility problem: Given g, find f such that

�(f)= g

Index problems: Find rank(�) and corank(F)

Pseudo differential calculus: Write the inverse operator in a convenient function class.



Basic dichotomies

Global vs local

Generic vs exceptional phenomena (exceptional = situated on a closed analytic subset
of high codimension=singular set).

Examples: 1) Level sets of a reduced holomorphic function f are smooth outside a closed
subset Sing(f)�M of codimension >2.

Sing(f)= fdf =0g



2) A non-zero vector field @ is locally rectifiable, outside a subset Sing(@)�M of codi-
mension >1.

(i.e. we can find local coordinates such that @= @

@x1
).

If we write @= f1
@

@x1
+ � � �+ fn

@

@xn
then

Sing(@)= ff1= : : := fn=0g

3) TheCauchy-Kowalevski theorem applies locally near all points where a differential
operator is not totally characteristic.

What about the behaviour near these singular sets?



Resolution/Reduction of singularities approach for diff. operators.

First step: Define Sing(�), generalizing both the function and vector field case.

The local behaviour should be simple outside Sing(F).

Second step: Prove the existence of a modification

(M;�) ¡' (M 0;�0)

that is, a morphism ' such that:

1) ':M 0!M is proper and restricts to a biholomorphism outside Sing(�).

2) The operator �0 is the strict transform of � under this morphism

3) All singularities in Sing(�0) should be amenable to a normal form theory (so-called
final models)

Confession: I don't know (for the moment) how these final models can be useful for
the general theory of linear PDE, but there exists a whole theory of PDE and pseud-
differential calculus on manifolds with boundary and corners

(see e.g. The b-calculus proposed by Melrose's paper on its ICM'90 paper).



Known cases:

Functions (0-order differential operators): This is a consequence of Hironaka's Theorem
on resolution of singularities

The final models are monomials, i.e. f =x1
k1: : :xn

kn

Vector fields (1-order differential operators): The reduction of singularities in known
to hold when dimM 6 3.

The final models are elementary singularities (also called canonical) of a vector field

@= f1
@
@x1

+ : : :+ fn
@
@xn
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order

dimension Hironaka

0 1 2

1

3

2



Current status

order

dimension Hironaka

0 1 2

1

3

2

Bendixson-Seidenberg (1968)



Current status

order

dimension Hironaka

0 1 2

1

3

2

Bendixson-Seidenberg (1968)

[P] overR (2007); [MP]overC (2013)



Current status

order

dimension Hironaka

0 1 2

1

3

2

Bendixson-Seidenberg (1968)

[P] overR (2007); [MP]overC (2013)

New method



The main combinatorial object linked to a germ of singular operator is itsNewton poly-
hedron. We now adopt a more abstract language, better suited to the GIT analogy.

Let (O;m) be the local ring at a point p2M .

Notation:

� End(O) is the module of continuos C-endomorphisms �:O!O for which there exists a
l2Z such that �(mk)�mk+l 8k2Z>0. We denote by End(�;m) those for which l=0.

� Der(O;m)�End(O;m) is the Lie algebra of derivations (satisfying Leibniz rule)

8f ; g 2O; @(fg)= (@f)g+ f(@g)

� Aut(O;m)�End(O;m) is the group of automorphisms, satisfying

8f ; g 2O; '(fg)= '(f)'(g)

We denote by End(Ô; m̂); : : : their formal counterparts.

The action of the group End(O;m) on O induces an action End(O;m) into itself by
conjugation - i.e. for  ; '2End(O;m), f 2O, the condition  � ('f)= ( � ')f gives

 � '=  '  ¡1



Definition: A maximal torus in Aut(O;m) is a subgroup T�Aut(O;m) which is
isomorphic to a multiplicative torus (C?)n.

We denote by t�Der(O;m) the Lie algebra of T.

Example: We fix local coordinates (x1; : : : ; xn). Then, the (C?)n-action on O defined by

(t1; : : : ; tn) � (x1; : : : ; xn)= (t1x1; : : : ; tnxn)

defines an embedding (C?)n ,!Aut(O;m) whose image is a maximal torus.

The associated Lie algebra is the C-submodule t of derivations generated by

x1
@
@x1

; : : : ; xn
@
@xn

We say that T is the standard torus associated to these coordinates, notes Tx;st



Proposition. Let T�Aut(O;m) be a maximal torus. Then, there exists an unique (up
to permutation of indices) system of coordinates (x1; : : : ; xn) such that Tx;st.

Proof: Each vector field @ 2 t is semi-simple. If we use Poincaré's-Dulac normal form,
we can (formally) diagonalize simultaneously all t.

Now, if we take a @ 2 t with a generic spectra (it suffices to require that spec(@) =
f�1; : : : ; �ng is Q-independent), we see that the formal diagonalization is unique, up to
permutation of indices.

Moreover, taking spec(@)= f�1; : : : ; �ng of Bryuno type

(i.e. such that the numbers fh�; ki j k 2Zng are not abnormally small)

we guarantee that such diagonalization is indeed convergent.

Corollary. Let Center(T) and Norm(T) denote respectively the subgroup of automor-
phisms whose action (under conjugation) centralizes (i.e. fixes pointwise each element of
T) and normalizes T (i.e. maps T into itself). Then the so-called Weyl group

Norm(T)/Center(T)� Symn

where Symn the group of permutations in n-elements.

Proof: Just consider the group of automorphisms which map Tst;x into itself.



General property of Torus actions

Let T be a torus acting (regularly) on a finite dimensional vector space V . Then, there
exists a direct sum decomposition

V =
M

�2X(T)
Gr�(V ;T)

where X(T)=Hom(T;C?) is the group of characters of T and

Gr�(V ;T)= fv 2V :8t2T; t � v=�(t) vg

(i.e. for each (�;t), Gr�(V ;T) is the eigenspace for t associated to the eigenvector �(t)).

In our setting, since the action of Aut(O;m) is local (i.e. compatible with truncations),

each maximal torus defines a direct sum decomposition

O=
M

Gr�(O;T)

and also, writing End=End(O;m),.. for shortness, we have

End=
M
�

Gr�(End;T); Der=
M
�

Gr�(Der;T); Aut=
M
�

Gr�(Aut;T)



Example: T= Tst;x. Then the diagonal action on the variables x1; : : : ; xn induces an
action on the monomials xk=x1

k1: : :xn
kn,

(t1; : : : ; tn) �xk= tkxk

Therefore, identifying each element of X(T) to k=(k1; : : : ; kn)2Zn via the map

k(t)= t1
k1: : :tn

kn

we have

Grk(O;T)=Cxk

Grk(Der;T)=xk
�
Cx1

@
@x1

+ : : :+Cxn
@
@xn

�

Grk(End;T)= f'2End:8n:Cxn!Cxn+kg

It is also possible to define such graduation with respect to the Lie algebra t of T

Grk(O;T)=Grk(O; t)=
�
f : x1

@
@x1

f = k1f ; : : : ; xn
@
@xn

f = kn f
�



Given an endomorphism � and a maximal torus T, we consider the direct sum decom-
position

�=
X

�2X(T)
��

and define

supp(�;T)= f�2X(T) j ��=/ 0g

and, upon identification of X(T) to Zn�Rn,

New(�;T)= conv(supp(�;T))+ (R>0)n

For instance, suppose that � is a differential operator of order d. Then, and that t
T=Tst;x, for some local coordinates (x1; : : : ; xn). Then, we write

�=
X
s2Zn

xs Ps

�
x
@
@x

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

polynomialoftotaldeg6d

; where x @

@x
=

�
x1

@

@x1
; � � �; xn

@

@xn

�
is the logarithmic basis

and supp(�;T)= fs2Zn j Ps=/ 0g.



Example (order 0 case): 1) f = y2¡x3 (diff. operator of order 0)

supp(�;T)= f(3; 0); (0; 2)g

(3; 0)

(0; 2) New(f)



Example (order 1 case): Vector field (diff. operator of order one)

@= y
@
@x

+x2 @
@y

@= x¡1y|||||||{z}}}}}}}
(¡1;1)

�
x
@
@x

�
+x2y¡1||||||||||||||||{z}}}}}}}}}}}}}}}}

(2;¡1)

�
y
@
@y

�

New(@)

(2;¡1)

(¡1; 1)



Example (order 2 case): Heat equation (diff. operator of order 2)

�=
�
@
@x

�
2

¡
�
@
@t

�

�=2x¡2
�
x
@

@x

2

�
¡ t¡1

�
t
@

@t

1

�
; where

�
n
k

�
=
n(n¡ 1): : :(n¡ k+1)

k!

(0;¡1)

(¡2; 0)

New(�)



Based on the fundamental dichotomy of GIT (Hilbert-Mumford criteria)

Definition. We say that a germ of endomorphism � at p is

� unstable if there exists a maximal torus T�Aut(O;m) such that

02New(�;T)

� semi-stable if for all maximal torus T�Aut(O;m),

02New(�;T)

The unstable locus Unst(�) is the set of points p for which the germ �p is unstable.

Examples: For �= �f the scalar multiplication operator,

Unst(�)=V (f) (i:e: p2Unst(�)() f 2mp)

For �= �f + @ (general differential operator of order 1),

p2Unst(�)() f 2m and @ is nilpotent

where, we recall, @ is called nilpotent if @(m)�m and @S=0.



Alternative caracterization of unstability via one-parameter subgroups

Definition. A one-parameter subgroup of Aut(O;m) is defined by an embedding � of
the multiplicative group (C?) into Aut(O;m). We will denote by Lie(�)�Der(O;m) the
associated one-dimensional Lie-subalgebra.

Example: Fixing local coordinates, (x1; : : : ; xn), we consider the of action C? on O by

t �x=(t!1x1; : : : ; t!nxn)

for some !=(!1;:::;!n)2Znnf0g. We say that � is positive is we can choose !1;:::; !n of
the same-sign. The associated lie algebra is generated (over C) by the diagonal derivation

!1x1
@
@x1

+ � � �+!nxn
@
@x1

Remarks: 1) By Poincaré-Duac's theorem, each one-parameter group can be (formally)
diagonalized (i.e. expressed as above in appropriate local coordinates). By Bruno's the-
orem (condition B), such coordinates can be chosen analytic.

2) Each one-parameter group is contained in a maximal torus of Aut(O;m) (but this
torus is far from being unique!).

(analogy: A maximal torus of GL(V ) is defined by a basis of V , but a non-zero vector
can belong to infinitely many distinct basis)



Important fact for the future . . .

Let us denote by ¡(G) the set of 1-parameter subgroups of a group G, and by

¡(G)/G

the cosets for the action of action of G in ¡(G) by conjugation (i:e: g ��= g�g¡1).

Proposition: For each maximal torus T�Aut(O;m)

¡(Aut(O;m))/Aut(O;m)=¡(T)/(Norm(T)/Cent(T))�¡(T)/Symn

(this is simply the fact that each one-parameter subgroup lies in a maximal torus and
that each two maximal tori are Aut(O;m)-conjugated)

As previously, for each one-parameter subgroup �, we have a direct sum decomposition

O=
M

�2X(�)
Gr�(O; �)

where the group of characters X(�) is now isomorphic to Z.



Example: For �(t) defined by t � (x; y)= (t�x; t�y), (�; �)2Z2 n f0g,

Grk(O; �)=
(
f =

X
�u+�v=k

auvx
uyv
)

is the vector space of (�; �)¡ quasi-homogeneous germs of degree k.

k=0

k=¡1
(�; �)= (1;¡1)

k=1

For �2End(O), we can define exactly as above its direct sum decomposition with respect
to the graduation defined by a 1-psg �2Aut(O;m), and let

Proposition: The germ of � is unstable if and only if there exists a positive 1-psg �
such that supp(�; �)�Gr>0(End; �).



�Visual� proof:



The above discussion implies that

order(�)6 1=)Unst(�) is closed

Remark: In the case where �= @, we recall the condition @S = 0 is equivalent to say
that the linearization

L@:m/m2¡!m/m2

is a nilpotent endomorphism. In its turn, this corresponds to the fact that the charac-
teristic polynomial �L@ is trivial.

Each local automorphism ' acts on m/m2 as a linear coordinate change (isomorphic to
GL(n;C)),

And of course the coefficients of �L@ are invariant with respect to such action.

Open Problem: Prove that Unst(�) is closed (wrt the analytic/Zariski topology) for
� a differential operator of arbitrary order.



Definition: We say that the germ of � at p is strongly unstable if, for m=mp,

� �(mk)�mk (i.e. � is local at p)

� � is unstable in the preceeding sense (i.e. 02New(�;T) for some maximal torus T)

Example:

�=x¡2y
�
x
@

@x

2

�
+x4

(¡2; 1)

(4; 0)

�(xmyn)=
�
m
2

�
xm¡2yn+1+xm+4y=)�(mk)�mk¡1but�(m2)�m2

The germ is unstable but not strongly unstable (we note that �(m)�m).



We denote by S:Unst(�) the strongly unstable locus.

Proposition. 1) S:Unst(�)=Unst(�) if � has order 61.

2) S:Unst(�) is closed.

Proof :

1) For �= �f of order 0, we obviously have �(mk)�mk. Hence, S:Unst(�)=Unst(�).

For �= @+ �f of order one, the condition 9k: �(mk)�mk is equivalent to the fact that

@(m)�m

but, from the above characterisation, this implies that p is not an unstable point.



2) We will prove that locally at each point, there exits a finite collection of analytic
functions a1; : : : ; am2O such that

S:Unst(�)=Z(a1; : : : ; am)

Suppose that p 2M is such that �(mk)�mk (which is this is expressed by analytic
conditions). We fix local coordinates (x1; : : : ; xn) and consider the standard maximal
torus Tst=Tst;x.

Since the action of Aut(O;m) on the set of maximal tori is transitive, we have

p2S:Unst(�)() 9'2Aut(O;m) : New('�'¡1;Tst)3 0

Let us consider the 1-psg h associated to x1
@

@x1
+ � � �+xn @

@xn
(homogeneous graduation).

The 0-degree component G=Gr0(Aut(O;m)) of Aut(O;m) is isomorphic to GL(n;C).

It acts by conjugation on the degree 0 component of End(O;m),

G�Gr0(End(O;m))¡!Gr0(End(O;m)); ('0;�0)! '0�0 '0
¡1

The subset of differential operators of degree 6d forms a finite dimensional vector space

V =Gr0(Diff6d(O;m))�Gr0(End(O;m)), which is invariant by the G-action.



Some concepts of GIT Let G be a complex reductive group acting linearly on a finite
dimensional C-vector space V .

Let C[V ]G denote the ring of invariant for group action.

Hilbert's theorem There exists polynomials a1; : : : ; am such that C[V ]G=C[a1; : : : am]

The algebraic set

NG(V )=Z(a1; : : : ; am)�V

is called the null-cone for the G action on V : It is the fiber over 0 for the quotient map

�:V !V /G

How to characterize the null-cone without computing C[V ]G ?

Given a torus T �G, let V =
L

�V� denote the direct sum decomposition associated to
the corresponding torus-action. (e.g. for G=GL(n;C), a maximal torus is simply the
subgroup of diagonal matrices with respect to a given basis of Cn)

As previously, we can define the support supp(v; T ), for each v 2V :

v=
X
�

v�; with v�2V�; =) supp(v; T )= f�2X(T ): v�=/ 0g



Hilbert-Mumford criteria.

Theorem (Hilbert-Mumford) v 2NG(V )

() 9 maximal torusT �G such that conv(supp(v; T ))3 0

() 9 a 1-psg ��G such that supp(v; �)�Gr>0(V ; �).

Remark: The first () allows us to �eliminate the 9 quantifier� in this finite dimen-
sional setting, since NG(V ) is defined by the vanishing locus of a1; : : : ; am (of generators
of C[V ]G)

Remark: Geometrically. v2NG(V )() 02G � v (i.e. 0 lies in the closure of the G-orbit
of v)

On the other hand, the last statement in the equivalence means that

lim
t!1

�(t) � v=0

Therefore, the HM criteria says that

0 belongs to the closure of the orbit G �v iff then there exists a 1-psg which steers v to 0.



Example (classical) We consider the space of homogeneous d polynomials in two vari-
ables, where the reductive group SL(2;C) acts by linear change of coordinates

g=
�
a b
c d

�
2PSL(2;C) =) (g � p)(x; y)= p(dx¡ by;¡cx+ ay);

The standard maximal torus in SL(2;C) is given by �(t)=
 
t 0

0 t¡1

!
,

which acts on a monomial xkyl by mapping it to tk¡lxkyl.

Therefore, supp(p; �)�Gr>0(V ;�) if and only if p is divisible by x[d/2]+1 or by y[d/2]+1.

[d/2]+ 1

[d/2]+ 1

k+ l= dk+ l= d

or

By HM, p is in the null-cone if and only if it has a root of multiplicity at least [d/2]+1.



Example (classical) We consider action of GL(n;C) on the matrices gl(n;C) by conju-
gation. Then,

the ring of invariants is given by the coefficients of the characteristic polynomial

�A(s)= det(sI ¡A)

and A lies in the null-cone if and only if it is nilpotent.

The standard maximal torus T is given by the embedding of (C?)n into the diagonal
matrices

diag(t1; : : : ; tn)

and, for eij=(�ij) the basis elements of gl(n;C),

diag(t) � eij � diag(t¡1)= (titj
¡1) eij

If A is nilpotent and in jordan normal form then supp(A;T) can be separated from 0 by
a hyperplane.

Hence, A2NG(V )()A is nilpotent.



Back to the original problem: Prove that S:Unst(�) is closed.

Let �02Gr0(End; h) be the degree 0 component of � with respect to Gr(�; h).

For each fixed coordinates (x1; : : : ; xn), supp(�0; Tst;x) is a finite subset of

H = fk 2Z>¡dn j k1+ � � �+ kn=0g

G

H

supp(�0; T )

We claim that p belongs to S:Unst(�) if and only if �02NG(V ), where V =Gr0(End; h).

(indeed, S:Unst(�) means that there exists a maximal torus T2Aut(O;m) such that

02/ supp(�;T)

but this holds if and only if we can find a maximal torus T �G=(linearpartofAut(O;m) )

such that 02 supp(�0; T ). By the HM criteria, this condition is determined by a finite
number of polynomial equations the coefficients of �0.



H

supp(�0; T )



G

H

supp(�0; T )



H
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supp(F,T)



H
supp(F,T)

By the - method



Problem of elimination of the S:Unst locus

Let � 2Diff?(M) be a differential operator on a manifold M . Is there a locally finite
sequence of blowing-ups

(M;�)= (M0;�0) ¡ (M1;�1) ¡ � � �  ¡ (Mr;�r)= (M 0;�0)

with center on the Strongly unstable locus, and such that

S:Unst(�0)= ;

Remark: In this case, we are not requiring a logarithmic resolution, i.e. that the blowing-
up center has normal crossings with the exceptional divisor.



The basic idea of the unstability approach

Question of Mumford-Tits. Let G be a reductive group acting on a vector space V .

Assuming that v2NG(V ). Then, by HM¡ criterium, there exists a one-parameter group
��G such that

�(t) � v=O(tk)v

for some k> 1 (i.e. � steers v to 0 at order k) (we note �(v; �)= k). Can we caracterise
the subset of one-parameter groups for which such order is maximal ?

(We have to �normalize�) because if we define �1(t)=�(tr) for some r 2Z>0 then

�(v; �1)= r�(v; �)

G. Kempf, Instability in invariant theory - Annals of Math. 108(2)

Definition. A length on G(G) is a non-negative real valued function � 7! k�k

such that:

a)(G-invariance) kg�g¡1k= k�k for all �2¡(G) and g 2G

b)(inner product) For any maximal torus T �G, there exists a positive definite integral
valued bilinear form h ; i on ¡(T ) such that k�k2= h�; �i, for any �2¡(T ).



In particular, by the G-invariance, the inner product should be invariant the action of
the Weyl group of T on ¡(T ).

In particular, if the Weyl group is transitive on a Z-basis of ¡(T ), this inner product is
unique (up to a constant factor).

Definition. Suppose that v 2V is unstable. For each nonzero �2¡(G), we define

speed(v; �)= �(v; �)
k�k

Set

Speed(v)= sup
�2¡(G)

speed(v; �)

and

�(v)= f�2¡(G): speed(v; �)= Speed(v)g

which is the so-called optimal set .

Goal: We would like to characterize �(v).



Polyhedral interpretation

There exists a �perfect pairing� between X(T ) (the character group) ¡(T ) (the set of one-
parameter subgroups of T ), seen as Z-modules,

which is given by the bilinear map (�; �)2X(T )�¡(T ) 7! �(�) (evaluation of the char-
acter on �).

The inner product h ; i (used to define the length) stablishes an isomorphism �: ¡(T )�
X(T ), defined by the equality

�(�)�= h�; �i; 8�2X(T )

which allows us to extend the length function to the character group.



How to �see� the speed(v; �) ?

Choose any maximal torus T which contains �, and let

New(v; T )

be the Newton polyhedron of v with respect to T (i.e. we decompose v =
P

� v� and
consider the convex enveloppe of the support).

By identifying X(T ) with Zn (and assuming that each basis element has length one) . . .

h�; ki= const

speed(v; �)

New(v; T )



For a fixed maximal torus, the speed in maximized by taking the �nearest point� on the
polyhedron.

New(v; T )

�



For a fixed maximal torus, the speed in maximized by taking the �nearest point� on the
polyhedron.

New(v; T )

� G



For a fixed maximal torus, the speed in maximized by taking the �nearest point� on the
polyhedron.

New(gv; T )

G
�



For a fixed maximal torus, the speed in maximized by taking the �nearest point� on the
polyhedron.

New(gv; T )

G
�

Theorem of Kempf. ()

1)(Existence) The set �(v) is non-empty (i.e. the sup of the speed is attained)

2)(Uniqueness of the optimal set up to parabolics) For any �2�(v), we have

�(v)= fg�g¡1: g 2Gr>0(G;�)g=Par(G;�) ��

(i.e. all elements of �(v) define precisely the same filtration of V ).



We would like to adapt this to the context of differential operators.

Basically: Let � be a germ of differential operator at p2M

1) Define the Speed(�) as the main invariant.

2) The local strategy consists in blowing-up with the filtration defined by �(�).

Combinatorial effect of a weighted blowing-up on the nearest point.

But we have to take care of the translations, and prevent the compensation phenomena.

Is there an analog of the stabilization procedure.



Theorem (Kirwan [1984], Ness [1984]) Let v be an unstable vector in V . Then, a one-
parameter subgroup �2T is optimal (i.e. lies in �(v)) if and only if the projection

vk2Grk(V ; �)

is semi-stable with respect to the action of the �slice subgroup� Gr0(G;T )�G, which is
also reductive.



In fact, this result allows to define an algebraic stratification of the null-cone

NG(V )=N1[N2[ � � � [Ns[f0g

in terms of the speed, so-called Hesselink stratification.

In our context, a similar result would completely prevent full compensation phenomena.



Example: For �(t) defined by �(t) �xi! txi (in some coordinate system) we obtain

G(�)/h�i=PSL(n;C)=Aut(Pn¡1)

(the automorphism group of the projective space)





To deal with these, we need some analog of Geometric invariant theory for non-reductive
groups.


