Singular Foliations

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots\right.$, $\left.X_{k}\right\}$.

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots\right.$, $\left.X_{k}\right\}$.

A (singular) foliation is an analytic distribution \mathcal{F} which is involutive

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots\right.$, $\left.X_{k}\right\}$.

A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots\right.$, $\left.X_{k}\right\}$.

A (singular) foliation is an analytic distribution \mathcal{F} which is involutive Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots\right.$, $\left.X_{k}\right\}$.

A (singular) foliation is an analytic distribution \mathcal{F} which is involutive Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots\right.$, $\left.X_{k}\right\}$.

A (singular) foliation is an analytic distribution \mathcal{F} which is involutive Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Note that $p \rightarrow \operatorname{dim} T_{p} \mathcal{F}$ is an upper semi-continuous function.

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots\right.$, $\left.X_{k}\right\}$.

A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Note that $p \rightarrow \operatorname{dim} T_{p} \mathcal{F}$ is an upper semi-continuous function.
The dimension of \mathcal{F} is generic dimension of $T_{p} \mathcal{F}$

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots\right.$, $\left.X_{k}\right\}$.

A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Note that $p \rightarrow \operatorname{dim} T_{p} \mathcal{F}$ is an upper semi-continuous function.
The dimension of \mathcal{F} is generic dimension of $T_{p} \mathcal{F}$
A leaf of \mathcal{F} is a maximal connected immersed submanifold $L \subset M$ such that

$$
\forall p \in L: \quad T_{p} L=T_{p} \mathcal{F}
$$

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots\right.$, $\left.X_{k}\right\}$.

A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Note that $p \rightarrow \operatorname{dim} T_{p} \mathcal{F}$ is an upper semi-continuous function.
The dimension of \mathcal{F} is generic dimension of $T_{p} \mathcal{F}$
A leaf of \mathcal{F} is a maximal connected immersed submanifold $L \subset M$ such that

$$
\forall p \in L: \quad T_{p} L=T_{p} \mathcal{F}
$$

Integrability Theorem (Sussman): There exists a leaf of \mathcal{F} through each point $p \in M$.

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that The leafs of \mathcal{F} are locally given by

$$
x_{d+1}=\cdots=x_{n}=\text { const }
$$

where $d=\operatorname{dim} T_{p} \mathcal{F}$.

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that
The leafs of \mathcal{F} are locally given by

$$
x_{d+1}=\cdots=x_{n}=\mathrm{const}
$$

where $d=\operatorname{dim} T_{p} \mathcal{F}$.

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that
The leafs of \mathcal{F} are locally given by

$$
x_{d+1}=\cdots=x_{n}=\mathrm{const}
$$

where $d=\operatorname{dim} T_{p} \mathcal{F}$.

Singular example (with degeneracy of the rank): \mathcal{D} is generated by $x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that
The leafs of \mathcal{F} are locally given by

$$
x_{d+1}=\cdots=x_{n}=\mathrm{const}
$$

where $d=\operatorname{dim} T_{p} \mathcal{F}$.

Singular example (with degeneracy of the rank): \mathcal{D} is generated by $x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$

In this course, we will be mostly interested in foliations by curves

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.
More generally, each vector field ∂ with domain an open set $U \subset M$ is a local generator if

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.
More generally, each vector field ∂ with domain an open set $U \subset M$ is a local generator if

$$
\left.\partial\right|_{U_{i} \cap U}=\varphi_{i} \partial_{i}
$$

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.
More generally, each vector field ∂ with domain an open set $U \subset M$ is a local generator if

$$
\left.\partial\right|_{U_{i} \cap U}=\varphi_{i} \partial_{i}
$$

for some $\varphi_{i} \in \mathcal{O}^{\star}\left(U_{i} \cap U\right)$.

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.
More generally, each vector field ∂ with domain an open set $U \subset M$ is a local generator if

$$
\left.\partial\right|_{U_{i} \cap U}=\varphi_{i} \partial_{i}
$$

for some $\varphi_{i} \in \mathcal{O}^{\star}\left(U_{i} \cap U\right)$.
Remark: In general, we cannot expect to have a single global generator for a foliation.

We authorize reparametrizations of time for the solution curves

We authorize reparametrizations of time for the solution curves

In the real analytic setting, we usually demand that $\varphi_{i j}>0$.

We authorize reparametrizations of time for the solution curves

In the real analytic setting, we usually demand that $\varphi_{i j}>0$.

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by $\left(a_{1}, \ldots, a_{n}\right)$

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by $\left(a_{1}, \ldots, a_{n}\right)$

$$
\operatorname{Sing}(\mathcal{F})=Z\left(a_{1}, \ldots, a_{n}\right)
$$

Some simple examples...

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by $\left(a_{1}, \ldots, a_{n}\right)$

$$
\operatorname{Sing}(\mathcal{F})=Z\left(a_{1}, \ldots, a_{n}\right)
$$

Some simple examples...
Example 1:

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by $\left(a_{1}, \ldots, a_{n}\right)$

$$
\operatorname{Sing}(\mathcal{F})=Z\left(a_{1}, \ldots, a_{n}\right)
$$

Some simple examples...
Example 1:

$$
\partial=f(x) \frac{\partial}{\partial x}
$$

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by (a_{1}, \ldots, a_{n})

$$
\operatorname{Sing}(\mathcal{F})=Z\left(a_{1}, \ldots, a_{n}\right)
$$

Some simple examples...
Example 1:

$$
\partial=f(x) \frac{\partial}{\partial x}
$$

Example 2:

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

In these examples, $\operatorname{Sing}(\mathcal{F})$ is a codimension one analytic subset.

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

In these examples, $\operatorname{Sing}(\mathcal{F})$ is a codimension one analytic subset.
We could potentially consider the so-called saturated foliation $\mathcal{F}^{\text {sat }}$, defined by $\frac{1}{f} \partial$

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

In these examples, $\operatorname{Sing}(\mathcal{F})$ is a codimension one analytic subset.
We could potentially consider the so-called saturated foliation $\mathcal{F}^{\text {sat }}$, defined by $\frac{1}{f} \partial$

Example 3:

Example 3:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)+\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)
$$

Example 3:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)+\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)
$$

Example 4: ("singular perturbation problems") \mathbb{R}^{3} with coordinates (x, y, ε)

Example 4: ("singular perturbation problems") \mathbb{R}^{3} with coordinates (x, y, ε)

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)+\varepsilon\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)
$$

Example 4: ("singular perturbation problems") \mathbb{R}^{3} with coordinates (x, y, ε)

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)+\varepsilon\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)
$$

Basic goals (in decreasing degrees of ambition)

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.
We would like to understand the foliation in the vicinity of its singular points.

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.
We would like to understand the foliation in the vicinity of its singular points.
Thom: The singularities are the organizing centers of the dynamics .

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.
We would like to understand the foliation in the vicinity of its singular points.
Thom: The singularities are the organizing centers of the dynamics .
As a first step, we would like to describe the transverse behaviour of the foliation by looking at its so-called

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.
We would like to understand the foliation in the vicinity of its singular points.
Thom: The singularities are the organizing centers of the dynamics .
As a first step, we would like to describe the transverse behaviour of the foliation by looking at its so-called

Holonomy Groupoid

Adding a singularity on the path...

Adding a singularity on the path...

In general, there is an intrinsic multivaluedness for such map.

Adding a singularity on the path...

In general, there is an intrinsic multivaluedness for such map.
This is a very well-studied problem for foliations in surfaces.

Adding a singularity on the path...

In general, there is an intrinsic multivaluedness for such map.
This is a very well-studied problem for foliations in surfaces.
It is in the heart of the Hilbert's XVIth's problem.

Adding a singularity on the path...

In general, there is an intrinsic multivaluedness for such map.
This is a very well-studied problem for foliations in surfaces.
It is in the heart of the Hilbert's XVIth's problem.
(see the course of Patrick...)

Elementary germs - and some words about classical normal forms... (over \mathbb{C})

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \mathfrak{m})=\left(\mathcal{O}_{p}, \mathfrak{m}_{p}\right)$.

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \mathfrak{m})=\left(\mathcal{O}_{p}, \mathfrak{m}_{p}\right)$. Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \mathfrak{m})=\left(\mathcal{O}_{p}, \mathfrak{m}_{p}\right)$.
Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \mathfrak{m})=\left(\mathcal{O}_{p}, \mathfrak{m}_{p}\right)$.
Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

$$
f \longmapsto \partial f=a_{1} \frac{\partial f}{\partial x_{1}}+\cdots+a_{n} \frac{\partial f}{\partial x_{n}}
$$

which moreover satisfies the Leibniz rule $\partial(f g)=(\partial f) g+f(\partial g)$. We note $\partial \in \operatorname{Der}(\mathcal{O})$.

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \mathfrak{m})=\left(\mathcal{O}_{p}, \mathfrak{m}_{p}\right)$.
Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

$$
f \longmapsto \partial f=a_{1} \frac{\partial f}{\partial x_{1}}+\cdots+a_{n} \frac{\partial f}{\partial x_{n}}
$$

which moreover satisfies the Leibniz rule $\partial(f g)=(\partial f) g+f(\partial g)$. We note $\partial \in \operatorname{Der}(\mathcal{O})$. The germ is singular if a_{1}, \ldots, a_{n} vanish at p (i.e. $a_{1}, \ldots, a_{n} \in \mathfrak{m}$)

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \mathfrak{m})=\left(\mathcal{O}_{p}, \mathfrak{m}_{p}\right)$.
Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

$$
f \longmapsto \partial f=a_{1} \frac{\partial f}{\partial x_{1}}+\cdots+a_{n} \frac{\partial f}{\partial x_{n}}
$$

which moreover satisfies the Leibniz rule $\partial(f g)=(\partial f) g+f(\partial g)$. We note $\partial \in \operatorname{Der}(\mathcal{O})$. The germ is singular if a_{1}, \ldots, a_{n} vanish at p (i.e. $a_{1}, \ldots, a_{n} \in \mathfrak{m}$)

This is equivalent to require that

$$
\partial(\mathfrak{m}) \subset \mathfrak{m}, \quad \text { where } \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right) \mathcal{O}
$$

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \mathfrak{m})=\left(\mathcal{O}_{p}, \mathfrak{m}_{p}\right)$.
Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

$$
f \longmapsto \partial f=a_{1} \frac{\partial f}{\partial x_{1}}+\cdots+a_{n} \frac{\partial f}{\partial x_{n}}
$$

which moreover satisfies the Leibniz rule $\partial(f g)=(\partial f) g+f(\partial g)$. We note $\partial \in \operatorname{Der}(\mathcal{O})$. The germ is singular if a_{1}, \ldots, a_{n} vanish at p (i.e. $a_{1}, \ldots, a_{n} \in \mathfrak{m}$)

This is equivalent to require that

$$
\partial(\mathfrak{m}) \subset \mathfrak{m}, \quad \text { where } \mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right) \mathcal{O}
$$

(i.e. that $\partial \in \operatorname{End}_{\mathbb{C}}(\mathcal{O})$ stabilizes the maximal ideal)

Non-singular case: Assume that $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Non-singular case: Assume that $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \mathfrak{m}$ such that $\partial f=u$ (unit).

Non-singular case: Assume that $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \mathfrak{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.

Non-singular case: Assume that $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \mathfrak{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.
We complete f to a local system of coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$,

Non-singular case: Assume that $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \mathfrak{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.
We complete f to a local system of coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$, and consider the linear operator $\mathcal{O} \rightarrow \mathcal{O}$ given by

$$
\Phi=I-f \partial+\cdots+(-1)^{n} \frac{f^{n}}{n!} \partial^{n}+\cdots
$$

Non-singular case: Assume that $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \mathfrak{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.
We complete f to a local system of coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$, and consider the linear operator $\mathcal{O} \rightarrow \mathcal{O}$ given by

$$
\Phi=I-f \partial+\cdots+(-1)^{n} \frac{f^{n}}{n!} \partial^{n}+\cdots
$$

Notice that, for all $h \in \mathcal{O}$,

$$
\partial(\Phi h)=\partial \sum_{n \geqslant 0}(-1)^{n} \frac{f^{n}}{n!} \partial^{n} h=0
$$

Non-singular case: Assume that $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \mathfrak{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.
We complete f to a local system of coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$, and consider the linear operator $\mathcal{O} \rightarrow \mathcal{O}$ given by

$$
\Phi=I-f \partial+\cdots+(-1)^{n} \frac{f^{n}}{n!} \partial^{n}+\cdots
$$

Notice that, for all $h \in \mathcal{O}$,

$$
\partial(\Phi h)=\partial \sum_{n \geqslant 0}(-1)^{n} \frac{f^{n}}{n!} \partial^{n} h=0
$$

Therefore $f, \Phi\left(g_{1}\right), \ldots, \Phi\left(g_{n-1}\right)$ is the required new coordinate system.

Singular case: Assume that now that $\partial(\mathfrak{m}) \subset \mathfrak{m}$.

Singular case: Assume that now that $\partial(\mathfrak{m}) \subset \mathfrak{m}$.

Then, (by Leibniz' rule) $\partial\left(\mathfrak{m}^{k+1}\right) \subset \mathfrak{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial_{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \mathfrak{m}^{k+1}
$$

Singular case: Assume that now that $\partial(\mathfrak{m}) \subset \mathfrak{m}$.

Then, (by Leibniz' rule) $\partial\left(\mathfrak{m}^{k+1}\right) \subset \mathfrak{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial_{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \mathfrak{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.

Singular case: Assume that now that $\partial(\mathfrak{m}) \subset \mathfrak{m}$.
Then, (by Leibniz' rule) $\partial\left(\mathfrak{m}^{k+1}\right) \subset \mathfrak{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial_{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \mathfrak{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂_{k}, we obtain a unique Jordan decomposition

Singular case: Assume that now that $\partial(\mathfrak{m}) \subset \mathfrak{m}$.
Then, (by Leibniz' rule) $\partial\left(\mathfrak{m}^{k+1}\right) \subset \mathfrak{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial_{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \mathfrak{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂_{k}, we obtain a unique Jordan decomposition

$$
\partial=\partial_{s}+\partial_{n}, \quad\left[\partial_{s}, \partial_{n}\right]=0
$$

Singular case: Assume that now that $\partial(\mathfrak{m}) \subset \mathfrak{m}$.
Then, (by Leibniz' rule) $\partial\left(\mathfrak{m}^{k+1}\right) \subset \mathfrak{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial_{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \mathfrak{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂_{k}, we obtain a unique Jordan decomposition

$$
\partial=\partial_{s}+\partial_{n}, \quad\left[\partial_{s}, \partial_{n}\right]=0
$$

where

Singular case: Assume that now that $\partial(\mathfrak{m}) \subset \mathfrak{m}$.
Then, (by Leibniz' rule) $\partial\left(\mathfrak{m}^{k+1}\right) \subset \mathfrak{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial_{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \mathfrak{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂_{k}, we obtain a unique Jordan decomposition

$$
\partial=\partial_{s}+\partial_{n}, \quad\left[\partial_{s}, \partial_{n}\right]=0
$$

where

- ∂_{s} is semi-simple
- ∂_{n} is asymptotically nilpotent (i.e. nilpotent restricted to each jet space).

Singular case: Assume that now that $\partial(\mathfrak{m}) \subset \mathfrak{m}$.
Then, (by Leibniz' rule) $\partial\left(\mathfrak{m}^{k+1}\right) \subset \mathfrak{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial_{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \mathfrak{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂_{k}, we obtain a unique Jordan decomposition

$$
\partial=\partial_{s}+\partial_{n}, \quad\left[\partial_{s}, \partial_{n}\right]=0
$$

where

- ∂_{s} is semi-simple
- ∂_{n} is asymptotically nilpotent (i.e. nilpotent restricted to each jet space).

Moreover, ∂_{s} and ∂_{n} are derivations of $\hat{\mathcal{O}}=\lim J^{k}$ (see Jean Martinet - Exposé Bourbaki'81).

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

where $\operatorname{Gr}_{\alpha}\left(J^{k}, \partial\right)=\left\{f \in J^{k} \mid \partial f=\alpha f\right\}$.

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

where $\operatorname{Gr}_{\alpha}\left(J^{k}, \partial\right)=\left\{f \in J^{k} \mid \partial f=\alpha f\right\}$. with the compatibility condition

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

where $\operatorname{Gr}_{\alpha}\left(J^{k}, \partial\right)=\left\{f \in J^{k} \mid \partial f=\alpha f\right\}$.
with the compatibility condition

$$
\forall k>l: \quad \pi_{k l}\left(\operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)\right)=\operatorname{Gr}_{\alpha}\left(J^{l}, \partial_{s}\right)
$$

derived from the commutative diagram

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

where $\operatorname{Gr}_{\alpha}\left(J^{k}, \partial\right)=\left\{f \in J^{k} \mid \partial f=\alpha f\right\}$.
with the compatibility condition

$$
\forall k>l: \quad \pi_{k l}\left(\operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)\right)=\operatorname{Gr}_{\alpha}\left(J^{l}, \partial_{s}\right)
$$

derived from the commutative diagram

Definition. A germ of vector field ∂ is elementary if:

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\mathfrak{m}) \not \subset \mathfrak{m} \quad$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\mathfrak{m}) \not \subset \mathfrak{m} \quad$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- Or $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\mathfrak{m}) \not \subset \mathfrak{m} \quad$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- Or $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and

$$
\partial_{s} \neq 0
$$

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\mathfrak{m}) \not \subset \mathfrak{m} \quad$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- Or $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and

$$
\partial_{s} \neq 0
$$

Poincaré-Dulac normalisation: (over $\mathbb{C})$ Suppose that $\partial(\mathfrak{m}) \subset \mathfrak{m}$. Then, there exists formal coordinates $\left(x_{1}, \ldots, x_{n}\right)$ which diagonalize the semi-simple part of ∂, namely such that

$$
\partial_{s}=\sum_{i} \lambda_{i} x_{i} \frac{\partial}{\partial x_{i}}
$$

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\mathfrak{m}) \not \subset \mathfrak{m} \quad$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- Or $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and

$$
\partial_{s} \neq 0
$$

Poincaré-Dulac normalisation: (over $\mathbb{C})$ Suppose that $\partial(\mathfrak{m}) \subset \mathfrak{m}$. Then, there exists formal coordinates $\left(x_{1}, \ldots, x_{n}\right)$ which diagonalize the semi-simple part of ∂, namely such that

$$
\partial_{s}=\sum_{i} \lambda_{i} x_{i} \frac{\partial}{\partial x_{i}}
$$

In these coordinates, each eigenspace of the direct sum decomposition

$$
\hat{\mathcal{O}}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(\hat{\mathcal{O}}, \partial_{s}\right)
$$

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\mathfrak{m}) \not \subset \mathfrak{m} \quad$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- Or $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and

$$
\partial_{s} \neq 0
$$

Poincaré-Dulac normalisation: (over $\mathbb{C})$ Suppose that $\partial(\mathfrak{m}) \subset \mathfrak{m}$. Then, there exists formal coordinates $\left(x_{1}, \ldots, x_{n}\right)$ which diagonalize the semi-simple part of ∂, namely such that

$$
\partial_{s}=\sum_{i} \lambda_{i} x_{i} \frac{\partial}{\partial x_{i}}
$$

In these coordinates, each eigenspace of the direct sum decomposition

$$
\hat{\mathcal{O}}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(\hat{\mathcal{O}}, \partial_{s}\right)
$$

is generated (over \mathbb{C}) by the monomials $x^{k}=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ such that $\langle k, \lambda\rangle=\alpha$.

What can we say about ∂_{n} ?

What can we say about ∂_{n} ?
The set of diagonal vector fields

$$
L(\mu)=\sum_{i=1}^{n} \mu_{i} x_{i} \frac{\partial}{\partial x_{i}}, \quad \mu \in \mathbb{C}^{n}
$$

forms an abelian Lie \mathbb{C}-subalgebra, i.e. $[L(\mu), L(\lambda)]=0$.

What can we say about ∂_{n} ?
The set of diagonal vector fields

$$
L(\mu)=\sum_{i=1}^{n} \mu_{i} x_{i} \frac{\partial}{\partial x_{i}}, \quad \mu \in \mathbb{C}^{n}
$$

forms an abelian Lie \mathbb{C}-subalgebra, i.e. $[L(\mu), L(\lambda)]=0$.
We say that it is a maximal toral subalgebra of $\operatorname{Der}(\mathcal{O})$.

What can we say about ∂_{n} ?
The set of diagonal vector fields

$$
L(\mu)=\sum_{i=1}^{n} \mu_{i} x_{i} \frac{\partial}{\partial x_{i}}, \quad \mu \in \mathbb{C}^{n}
$$

forms an abelian Lie \mathbb{C}-subalgebra, i.e. $[L(\mu), L(\lambda)]=0$.
We say that it is a maximal toral subalgebra of $\operatorname{Der}(\mathcal{O})$.
Writing $\partial=\partial_{s}+\partial_{n}$, and assuming $\partial_{s}=L(\lambda)$ (as in the Theorem), the commutativity relation

$$
\left[\partial_{s}, \partial_{n}\right]=0
$$

implies that ∂_{n} can be expanded as

$$
\partial_{n}=\sum_{k} x^{k} L\left(\mu_{k}\right)
$$

What can we say about ∂_{n} ?
The set of diagonal vector fields

$$
L(\mu)=\sum_{i=1}^{n} \mu_{i} x_{i} \frac{\partial}{\partial x_{i}}, \quad \mu \in \mathbb{C}^{n}
$$

forms an abelian Lie \mathbb{C}-subalgebra, i.e. $[L(\mu), L(\lambda)]=0$.
We say that it is a maximal toral subalgebra of $\operatorname{Der}(\mathcal{O})$.
Writing $\partial=\partial_{s}+\partial_{n}$, and assuming $\partial_{s}=L(\lambda)$ (as in the Theorem), the commutativity relation

$$
\left[\partial_{s}, \partial_{n}\right]=0
$$

implies that ∂_{n} can be expanded as

$$
\partial_{n}=\sum_{k} x^{k} L\left(\mu_{k}\right)
$$

where k ranges over the subset $\mathbb{Z}^{n} \backslash\{0\}$ such that $\langle\lambda, k\rangle=0$. These are the resonant monomials.

Example. (1:1) saddle. Consider a vector field having an initial expansion (in arbitrary coordianates)

Example. (1:1) saddle. Consider a vector field having an initial expansion (in arbitrary coordianates)

$$
\partial=(x+\ldots) \frac{\partial}{\partial x}-(y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{1,-1\}$ and the resonant monomials are $(x y)^{k}, k \in \mathbb{Z}$.

Example. (1:1) saddle. Consider a vector field having an initial expansion (in arbitrary coordianates)

$$
\partial=(x+\ldots) \frac{\partial}{\partial x}-(y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{1,-1\}$ and the resonant monomials are $(x y)^{k}, k \in \mathbb{Z}$.
The Poincaré-Dulac Theorem says that, up to a formal change of coordinates, we can write

$$
\partial=\underbrace{\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)}_{\partial_{s}}+\underbrace{\sum_{k \geqslant 1}(x y)^{k}\left(a_{k} x \frac{\partial}{\partial x}+b_{k} y \frac{\partial}{\partial y}\right)}_{\partial_{n}}
$$

where $u=x y$ is the generator of the subring $\operatorname{ker}\left(\partial_{s}\right)$. By further reductions, we can write

$$
(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right) \quad \text { or } \quad(1+F)\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)
$$

for some $F \in \mathbb{C}[[u]]$ of order $\geqslant 1, n \geqslant 1$ and $\rho \in \mathbb{C}$.

Application: Integrability of Poincaré-Dulac normal forms

Application: Integrability of Poincaré-Dulac normal forms

$$
\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)
$$

Application: Integrability of Poincaré-Dulac normal forms
$\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)$
Up to reparametrization of time, we can assume that $F=0$.

Application: Integrability of Poincaré-Dulac normal forms
$\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)$
Up to reparametrization of time, we can assume that $F=0$.
Consider the new variables $u=x y, \quad v=x / y$ and get

Application: Integrability of Poincaré-Dulac normal forms
$\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)$
Up to reparametrization of time, we can assume that $F=0$.
Consider the new variables $u=x y, \quad v=x / y$ and get

$$
\partial(u)=2 \frac{u^{n+1}}{1+\rho u^{n}}, \quad \partial(v)=2 v
$$

Application: Integrability of Poincaré-Dulac normal forms
$\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)$
Up to reparametrization of time, we can assume that $F=0$.
Consider the new variables $u=x y, \quad v=x / y$ and get

$$
\partial(u)=2 \frac{u^{n+1}}{1+\rho u^{n}}, \quad \partial(v)=2 v
$$

which is a fully integrable system.

Application: Integrability of Poincaré-Dulac normal forms
$\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)$
Up to reparametrization of time, we can assume that $F=0$.
Consider the new variables $u=x y, \quad v=x / y$ and get

$$
\partial(u)=2 \frac{u^{n+1}}{1+\rho u^{n}}, \quad \partial(v)=2 v
$$

which is a fully integrable system.
The corresponding differential system is given by

$$
\left(\frac{1}{u^{n+1}}+\rho \frac{1}{u}\right) d u=\frac{d v}{v}
$$

Application: Integrability of Poincaré-Dulac normal forms
$\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)$
Up to reparametrization of time, we can assume that $F=0$.
Consider the new variables $u=x y, \quad v=x / y$ and get

$$
\partial(u)=2 \frac{u^{n+1}}{1+\rho u^{n}}, \quad \partial(v)=2 v
$$

which is a fully integrable system.
The corresponding differential system is given by

$$
\left(\frac{1}{u^{n+1}}+\rho \frac{1}{u}\right) d u=\frac{d v}{v}
$$

and, by direct integration,

$$
I=\frac{1}{n u^{n}}+\rho \ln u-\ln v
$$

Application: Integrability of Poincaré-Dulac normal forms
$\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)$
Up to reparametrization of time, we can assume that $F=0$.
Consider the new variables $u=x y, \quad v=x / y$ and get

$$
\partial(u)=2 \frac{u^{n+1}}{1+\rho u^{n}}, \quad \partial(v)=2 v
$$

which is a fully integrable system.
The corresponding differential system is given by

$$
\left(\frac{1}{u^{n+1}}+\rho \frac{1}{u}\right) d u=\frac{d v}{v}
$$

and, by direct integration,

$$
I=\frac{1}{n u^{n}}+\rho \ln u-\ln v
$$

is a first integral of the vector field (namely, $\partial I=0$). It is an element of $\mathbb{R}_{\text {an, } \exp }$.

Example: $(\lambda: \mu)$-saddle.

Example: $(\lambda: \mu)$-saddle.

$$
\partial=(\lambda x+\ldots) \frac{\partial}{\partial x}-(\mu y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{\lambda,-\mu\}$

Example: $(\lambda: \mu)$-saddle.

$$
\partial=(\lambda x+\ldots) \frac{\partial}{\partial x}-(\mu y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{\lambda,-\mu\}$

Example: $(\lambda: \mu)$-saddle.

$$
\partial=(\lambda x+\ldots) \frac{\partial}{\partial x}-(\mu y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{\lambda,-\mu\}$

If $\lambda / \mu \notin \mathbb{Q}$ then the Poincaré-Dulac normal form is

$$
\partial=\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y}
$$

Example: $(\lambda: \mu)$-saddle.

$$
\partial=(\lambda x+\ldots) \frac{\partial}{\partial x}-(\mu y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{\lambda,-\mu\}$

If $\lambda / \mu \notin \mathbb{Q}$ then the Poincaré-Dulac normal form is

$$
\partial=\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y}
$$

and the first integral is simply $I=x^{\mu} y^{\lambda}$.

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

but they are completely different over \mathbb{C}^{2} for $\lambda / \mu \neq \lambda^{\prime} / \mu^{\prime}$.

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

but they are completely different over \mathbb{C}^{2} for $\lambda / \mu \neq \lambda^{\prime} / \mu^{\prime}$.

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

but they are completely different over \mathbb{C}^{2} for $\lambda / \mu \neq \lambda^{\prime} / \mu^{\prime}$.

Over \mathbb{C}^{2} : There are several rigidity phenomena

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

but they are completely different over \mathbb{C}^{2} for $\lambda / \mu \neq \lambda^{\prime} / \mu^{\prime}$.

Over \mathbb{C}^{2} : There are several rigidity phenomena
E.g. Some analytic invariants are topologically determined (for instance, linearizability).

Transverse behaviour of the foliation in the vicinity of a saddle point.

Transverse behaviour of the foliation in the vicinity of a saddle point.
There are two holonomy maps of interest:
1)

Transverse behaviour of the foliation in the vicinity of a saddle point.
There are two holonomy maps of interest:
1)

Corner transition map
2) In the complex setting...

Transverse behaviour of the foliation in the vicinity of a saddle point.
There are two holonomy maps of interest:
1)

Corner transition map
2) In the complex setting...

"The" Holonomy map

Transverse behaviour of the foliation in the vicinity of a saddle point.
There are two holonomy maps of interest:
1)

Corner transition map
2) In the complex setting...

"The" Holonomy map

We can recover the (orbital) analytic class of the saddle from the analytic class of one of these maps (once we fix the ratio μ / λ)

Definition: Two germs of vector fields

$$
\partial, \tilde{\partial} \in \operatorname{Der}(\mathcal{O})
$$

(seen as derivations of the local ring)

Definition: Two germs of vector fields

$$
\partial, \tilde{\partial} \in \operatorname{Der}(\mathcal{O})
$$

(seen as derivations of the local ring)
are analytically conjugated if there exists an automorphism

$$
\varphi \in \operatorname{Aut}(\mathcal{O})
$$

(i.e. an \mathbb{C}-endomorphism of the local ring such that $\varphi(f g)=\varphi(f) \varphi(g))$ such that

$$
\varphi^{-1} \partial \varphi=\tilde{\partial}
$$

Definition: Two germs of vector fields

$$
\partial, \tilde{\partial} \in \operatorname{Der}(\mathcal{O})
$$

(seen as derivations of the local ring)
are analytically conjugated if there exists an automorphism

$$
\varphi \in \operatorname{Aut}(\mathcal{O})
$$

(i.e. an \mathbb{C}-endomorphism of the local ring such that $\varphi(f g)=\varphi(f) \varphi(g))$ such that

$$
\varphi^{-1} \partial \varphi=\tilde{\partial}
$$

Definition: Two germs of vector fields $\partial, \partial \tilde{\partial}$ are orbitally analytic equivalent if there exists a unit $u \in \mathbb{C}\{x\}$ such that ∂ is analytically conjugated to $u \tilde{\partial}$.

Dynamics of the complex holonomy map as an element of $\operatorname{Diff}(\mathbb{C}, 0)$

rotation

Dynamics of the complex holonomy map as an element of $\operatorname{Diff}(\mathbb{C}, 0)$

rotation

Dynamics of the complex holonomy map as an element of $\operatorname{Diff}(\mathbb{C}, 0)$

rotation

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

The problem is reasonably well-understood for elementary singularities in dimension two (modulo some very hard small divisor problems) see e.g. Dulac,Ecalle,Ilyashenko,Martinet,Ramis, Yoccoz and Perez Marco,... works.

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

The problem is reasonably well-understood for elementary singularities in dimension two (modulo some very hard small divisor problems) see e.g. Dulac,Ecalle,Ilyashenko,Martinet,Ramis,Yoccoz and Perez Marco,... works.

This problem is much less understood for vector fields higher dimensions.

What about the local transverse behaviour in the vicinity of non-elementary singularities?

What about the local transverse behaviour in the vicinity of non-elementary singularities?

Example: (Cerveau-Moussu 1988) The cuspidal singularity

What about the local transverse behaviour in the vicinity of non-elementary singularities?

Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

What about the local transverse behaviour in the vicinity of non-elementary singularities?

Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

What about the local transverse behaviour in the vicinity of non-elementary singularities?

Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

For $\boldsymbol{\Delta}$ of (2,3)-quasi homogeneous order $\geqslant 2$, there exists a local analytic coordinate change such that, up to division by a unit,

What about the local transverse behaviour in the vicinity of non-elementary singularities?

Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

For $\boldsymbol{\Delta}$ of (2,3)-quasi homogeneous order $\geqslant 2$, there exists a local analytic coordinate change such that, up to division by a unit,

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+r(x, y)\left(2 x \frac{\partial}{\partial x}+3 y \frac{\partial}{\partial x}\right), \quad r \in \mathfrak{m}
$$

What about the local transverse behaviour in the vicinity of non-elementary singularities?

Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

For $\boldsymbol{\Delta}$ of (2,3)-quasi homogeneous order $\geqslant 2$, there exists a local analytic coordinate change such that, up to division by a unit,

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+r(x, y)\left(2 x \frac{\partial}{\partial x}+3 y \frac{\partial}{\partial x}\right), \quad r \in \mathfrak{m}
$$

$\partial(f)=6 r f$.

What about the local transverse behaviour in the vicinity of non-elementary singularities?

Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

For Δ of (2,3)-quasi homogeneous order $\geqslant \mathbf{2}$, there exists a local analytic coordinate change such that, up to division by a unit,

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+r(x, y)\left(2 x \frac{\partial}{\partial x}+3 y \frac{\partial}{\partial x}\right), \quad r \in \mathfrak{m}
$$

$\partial(f)=6 r f$.
The cusp $\Gamma=\{f=0\}$ is an invariant curve.

There are two distinct corner transition maps.

Resolution of the cuspidal foliation. We consider the dual 1 -form to simplify

Resolution of the cuspidal foliation. We consider the dual 1 -form to simplify

$$
d\left(y^{2}-x^{3}\right)
$$

Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

$$
d\left(y^{2}-x^{3}\right)
$$

Blow-up 1: $x \rightarrow x, \quad y \rightarrow x y$

Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

$$
d\left(y^{2}-x^{3}\right)
$$

Blow-up 1: $x \rightarrow x, \quad y \rightarrow x y$

Blow-up 2: $x \rightarrow x y, \quad y \rightarrow y$

$$
d\left(x^{2} y^{3}(y-x)\right)
$$

Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

$$
d\left(y^{2}-x^{3}\right)
$$

Blow-up 1: $x \rightarrow x, \quad y \rightarrow x y$

Blow-up 2: $x \rightarrow x y, \quad y \rightarrow y$

$$
d\left(x^{2} y^{3}(y-x)\right)
$$

Blow-up 3: $x \rightarrow x, \quad y \rightarrow x y$

$$
d\left(x^{6} y^{3}(y-1)\right)
$$

All singularities are now elementary saddles.

All singularities are now elementary saddles.

The foliation is now organized in a neighborhood of the exceptional divisor..

Can we recover the analytic moduli from the transverse behaviour?

Can we recover the analytic moduli from the transverse behaviour?

Can we recover the analytic moduli from the transverse behaviour?

(Moussu) The vanishing holonomy $\operatorname{Hol}(\mathcal{F}, L)=\left\langle f, g \in \operatorname{Diff}(\mathbb{C}, 0) \mid f^{2}=g^{3}=\mathrm{id}\right\rangle$ characterizes the analytic class of the germ of foliation.

Nilpotent locus for foliations by curves

Nilpotent locus for foliations by curves
The nilpotent locus of a foliated manifold is the subset $\operatorname{Nilp}(M, \mathcal{F})$ of points where \mathcal{F} is not elementary.

Nilpotent locus for foliations by curves
The nilpotent locus of a foliated manifold is the $\operatorname{subset} \operatorname{Nilp}(M, \mathcal{F})$ of points where \mathcal{F} is not elementary.

Claim: $\operatorname{Nilp}(M, \mathcal{F})$ is an analytic (or algebraic) subset of M.
(in fact, $p \in \operatorname{Nilp}(M, \mathcal{F}) \Longleftrightarrow \partial\left(\mathfrak{m}_{p}\right) \subset \mathfrak{m}_{p}$ and $\partial_{1} \in \operatorname{End}_{\mathbb{C}}\left(\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}\right)$ is a nilpotent endomorphism, for ∂ some arbitrarily chosen local generator).

Nilpotent locus for foliations by curves
The nilpotent locus of a foliated manifold is the $\operatorname{subset} \operatorname{Nilp}(M, \mathcal{F})$ of points where \mathcal{F} is not elementary.

Claim: $\operatorname{Nilp}(M, \mathcal{F})$ is an analytic (or algebraic) subset of M.
(in fact, $p \in \operatorname{Nilp}(M, \mathcal{F}) \Longleftrightarrow \partial\left(\mathfrak{m}_{p}\right) \subset \mathfrak{m}_{p}$ and $\partial_{1} \in \operatorname{End}_{\mathbb{C}}\left(\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}\right)$ is a nilpotent endomorphism, for ∂ some arbitrarily chosen local generator).

Alternatively,

$$
p \in \operatorname{Nilp}(M, \mathcal{F}) \Longleftrightarrow \forall k \in \mathbb{N} \exists n \in \mathbb{N}:\left(\partial_{k}\right)^{n}=0
$$

where $\partial_{k}: J^{k} \rightarrow J^{k}$ is the induced derivation on the $k^{\text {th }}$ jet.

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}. More precisely, for each point $p \in M$, consider

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.
More precisely, for each point $p \in M$, consider

- ∂ a local generator of \mathcal{F}, and

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.
More precisely, for each point $p \in M$, consider

- ∂ a local generator of \mathcal{F}, and
- f an equation for a local irreducible component of E,

Then

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.
More precisely, for each point $p \in M$, consider

- ∂ a local generator of \mathcal{F}, and
- f an equation for a local irreducible component of E,

Then

$$
\forall i \in \mathbb{N}: \quad \partial\left(\left\langle f^{i}\right\rangle\right) \subset\left\langle f^{i}\right\rangle
$$

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.
More precisely, for each point $p \in M$, consider

- ∂ a local generator of \mathcal{F}, and
- f an equation for a local irreducible component of E,

Then

$$
\forall i \in \mathbb{N} \quad: \quad \partial\left(\left\langle f^{i}\right\rangle\right) \subset\left\langle f^{i}\right\rangle
$$

We further say that \mathcal{F} is tightly adapted to D if there exists an index i such that

$$
\partial\left(\left\langle f^{i}\right\rangle\right) \not \subset\left\langle f^{i+1}\right\rangle
$$

In other words, for $E=\left(x_{1} \ldots x_{k}=0\right)$,

$$
\partial=\sum_{i=1}^{k} a_{i}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)+\sum_{i=k+1}^{n} a_{i} \frac{\partial}{\partial x_{i}}
$$

with $a_{1}, \ldots, a_{n} \in \mathbb{C}\{x\}$ such that $\left\langle a_{1}, \ldots, a_{n}\right\rangle \not \subset\left\langle x_{i}\right\rangle$, for each $i=1, \ldots, k$.

Example: $E=(x=0)$

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$
$b \neq 0$: The generic point on the divisor is non-singular

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$
$b \neq 0$: The generic point on the divisor is non-singular
$b=0$: The generic point on the divisor is an elementary singularity

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$
$b \neq 0$: The generic point on the divisor is non-singular
$b=0$: The generic point on the divisor is an elementary singularity

(The singular set of the foliation can have codimension one components)

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$
$b \neq 0$: The generic point on the divisor is non-singular
$b=0$: The generic point on the divisor is an elementary singularity

(The singular set of the foliation can have codimension one components)
\mathcal{F} is tightly adapted to $E \Longleftrightarrow$ no irreducible component of E lies on $\operatorname{Nilp}(M, \mathcal{F})$

The problem of elimination of the nilpotent locus

The problem of elimination of the nilpotent locus

A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

The problem of elimination of the nilpotent locus
A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and

The problem of elimination of the nilpotent locus
A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E.

The problem of elimination of the nilpotent locus
A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E. such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.

A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E.
such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.
Problem: For each relatively compact subset $M_{0} \subset M$, find a finite sequence of blowingups

A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E.
such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.
Problem: For each relatively compact subset $M_{0} \subset M$, find a finite sequence of blowingups

$$
\left(M_{0}, E_{0}, \mathcal{F}_{0}\right) \stackrel{\pi_{1}}{\rightleftarrows} \cdots \stackrel{\pi_{n}}{\leftarrow}\left(M_{n}, E_{n}, \mathcal{F}_{n}\right)
$$

such that:

A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E.
such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.
Problem: For each relatively compact subset $M_{0} \subset M$, find a finite sequence of blowingups

$$
\left(M_{0}, E_{0}, \mathcal{F}_{0}\right) \stackrel{\pi_{1}}{\rightleftarrows} \cdots \stackrel{\pi_{n}}{\longleftarrow}\left(M_{n}, E_{n}, \mathcal{F}_{n}\right)
$$

such that:

1) The center C_{i} of π_{i} has normal crossings with E_{i} and is contained in $\operatorname{Nilp}\left(M_{i}, \mathcal{F}_{i}\right)$

A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E.
such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.
Problem: For each relatively compact subset $M_{0} \subset M$, find a finite sequence of blowingups

$$
\left(M_{0}, E_{0}, \mathcal{F}_{0}\right) \stackrel{\pi_{1}}{\rightleftarrows} \cdots \stackrel{\pi_{n}}{\longleftarrow}\left(M_{n}, E_{n}, \mathcal{F}_{n}\right)
$$

such that:

1) The center C_{i} of π_{i} has normal crossings with E_{i} and is contained in $\operatorname{Nilp}\left(M_{i}, \mathcal{F}_{i}\right)$
2) $\operatorname{Nilp}\left(M_{n}, \mathcal{F}_{n}\right)=\emptyset$.

How to compute the transform of a foliation by blowing-up?

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

$$
x_{1} \rightarrow x_{1}, \quad x_{2} \rightarrow x_{1} x_{2} \quad \ldots \quad x_{n} \rightarrow x_{1} x_{n}
$$

It is easier to compute the strict transform of the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$.

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

$$
x_{1} \rightarrow x_{1}, \quad x_{2} \rightarrow x_{1} x_{2} \quad \ldots \quad x_{n} \rightarrow x_{1} x_{n}
$$

It is easier to compute the strict transform of the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$.

$$
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow x_{1} \frac{\partial}{\partial x_{1}}-x_{2} \frac{\partial}{\partial x_{1}}-\cdots-x_{n} \frac{\partial}{\partial x_{n}}
$$

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

$$
x_{1} \rightarrow x_{1}, \quad x_{2} \rightarrow x_{1} x_{2} \quad \ldots \quad x_{n} \rightarrow x_{1} x_{n}
$$

It is easier to compute the strict transform of the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$.

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow x_{1} \frac{\partial}{\partial x_{1}}-x_{2} \frac{\partial}{\partial x_{1}}-\cdots-x_{n} \frac{\partial}{\partial x_{n}} \\
x_{2} \frac{\partial}{\partial x_{2}} \rightarrow x_{2} \frac{\partial}{\partial x_{2}}, \quad \cdots \quad, \quad x_{n} \frac{\partial}{\partial x_{n}} \rightarrow x_{n} \frac{\partial}{\partial x_{n}}
\end{gathered}
$$

(or via de dual basis of logarithmic one-forms $\left\{\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{n}}{x_{n}}\right\}$)

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

$$
x_{1} \rightarrow x_{1}, \quad x_{2} \rightarrow x_{1} x_{2} \quad \ldots \quad x_{n} \rightarrow x_{1} x_{n}
$$

It is easier to compute the strict transform of the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$.

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow x_{1} \frac{\partial}{\partial x_{1}}-x_{2} \frac{\partial}{\partial x_{1}}-\cdots-x_{n} \frac{\partial}{\partial x_{n}} \\
x_{2} \frac{\partial}{\partial x_{2}} \rightarrow x_{2} \frac{\partial}{\partial x_{2}}, \quad \cdots \quad, \quad x_{n} \frac{\partial}{\partial x_{n}} \rightarrow x_{n} \frac{\partial}{\partial x_{n}}
\end{gathered}
$$

(or via de dual basis of logarithmic one-forms $\left\{\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{n}}{x_{n}}\right\}$)

Example: $(\lambda: \mu)$ - linear saddle, $\quad \lambda, \mu>0$

Example: $(\lambda: \mu)$ - linear saddle, $\quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

Example: $(\lambda: \mu)$ - linear saddle, $\quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

$$
\lambda\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)-\mu y \frac{\partial}{\partial y} \quad(\lambda: \lambda+\mu)
$$

Under the substitution $x \rightarrow x y, y \rightarrow y$

Example: $(\lambda: \mu)$ - linear saddle $, \quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

$$
\lambda\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)-\mu y \frac{\partial}{\partial y} \quad(\lambda: \lambda+\mu)
$$

Under the substitution $x \rightarrow x y, y \rightarrow y$

$$
\lambda x \frac{\partial}{\partial x}-\mu\left(y \frac{\partial}{\partial y}-x \frac{\partial}{\partial x}\right) \quad(\lambda+\mu: \mu)
$$

Example: $(\lambda: \mu)$ - linear saddle $, \quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

$$
\lambda\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)-\mu y \frac{\partial}{\partial y} \quad(\lambda: \lambda+\mu)
$$

Under the substitution $x \rightarrow x y, y \rightarrow y$

$$
\lambda x \frac{\partial}{\partial x}-\mu\left(y \frac{\partial}{\partial y}-x \frac{\partial}{\partial x}\right) \quad(\lambda+\mu: \mu)
$$

Example: $(\lambda: \mu)$ - linear saddle, $\quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

$$
\lambda\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)-\mu y \frac{\partial}{\partial y} \quad(\lambda: \lambda+\mu)
$$

Under the substitution $x \rightarrow x y, y \rightarrow y$

$$
\lambda x \frac{\partial}{\partial x}-\mu\left(y \frac{\partial}{\partial y}-x \frac{\partial}{\partial x}\right) \quad(\lambda+\mu: \mu)
$$

We can never get rid of saddle points...

Example: node

Example: node

$$
x \frac{\partial}{\partial x}+\rho y \frac{\partial}{\partial y} \quad, \quad \rho>0
$$

Example: node

$$
x \frac{\partial}{\partial x}+\rho y \frac{\partial}{\partial y} \quad, \quad \rho>0
$$

Example: node

$$
\rho \frac{\partial}{\partial x}+\rho y \frac{\partial}{\partial y}
$$

Example: node

$$
x \frac{\partial}{\partial x}+\rho y \frac{\partial}{\partial y} \quad, \quad \rho>0
$$

We can never get rid of a node if $\rho \notin \mathbb{Q}$.

Example: saddle-nodes

Example: saddle-nodes

$$
x^{k} x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad k \geqslant 1
$$

Example: saddle-nodes

$$
x^{k} x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad k \geqslant 1
$$

Example: saddle-nodes

$$
x^{k} x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad k \geqslant 1
$$

After m directional blowing-ups: $x \rightarrow x, y \rightarrow x y$

$$
x^{k}\left(x \frac{\partial}{\partial x}-m y \frac{\partial}{\partial y}\right)+y \frac{\partial}{\partial y}
$$

This model is completely stable. It is a final model.

Example: saddle-nodes

$$
x^{k} x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad k \geqslant 1
$$

After m directional blowing-ups: $x \rightarrow x, y \rightarrow x y$

$$
x^{k}\left(x \frac{\partial}{\partial x}-m y \frac{\partial}{\partial y}\right)+y \frac{\partial}{\partial y}
$$

This model is completely stable. It is a final model.

$$
\text { First integral } \quad h=\left(x^{m} y\right) \exp \left(\frac{1}{k x^{k}}\right)
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

In logarithmic basis:

$$
x^{-1}\left(x \frac{\partial}{\partial x}\right)+x^{k} y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

In logarithmic basis:

$$
\begin{gathered}
x^{-1}\left(x \frac{\partial}{\partial x}\right)+x^{k} y^{-1}\left(y \frac{\partial}{\partial y}\right) \\
\operatorname{Center}(x=0): \quad \tilde{\partial}=x \partial=x \frac{\partial}{\partial x}+x^{k+1} \frac{\partial}{\partial y}
\end{gathered}
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

In logarithmic basis:

$$
\begin{gathered}
\qquad x^{-1}\left(x \frac{\partial}{\partial x}\right)+x^{k} y^{-1}\left(y \frac{\partial}{\partial y}\right) \\
\text { Center }(x=0): \quad \tilde{\partial}=x \partial=x \frac{\partial}{\partial x}+x^{k+1} \frac{\partial}{\partial y}
\end{gathered}
$$

$$
\text { Center }(y=0): \quad \tilde{\partial}=y \partial=y \frac{\partial}{\partial x}+x^{k}\left(y \frac{\partial}{\partial y}\right) \quad(\text { nilpotent singularity })
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

In logarithmic basis:

$$
\begin{aligned}
& \qquad x^{-1}\left(x \frac{\partial}{\partial x}\right)+x^{k} y^{-1}\left(y \frac{\partial}{\partial y}\right) \\
& \text { Center }(x=0): \quad \tilde{\partial}=x \partial=x \frac{\partial}{\partial x}+x^{k+1} \frac{\partial}{\partial y}
\end{aligned}
$$

Center $(y=0): \quad \tilde{\partial}=y \partial=y \frac{\partial}{\partial x}+x^{k}\left(y \frac{\partial}{\partial y}\right) \quad$ (nilpotent singularity)

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for $\operatorname{dim} M \geqslant 3$.

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for $\operatorname{dim} M \geqslant 3$.
Example of Sanz and Sancho-Salas:

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for $\operatorname{dim} M \geqslant 3$.
Example of Sanz and Sancho-Salas:

$$
\partial=\left(y \frac{\partial}{\partial x}+x z \frac{\partial}{\partial y}\right)+\beta z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-z\left(-x \frac{\partial}{\partial x}+2 z \frac{\partial}{\partial z}\right)
$$

is tangent to the Whitney umbrella $W=y^{2}-z x^{2}$.

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for $\operatorname{dim} M \geqslant 3$.
Example of Sanz and Sancho-Salas:

$$
\partial=\left(y \frac{\partial}{\partial x}+x z \frac{\partial}{\partial y}\right)+\beta z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-z\left(-x \frac{\partial}{\partial x}+2 z \frac{\partial}{\partial z}\right)
$$

is tangent to the Whitney umbrella $W=y^{2}-z x^{2}$.

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for $\operatorname{dim} M \geqslant 3$.
Example of Sanz and Sancho-Salas:

$$
\partial=\left(y \frac{\partial}{\partial x}+x z \frac{\partial}{\partial y}\right)+\beta z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-z\left(-x \frac{\partial}{\partial x}+2 z \frac{\partial}{\partial z}\right)+\lambda z \frac{\partial}{\partial x}
$$

with $\beta \notin \frac{1}{2} \mathbb{Z}_{>0}, \quad \lambda \in \mathbb{C}^{\star}$.

Formal expansion of the "handle"

$$
\begin{array}{ll}
y=\tau(z)=\sum \tau_{n} z^{n}, & \tau_{n} \sim \lambda(n!)^{2} \\
x=\xi(z)=\sum \xi_{n} z^{n}, & \xi_{n} \sim \lambda(n!)^{2}
\end{array}
$$

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for $\operatorname{dim} M \geqslant 3$.
Example of Sanz and Sancho-Salas:

$$
\partial=\left(y \frac{\partial}{\partial x}+x z \frac{\partial}{\partial y}\right)+\beta z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-z\left(-x \frac{\partial}{\partial x}+2 z \frac{\partial}{\partial z}\right)+\lambda z \frac{\partial}{\partial x}
$$

with $\beta \notin \frac{1}{2} \mathbb{Z}_{>0}, \quad \lambda \in \mathbb{C}^{\star}$.

Formal expansion of the "handle"

$$
\begin{array}{ll}
y=\tau(z)=\sum \tau_{n} z^{n}, & \tau_{n} \sim \lambda(n!)^{2} \\
x=\xi(z)=\sum \xi_{n} z^{n}, & \xi_{n} \sim \lambda(n!)^{2}
\end{array}
$$

We cannot take the handle as a blowing-up center because it is non-analytic.

Fix some $\omega \in\left(\mathbb{Z}_{>0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

Fix some $\omega \in\left(\mathbb{Z}_{>0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

Fix some $\omega \in\left(\mathbb{Z}_{>0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1}
$$

Fix some $\omega \in\left(\mathbb{Z}_{>0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

Fix some $\omega \in\left(\mathbb{Z}_{>0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

Fix some $\omega \in\left(\mathbb{Z}_{>0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

$$
\operatorname{Graph}(\Phi) \subset \mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}
$$

Fix some $\omega \in\left(\mathbb{Z}_{>0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{aligned}
\pi & : \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x & \rightarrow \text { orbit through } x
\end{aligned}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

$$
\operatorname{Graph}(\Phi) \subset \mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}
$$

The blowed-up space is its Zariski-closure

Fix some $\omega \in\left(\mathbb{Z}_{>0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

$$
\operatorname{Graph}(\Phi) \subset \mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}
$$

The blowed-up space is its Zariski-closure

$$
\widetilde{M}=\overline{\operatorname{Graph}(\Phi)} \mathrm{Zar}
$$

Fix some $\omega \in\left(\mathbb{Z}_{>0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

$$
\operatorname{Graph}(\Phi) \subset \mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}
$$

The blowed-up space is its Zariski-closure

$$
\widetilde{M}=\overline{\operatorname{Graph}(\Phi)} \mathrm{Zar}
$$

and the projection $\pi: \widetilde{M} \rightarrow \mathbb{C}^{n}$ is the weighted blowing-up of the origin in \mathbb{C}^{n}.

Structure of $\mathbb{P}_{\omega}^{n-1}$: The hyperplanes $\left\{x_{i}=1\right\}$ are slices for the torus action modulo the action of a group of symmetries.

Structure of $\mathbb{P}_{\omega}^{n-1}$: The hyperplanes $\left\{x_{i}=1\right\}$ are slices for the torus action modulo the action of a group of symmetries.

Example

$$
t \cdot(x, y)=\left(t^{2} x, t y\right)
$$

We have to take into account the quotient by $\mathbb{Z} / 2 \mathbb{Z}$.

The charts of a weighted-blowing up

The charts of a weighted-blowing up
The x_{1}-directional chart is given by

The charts of a weighted-blowing up
The x_{1}-directional chart is given by

$$
\begin{aligned}
& x_{1} \rightarrow y_{1}^{\omega_{1}} \\
& x_{2} \rightarrow y_{1}^{\omega_{1}} y_{2} \\
& \vdots \\
& \vdots \\
& x_{n} \rightarrow y_{1}^{\omega_{n}} y_{n}
\end{aligned}
$$

The charts of a weighted-blowing up
The x_{1}-directional chart is given by

$$
\begin{aligned}
& x_{1} \rightarrow y_{1}^{\omega_{1}} \\
& x_{2} \rightarrow y_{1}^{\omega_{1}} y_{2} \\
& \vdots \\
& \vdots \\
& x_{n} \rightarrow y_{1}^{\omega_{n}} y_{n}
\end{aligned}
$$

We interpret $\left(y_{1, . .}, y_{n}\right)$ as an orbifold chart on \widetilde{M}. Namely the affine space \mathbb{C}^{n} equipped with an action of the cyclic group $\mathbb{Z} / \omega_{1} \mathbb{Z}$, defined by

$$
y_{1} \rightarrow \xi y_{1}, \quad \text { For } 2 \leqslant k \leqslant n: \quad y_{k} \longrightarrow \xi^{-\omega_{k}} y_{k}
$$

where ξ is a $\omega_{1}^{\text {th }}$-primitive root of unity. The other charts are defined analogously.

The charts of a weighted-blowing up
The x_{1}-directional chart is given by

$$
\begin{aligned}
& x_{1} \rightarrow y_{1}^{\omega_{1}} \\
& x_{2} \rightarrow y_{1}^{\omega_{1}} y_{2} \\
& \vdots \\
& \vdots \\
& x_{n} \rightarrow y_{1}^{\omega_{n}} y_{n}
\end{aligned}
$$

We interpret $\left(y_{1, . .}, y_{n}\right)$ as an orbifold chart on \widetilde{M}. Namely the affine space \mathbb{C}^{n} equipped with an action of the cyclic group $\mathbb{Z} / \omega_{1} \mathbb{Z}$, defined by

$$
y_{1} \rightarrow \xi y_{1}, \quad \text { For } 2 \leqslant k \leqslant n: \quad y_{k} \longrightarrow \xi^{-\omega_{k}} y_{k}
$$

where ξ is a $\omega_{1}^{\text {th }}$-primitive root of unity. The other charts are defined analogously. The glueing of these charts equipps \widetilde{M} with the structure of an orbifold.

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Let M be a paracompact Hausdorff space.

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Let M be a paracompact Hausdorff space.
An orbifold chart on M is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Let M be a paracompact Hausdorff space.
An orbifold chart on M is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map which induces a homeomorphism $U / G \rightarrow \phi(U)$.

An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding $\lambda: V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (this induces an injective homomorphism $H \rightarrow G$).

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Let M be a paracompact Hausdorff space.
An orbifold chart on M is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map which induces a homeomorphism $U / G \rightarrow \phi(U)$.

An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding $\lambda: V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (this induces an injective homomorphism $H \rightarrow G$).

Two orbifold charts (U, G, ϕ) and (V, H, ψ) on M are compatible if for any $z \in \phi(U) \cap \psi(v)$ there exists an orbifold chart (W, K, θ) defined near z and embeddings

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Let M be a paracompact Hausdorff space.
An orbifold chart on M is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map which induces a homeomorphism $U / G \rightarrow \phi(U)$.

An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding $\lambda: V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (this induces an injective homomorphism $H \rightarrow G$).

Two orbifold charts (U, G, ϕ) and (V, H, ψ) on M are compatible if for any $z \in \phi(U) \cap \psi(v)$ there exists an orbifold chart (W, K, θ) defined near z and embeddings

$$
(W, K, \theta) \hookrightarrow(U, G, \phi), \quad(W, K, \theta) \hookrightarrow(V, H, \psi)
$$

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Let M be a paracompact Hausdorff space.
An orbifold chart on M is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map which induces a homeomorphism $U / G \rightarrow \phi(U)$.

An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding $\lambda: V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (this induces an injective homomorphism $H \rightarrow G$).

Two orbifold charts (U, G, ϕ) and (V, H, ψ) on M are compatible if for any $z \in \phi(U) \cap \psi(v)$ there exists an orbifold chart (W, K, θ) defined near z and embeddings

$$
(W, K, \theta) \hookrightarrow(U, G, \phi), \quad(W, K, \theta) \hookrightarrow(V, H, \psi)
$$

An orbifold atlas on M is a collection $\mathcal{U}=\left\{\left(U_{i}, G_{i}, \phi_{i}\right)\right\}_{i \in I}$ of pairwise compatible orbifold charts such that $\left\{\phi\left(U_{i}\right)\right\}_{i \in I}$ forms an open cover of M.

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Let M be a paracompact Hausdorff space.
An orbifold chart on M is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map which induces a homeomorphism $U / G \rightarrow \phi(U)$.

An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding $\lambda: V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (this induces an injective homomorphism $H \rightarrow G$).

Two orbifold charts (U, G, ϕ) and (V, H, ψ) on M are compatible if for any $z \in \phi(U) \cap \psi(v)$ there exists an orbifold chart (W, K, θ) defined near z and embeddings

$$
(W, K, \theta) \hookrightarrow(U, G, \phi), \quad(W, K, \theta) \hookrightarrow(V, H, \psi)
$$

An orbifold atlas on M is a collection $\mathcal{U}=\left\{\left(U_{i}, G_{i}, \phi_{i}\right)\right\}_{i \in I}$ of pairwise compatible orbifold charts such that $\left\{\phi\left(U_{i}\right)\right\}_{i \in I}$ forms an open cover of M.

An orbifold is a pair (M, \mathcal{U}) where M is paracompact Hausdorff topological space and \mathcal{U} is a maximal orbifold atlas on M.

A sub-variety $Y \subset M$ is a sub-orbifold if for each point $p \in Y$ there exists a local chart (U, G, ϕ) such that $\phi^{-1}(Y \cap U)$ is a G-invariant submanifold of U.

Important: 1) The local group actions are part of the structure.

Important: 1) The local group actions are part of the structure.
"Remember the group"

Important: 1) The local group actions are part of the structure.
"Remember the group"
2) The underlying topological space can be a singular.

Important: 1) The local group actions are part of the structure.
"Remember the group"
2) The underlying topological space can be a singular.

Example: $\quad X=\mathbb{C}^{2} / G, \quad G=\mathbb{Z} / 2 \mathbb{Z}$

Important: 1) The local group actions are part of the structure.
"Remember the group"
2) The underlying topological space can be a singular.

Example: $\quad X=\mathbb{C}^{2} / G, \quad G=\mathbb{Z} / 2 \mathbb{Z}$

$$
(x, y) \longrightarrow(-x,-y)
$$

Important: 1) The local group actions are part of the structure.
"Remember the group"
2) The underlying topological space can be a singular.

Example: $\quad X=\mathbb{C}^{2} / G, \quad G=\mathbb{Z} / 2 \mathbb{Z}$

$$
(x, y) \longrightarrow(-x,-y)
$$

$X=\operatorname{Spec} \mathbb{C}[x, y]^{G} \quad$ (ring of invariants)

$$
\begin{gathered}
\mathbb{C}[x, y]^{G}=\mathbb{C}\left[x^{2}, x y, y^{2}\right] \\
X=\operatorname{spec} \mathbb{C}[u, v, w] /\left(v^{2}-u w\right)
\end{gathered}
$$

X is the quadratic cone.

General idea: The weighted blowing-up allows to take into account some natural quasi-homogeneous filtration of the initial object.

General idea: The weighted blowing-up allows to take into account some natural quasi-homogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

General idea: The weighted blowing-up allows to take into account some natural quasi-homogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

In the z-directional chart we obtain

$$
x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}
$$

General idea: The weighted blowing-up allows to take into account some natural quasi-homogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

In the z-directional chart we obtain

$$
x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}
$$

and $w=z^{4}\left(y^{2}-x^{2}\right)$ becomes a normal crossings divisor.

General idea: The weighted blowing-up allows to take into account some natural quasi-homogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

In the z-directional chart we obtain

$$
x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}
$$

and $w=z^{4}\left(y^{2}-x^{2}\right)$ becomes a normal crossings divisor.
This is the orbifold chart $\left(\mathbb{C}^{3}, \mathbb{Z} / 2 \mathbb{Z}, \phi\right)$, where the action is $(x, y, z) \rightarrow(-x, y,-z)$

General idea: The weighted blowing-up allows to take into account some natural quasi-homogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

In the z-directional chart we obtain

$$
x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}
$$

and $w=z^{4}\left(y^{2}-x^{2}\right)$ becomes a normal crossings divisor.
This is the orbifold chart $\left(\mathbb{C}^{3}, \mathbb{Z} / 2 \mathbb{Z}, \phi\right)$, where the action is $(x, y, z) \rightarrow(-x, y,-z)$

Over \mathbb{R} : We can alternatively work in the category of manifold with corners

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

(advantage: stay in the category of smooth manifolds)

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

(advantage: stay in the category of smooth manifolds)
(drawback: we "forget the group" and potentially loose information about the local symetries)

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

(advantage: stay in the category of smooth manifolds)
(drawback: we "forget the group" and potentially loose information about the local symetries)
(c.f. Melrose's "Analysis on manifolds with corners" - online)

Example: Spherical blowing-up of the (real) Whitney umbrella

Example: Spherical blowing-up of the (real) Whitney umbrella

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{2} \longrightarrow \mathbb{R}^{3}
$$

Two z-directional "slices":

Example: Spherical blowing-up of the (real) Whitney umbrella

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{2} \longrightarrow \mathbb{R}^{3}
$$

Two z-directional "slices":

$\{z>0\}$-chart: $\quad x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}: \quad f=z^{4}\left(y^{2}-x^{2}\right)$

Example: Spherical blowing-up of the (real) Whitney umbrella

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{2} \longrightarrow \mathbb{R}^{3}
$$

Two z-directional "slices":

$\{z>0\}$-chart: $\quad x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}: \quad f=z^{4}\left(y^{2}-x^{2}\right)$
$\{z<0\}$-chart: $\quad x \rightarrow z^{2} x, \quad y \rightarrow z^{2} y, \quad z \rightarrow-z^{2}: \quad f=z^{4}\left(y^{2}+x^{2}\right)$

Example: Spherical blowing-up of the (real) Whitney umbrella

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{2} \longrightarrow \mathbb{R}^{3}
$$

Two z-directional "slices":

$\{z>0\}$-chart: $\quad x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}: \quad f=z^{4}\left(y^{2}-x^{2}\right)$
$\{z<0\}$-chart: $\quad x \rightarrow z^{2} x, \quad y \rightarrow z^{2} y, \quad z \rightarrow-z^{2}: \quad f=z^{4}\left(y^{2}+x^{2}\right)$
$\{x>0\}$-chart: $\quad x \rightarrow \pm x, \quad y \rightarrow x^{2} y, \quad z \rightarrow x^{2} z: \quad f=x^{4}\left(y^{2}-z\right)$

Example: Spherical blowing-up of the (real) Whitney umbrella

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{2} \longrightarrow \mathbb{R}^{3}
$$

Two z-directional "slices":

$\{z>0\}$-chart: $\quad x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}: \quad f=z^{4}\left(y^{2}-x^{2}\right)$
$\{z<0\}$-chart: $\quad x \rightarrow z^{2} x, \quad y \rightarrow z^{2} y, \quad z \rightarrow-z^{2}: \quad f=z^{4}\left(y^{2}+x^{2}\right)$
$\{x>0\}$-chart: $\quad x \rightarrow \pm x, \quad y \rightarrow x^{2} y, \quad z \rightarrow x^{2} z: \quad f=x^{4}\left(y^{2}-z\right)$

Weighted blowing-up along global centers

Weighted blowing-up along global centers

If we consider the torus action

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{k}} x_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

Then the above construction leads to a local blowing-up with center $C=Z\left(x_{1}, \ldots, x_{k}\right)$.

Weighted blowing-up along global centers
If we consider the torus action

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{k}} x_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

Then the above construction leads to a local blowing-up with center $C=Z\left(x_{1}, \ldots, x_{k}\right)$. We need to understand how to glue-up these local actions in order to obtain globally defined blowing-up with center C.

Weighted blowing-up along global centers
If we consider the torus action

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{k}} x_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

Then the above construction leads to a local blowing-up with center $C=Z\left(x_{1}, \ldots, x_{k}\right)$. We need to understand how to glue-up these local actions in order to obtain globally defined blowing-up with center C.

Weighted blowing-up along global centers
If we consider the torus action

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{k}} x_{k}, x_{k+1}, \ldots, x_{n}\right)
$$

Then the above construction leads to a local blowing-up with center $C=Z\left(x_{1}, \ldots, x_{k}\right)$. We need to understand how to glue-up these local actions in order to obtain globally defined blowing-up with center C.

Existence of global Weighted blowing-ups

Existence of global Weighted blowing-ups

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

Existence of global Weighted blowing-ups

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}_{p}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$.

Existence of global Weighted blowing-ups

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}_{p}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$. In other words, \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.

Existence of global Weighted blowing-ups

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}_{p}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$.
In other words, \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.
In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) $C \subset$ M, we need to require the existence of a global trivialization of C

Existence of global Weighted blowing-ups

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}_{p}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$.
In other words, \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.
In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) $C \subset$ M, we need to require the existence of a global trivialization of C

Such that the diffeomorphisms between the transition charts respects the local quasihomogeneous filtration. This is a non-trivial topological restriction.

Existence of global Weighted blowing-ups

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}_{p}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$.
In other words, \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.
In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) $C \subset$ M, we need to require the existence of a global trivialization of C

Such that the diffeomorphisms between the transition charts respects the local quasihomogeneous filtration. This is a non-trivial topological restriction.

More abstractly: This amounts to the existence of a global weighted filtration of the structure sheaf. Namely a sequence of nested of ideal sheafs

Existence of global Weighted blowing-ups

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}_{p}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$.
In other words, \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.
In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) $C \subset$ M, we need to require the existence of a global trivialization of C

Such that the diffeomorphisms between the transition charts respects the local quasihomogeneous filtration. This is a non-trivial topological restriction.

More abstractly: This amounts to the existence of a global weighted filtration of the structure sheaf. Namely a sequence of nested of ideal sheafs

$$
\mathcal{O}=F_{0} \supset F_{1} \supset \cdots
$$

Existence of global Weighted blowing-ups

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}_{p}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$.
In other words, \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.
In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) $C \subset$ M, we need to require the existence of a global trivialization of C

Such that the diffeomorphisms between the transition charts respects the local quasihomogeneous filtration. This is a non-trivial topological restriction.

More abstractly: This amounts to the existence of a global weighted filtration of the structure sheaf. Namely a sequence of nested of ideal sheafs

$$
\mathcal{O}=F_{0} \supset F_{1} \supset \cdots
$$

such that $F_{i} F_{j} \subset F_{i+j}$ and such that, for each point p on the support, the stalk of this filtration coincides with a quasi-homogeneous filtration as defined above.

Example: $\quad C=Z(x, y) \subset \mathbb{C}^{3}$

$$
\begin{gathered}
\omega=(1, \beta, 0) \in \mathbb{Z}^{3} \\
\beta>1
\end{gathered}
$$

Example: $\quad C=Z(x, y) \subset \mathbb{C}^{3}$

$$
\begin{gathered}
\omega=(1, \beta, 0) \in \mathbb{Z}^{3} \\
\beta>1
\end{gathered}
$$

All automorphisms of the form

$$
x \rightarrow x+\rho y^{m}, \quad y \rightarrow y+\xi x^{l}, \quad l \geqslant \beta
$$

Example: $\quad C=Z(x, y) \subset \mathbb{C}^{3}$

$$
\begin{gathered}
\omega=(1, \beta, 0) \in \mathbb{Z}^{3} \\
\beta>1
\end{gathered}
$$

All automorphisms of the form

$$
x \rightarrow x+\rho y^{m}, \quad y \rightarrow y+\xi x^{l}, \quad l \geqslant \beta
$$

preserve the $(1, \beta, 0)$-filtration of $\mathbb{C}[x, y, z]$.

Example: $\quad C=Z(x, y) \subset \mathbb{C}^{3}$

$$
\begin{gathered}
\omega=(1, \beta, 0) \in \mathbb{Z}^{3} \\
\beta>1
\end{gathered}
$$

All automorphisms of the form

$$
x \rightarrow x+\rho y^{m}, \quad y \rightarrow y+\xi x^{l}, \quad l \geqslant \beta
$$

preserve the $(1, \beta, 0)$-filtration of $\mathbb{C}[x, y, z]$.
More generally, all automorphisms obtained by integrating the Lie algebra (over \mathbb{C}) generated by

$$
\left\{x \frac{\partial}{\partial x}, y \frac{\partial}{\partial y}, x^{l} \frac{\partial}{\partial y}, \left.y^{m} \frac{\partial}{\partial x} \quad \right\rvert\, \quad m \geqslant 1, l \geqslant \beta\right\}
$$

Weighted blowing-up of vector fields

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right)
$$

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right) \\
x_{k} \frac{\partial}{\partial x_{k}} \longrightarrow x_{k} \frac{\partial}{\partial x_{k}}
\end{gathered}
$$

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right) \\
x_{k} \frac{\partial}{\partial x_{k}} \longrightarrow x_{k} \frac{\partial}{\partial x_{k}}
\end{gathered}
$$

Example: $\partial=x \frac{\partial}{\partial x}+n y \frac{\partial}{\partial y}, \quad n \in \mathbb{Z}_{>0}$.

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right) \\
x_{k} \frac{\partial}{\partial x_{k}} \longrightarrow x_{k} \frac{\partial}{\partial x_{k}}
\end{gathered}
$$

Example: $\partial=x \frac{\partial}{\partial x}+n y \frac{\partial}{\partial y}, \quad n \in \mathbb{Z}_{>0}$.

$$
\begin{gathered}
x \rightarrow x, \quad y \rightarrow x^{n} y \\
\partial=x \frac{\partial}{\partial x}
\end{gathered}
$$

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right) \\
x_{k} \frac{\partial}{\partial x_{k}} \longrightarrow x_{k} \frac{\partial}{\partial x_{k}}
\end{gathered}
$$

Example: $\partial=x \frac{\partial}{\partial x}+n y \frac{\partial}{\partial y}, \quad n \in \mathbb{Z}_{>0}$.

$$
\begin{gathered}
x \rightarrow x, \quad y \rightarrow x^{n} y \\
\partial=x \frac{\partial}{\partial x}
\end{gathered}
$$

The solution curves of ∂ are precisely the orbits of the torus action $t \cdot(x, y)=\left(t x, t^{n} y\right)$.

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Based on the quasi-homogeneity the almost first integral $y^{2}-x^{3}$, we consider the blowup with weight $(2,3)$.

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Based on the quasi-homogeneity the almost first integral $y^{2}-x^{3}$, we consider the blowup with weight $(2,3)$.

We write ∂ in the logarithmic basis

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Based on the quasi-homogeneity the almost first integral $y^{2}-x^{3}$, we consider the blowup with weight $(2,3)$.
We write ∂ in the logarithmic basis

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

In the x-chart: $x \rightarrow x^{2}, y \rightarrow x^{3} y$: (Using the assumption of the $(2,3)$-order of Δ)

$$
\partial=x y\left(x \frac{\partial}{\partial x}-3 y \frac{\partial}{\partial y}\right)+3 x y^{-1}\left(y \frac{\partial}{\partial y}\right)+x^{2} \Delta=x\left(x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y}\right)+x^{2} \Delta
$$

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Based on the quasi-homogeneity the almost first integral $y^{2}-x^{3}$, we consider the blowup with weight $(2,3)$.
We write ∂ in the logarithmic basis

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

In the x-chart: $x \rightarrow x^{2}, y \rightarrow x^{3} y: \quad$ (Using the assumption of the $(2,3)$-order of Δ)

$$
\partial=x y\left(x \frac{\partial}{\partial x}-3 y \frac{\partial}{\partial y}\right)+3 x y^{-1}\left(y \frac{\partial}{\partial y}\right)+x^{2} \Delta=x\left(x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y}\right)+x^{2} \Delta
$$

The divisor $\{x=0\}$ is contained in the nilpotent locus. We factor out x and write

$$
\partial_{1}=x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y}+\Delta_{1}
$$

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$:

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$:
The original cuspidal foliation

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$:
The original cuspidal foliation

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

transforms into

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$:
The original cuspidal foliation

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

transforms into

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y\left(y \frac{\partial}{\partial y}-2 x \frac{\partial}{\partial x}\right)+y^{2} \Delta=y\left(2\left(1-x^{3}\right) \frac{\partial}{\partial x}+x^{2} y \frac{\partial}{\partial y}\right)+y^{2} \Delta
$$

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$:
The original cuspidal foliation

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

transforms into

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y\left(y \frac{\partial}{\partial y}-2 x \frac{\partial}{\partial x}\right)+y^{2} \Delta=y\left(2\left(1-x^{3}\right) \frac{\partial}{\partial x}+x^{2} y \frac{\partial}{\partial y}\right)+y^{2} \Delta
$$

and, factoring out y, we obtain

$$
\partial_{2}=2\left(1-x^{3}\right) \frac{\partial}{\partial x}-x^{2} y \frac{\partial}{\partial y}+\Delta_{2}
$$

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$:
The original cuspidal foliation

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

transforms into

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y\left(y \frac{\partial}{\partial y}-2 x \frac{\partial}{\partial x}\right)+y^{2} \Delta=y\left(2\left(1-x^{3}\right) \frac{\partial}{\partial x}+x^{2} y \frac{\partial}{\partial y}\right)+y^{2} \Delta
$$

and, factoring out y, we obtain

$$
\partial_{2}=2\left(1-x^{3}\right) \frac{\partial}{\partial x}-x^{2} y \frac{\partial}{\partial y}+\Delta_{2}
$$

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$:
The original cuspidal foliation

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

transforms into

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y\left(y \frac{\partial}{\partial y}-2 x \frac{\partial}{\partial x}\right)+y^{2} \Delta=y\left(2\left(1-x^{3}\right) \frac{\partial}{\partial x}+x^{2} y \frac{\partial}{\partial y}\right)+y^{2} \Delta
$$

and, factoring out y, we obtain

$$
\partial_{2}=2\left(1-x^{3}\right) \frac{\partial}{\partial x}-x^{2} y \frac{\partial}{\partial y}+\Delta_{2}
$$

The resulting perturbation Δ is of quadratic order along E (does not change the eingenvalues at the singular point)

Local symmetries of the foliated orbifold

Local symmetries of the foliated orbifold

Local symmetries of the foliated orbifold

The fundamental group of the (orbi-)leaf L is

$$
\pi_{1}(L)=\left\{\gamma, \eta, \rho \mid \gamma^{2}=\eta^{3}=1, \rho=\gamma \eta\right\}
$$

Local symmetries of the foliated orbifold

The fundamental group of the (orbi-)leaf L is

$$
\pi_{1}(L)=\left\{\gamma, \eta, \rho \mid \gamma^{2}=\eta^{3}=1, \rho=\gamma \eta\right\}
$$

$$
\partial_{1}=x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y} \quad \zeta \mathbb{Z} / 2 \mathbb{Z}
$$

$$
\partial_{1}=x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y} \quad \zeta \mathbb{Z} / 2 \mathbb{Z}
$$

$$
g \cdot x=-x, \quad g \cdot y \rightarrow-y
$$

$$
g \cdot \partial_{1}=-\partial_{1}
$$

$$
\partial_{1}=x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y} \quad ⿹ \mathbb{Z} / 2 \mathbb{Z}
$$

$$
g \cdot x=-x, \quad g \cdot y \rightarrow-y
$$

$$
g \cdot \partial_{1}=-\partial_{1}
$$

Other chart

$$
\begin{gathered}
\partial_{2}=2\left(1-x^{3}\right) \frac{\partial}{\partial x}-x^{2} y \frac{\partial}{\partial y} \\
g \cdot x=\xi^{-2} x, \quad g \cdot y=\xi y, \quad\left(\xi^{3}=\mathrm{id}\right) \\
g \cdot \partial_{2}=\xi^{2} \partial_{2}
\end{gathered}
$$

Elimination of nilpotent points in dimension two - Classical proof

Elimination of nilpotent points in dimension two - Classical proof
Van der Essen's proof (c.f. Ilyashenko-Yakovenko's book) We write $\partial=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}$

Elimination of nilpotent points in dimension two - Classical proof
Van der Essen's proof (c.f. Ilyashenko-Yakovenko's book) We write $\partial=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}$
Suppose that the germ is singular. We can assume that $a, b \in \mathbb{C}\{x, y\}$ have no common factor and consider

$$
m(0)=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}\{x, y\}}{(a, b)} \geqslant 1, \quad \mu(0)=\min _{k}\left\{\left(J^{k} a, J^{k} b\right) \neq(0,0)\right\}
$$

$(m(0)$ is the local intersection multiplicity of the curves $Z(a)$ and $Z(b)$ at 0$)$

Elimination of nilpotent points in dimension two - Classical proof
Van der Essen's proof (c.f. Ilyashenko-Yakovenko's book) We write $\partial=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}$
Suppose that the germ is singular. We can assume that $a, b \in \mathbb{C}\{x, y\}$ have no common factor and consider

$$
m(0)=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}\{x, y\}}{(a, b)} \geqslant 1, \quad \mu(0)=\min _{k}\left\{\left(J^{k} a, J^{k} b\right) \neq(0,0)\right\}
$$

$(m(0)$ is the local intersection multiplicity of the curves $Z(a)$ and $Z(b)$ at 0$)$
After a blowing-up, the Noether's formula give,

Elimination of nilpotent points in dimension two - Classical proof Van der Essen's proof (c.f. Ilyashenko-Yakovenko's book) We write $\partial=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}$ Suppose that the germ is singular. We can assume that $a, b \in \mathbb{C}\{x, y\}$ have no common factor and consider

$$
m(0)=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}\{x, y\}}{(a, b)} \geqslant 1, \quad \mu(0)=\min _{k}\left\{\left(J^{k} a, J^{k} b\right) \neq(0,0)\right\}
$$

$(m(0)$ is the local intersection multiplicity of the curves $Z(a)$ and $Z(b)$ at 0$)$
After a blowing-up, the Noether's formula give,

$$
\sum m\left(\tilde{p}_{j}\right)=m(0)-l^{2}+l+1
$$

where $\left\{\tilde{p}_{j}\right\}$ are the singular points of the blowed-up vector field and

Elimination of nilpotent points in dimension two - Classical proof Van der Essen's proof (c.f. Ilyashenko-Yakovenko's book) We write $\partial=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}$ Suppose that the germ is singular. We can assume that $a, b \in \mathbb{C}\{x, y\}$ have no common factor and consider

$$
m(0)=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}\{x, y\}}{(a, b)} \geqslant 1, \quad \mu(0)=\min _{k}\left\{\left(J^{k} a, J^{k} b\right) \neq(0,0)\right\}
$$

$(m(0)$ is the local intersection multiplicity of the curves $Z(a)$ and $Z(b)$ at 0$)$
After a blowing-up, the Noether's formula give,

$$
\sum m\left(\tilde{p}_{j}\right)=m(0)-l^{2}+l+1
$$

where $\left\{\tilde{p}_{j}\right\}$ are the singular points of the blowed-up vector field and

$$
l= \begin{cases}\mu(a, b) & \text { if } \partial \text { is non-dicritic } \\ \mu(a, b)+1 & \text { if } \partial \text { is dicritic }\end{cases}
$$

Elimination of nilpotent points in dimension two - Classical proof Van der Essen's proof (c.f. Ilyashenko-Yakovenko's book) We write $\partial=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}$ Suppose that the germ is singular. We can assume that $a, b \in \mathbb{C}\{x, y\}$ have no common factor and consider

$$
m(0)=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}\{x, y\}}{(a, b)} \geqslant 1, \quad \mu(0)=\min _{k}\left\{\left(J^{k} a, J^{k} b\right) \neq(0,0)\right\}
$$

$(m(0)$ is the local intersection multiplicity of the curves $Z(a)$ and $Z(b)$ at 0$)$
After a blowing-up, the Noether's formula give,

$$
\sum m\left(\tilde{p}_{j}\right)=m(0)-l^{2}+l+1
$$

where $\left\{\tilde{p}_{j}\right\}$ are the singular points of the blowed-up vector field and

$$
l= \begin{cases}\mu(a, b) & \text { if } \partial \text { is non-dicritic } \\ \mu(a, b)+1 & \text { if } \partial \text { is dicritic }\end{cases}
$$

- If $l(0) \geqslant 2$ then $m\left(\tilde{p}_{j}\right)<m(p)$

Elimination of nilpotent points in dimension two - Classical proof Van der Essen's proof (c.f. Ilyashenko-Yakovenko's book) We write $\partial=a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}$ Suppose that the germ is singular. We can assume that $a, b \in \mathbb{C}\{x, y\}$ have no common factor and consider

$$
m(0)=\operatorname{dim}_{\mathbb{C}} \frac{\mathbb{C}\{x, y\}}{(a, b)} \geqslant 1, \quad \mu(0)=\min _{k}\left\{\left(J^{k} a, J^{k} b\right) \neq(0,0)\right\}
$$

($m(0)$ is the local intersection multiplicity of the curves $Z(a)$ and $Z(b)$ at 0$)$ After a blowing-up, the Noether's formula give,

$$
\sum m\left(\tilde{p}_{j}\right)=m(0)-l^{2}+l+1
$$

where $\left\{\tilde{p}_{j}\right\}$ are the singular points of the blowed-up vector field and

$$
l= \begin{cases}\mu(a, b) & \text { if } \partial \text { is non-dicritic } \\ \mu(a, b)+1 & \text { if } \partial \text { is dicritic }\end{cases}
$$

- If $l(0) \geqslant 2$ then $m\left(\tilde{p}_{j}\right)<m(p)$
- If $l(0)=1$ then this is a special case which has to be treated separately \ldots

Example of "special case".

$$
y \frac{\partial}{\partial x}+x^{M} \frac{\partial}{\partial y}
$$

$$
\mu=1, m=M \geqslant 3
$$

$$
x \rightarrow x, \quad y \rightarrow x y
$$

$$
x y \frac{\partial}{\partial x}+\left(x^{M-1}-y^{2}\right) \frac{\partial}{\partial y}
$$

$$
\mu=2, m=M+1
$$

Example of "special case".

$$
y \frac{\partial}{\partial x}+x^{M} \frac{\partial}{\partial y}
$$

$\mu=1, m=M \geqslant 3$
$x \rightarrow x, \quad y \rightarrow x y$

$$
x y \frac{\partial}{\partial x}+\left(x^{M-1}-y^{2}\right) \frac{\partial}{\partial y}
$$

$\mu=2, m=M+1$
The "invariant" increases and this case needs to be treates separately...

Example of "special case".

$$
y \frac{\partial}{\partial x}+x^{M} \frac{\partial}{\partial y}
$$

$\mu=1, m=M \geqslant 3$
$x \rightarrow x, \quad y \rightarrow x y$

$$
x y \frac{\partial}{\partial x}+\left(x^{M-1}-y^{2}\right) \frac{\partial}{\partial y}
$$

$\mu=2, m=M+1$
The "invariant" increases and this case needs to be treates separately...

Using weighted blowing-ups (modified version of a proof by M.Pelletier).

Using weighted blowing-ups (modified version of a proof by M.Pelletier).
Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

Using weighted blowing-ups (modified version of a proof by M.Pelletier).
Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E such that

Using weighted blowing-ups (modified version of a proof by M.Pelletier).
Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E such that $\operatorname{Nilp}(M, \mathcal{F})$ is of codimension two (i.e. consists of isolated points).

Using weighted blowing-ups (modified version of a proof by M.Pelletier).
Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E such that
$\operatorname{Nilp}(M, \mathcal{F})$ is of codimension two (i.e. consists of isolated points).
Definition: The local desingularization strategy at a point $p \in \operatorname{Nilp}(M, \mathcal{F})$ is the choice of a quasi-homogeneous filtration of the local ring.

Using weighted blowing-ups (modified version of a proof by M.Pelletier).
Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E such that
$\operatorname{Nilp}(M, \mathcal{F})$ is of codimension two (i.e. consists of isolated points).
Definition: The local desingularization strategy at a point $p \in \operatorname{Nilp}(M, \mathcal{F})$ is the choice of a quasi-homogeneous filtration of the local ring.

Using weighted blowing-ups (modified version of a proof by M.Pelletier).
Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E such that
$\operatorname{Nilp}(M, \mathcal{F})$ is of codimension two (i.e. consists of isolated points).
Definition: The local desingularization strategy at a point $p \in \operatorname{Nilp}(M, \mathcal{F})$ is the choice of a quasi-homogeneous filtration of the local ring.
which will define the blowing-up...

Intermezzo: The Newton polyhedron of a germ of vector field

Intermezzo: The Newton polyhedron of a germ of vector field
Let us fix local coordinates $\left(x_{1}, \ldots, x_{n}\right)$. We can write $\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}$.

Intermezzo: The Newton polyhedron of a germ of vector field
Let us fix local coordinates $\left(x_{1}, \ldots, x_{n}\right)$. We can write $\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}$.
Instead, We expand ∂ is the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$ as

Intermezzo: The Newton polyhedron of a germ of vector field
Let us fix local coordinates $\left(x_{1}, \ldots, x_{n}\right)$. We can write $\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}$.
Instead, We expand ∂ is the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$ as

$$
\partial=b_{1} x_{1} \frac{\partial}{\partial x_{1}}+\cdots+b_{n} x_{n} \frac{\partial}{\partial x_{n}},
$$

Intermezzo: The Newton polyhedron of a germ of vector field
Let us fix local coordinates $\left(x_{1}, \ldots, x_{n}\right)$. We can write $\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}$.
Instead, We expand ∂ is the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$ as

$$
\partial=b_{1} x_{1} \frac{\partial}{\partial x_{1}}+\cdots+b_{n} x_{n} \frac{\partial}{\partial x_{n}},
$$

where each $b_{i}=x_{i}^{-1} a_{i}$ has potentially a pole along $\left(x_{i}=0\right)$.

Intermezzo: The Newton polyhedron of a germ of vector field
Let us fix local coordinates $\left(x_{1}, \ldots, x_{n}\right)$. We can write $\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}$.
Instead, We expand ∂ is the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$ as

$$
\partial=b_{1} x_{1} \frac{\partial}{\partial x_{1}}+\cdots+b_{n} x_{n} \frac{\partial}{\partial x_{n}},
$$

where each $b_{i}=x_{i}^{-1} a_{i}$ has potentially a pole along $\left(x_{i}=0\right)$.
We can reorder the expansion and write the monomial expansion

$$
\partial=\sum_{k \in \mathbb{Z}^{n}} x^{k} L\left(\mu_{k}\right)
$$

where, we recall, each $L(\mu)=\sum \mu_{i} x_{i} \frac{\partial}{\partial x_{i}}$ is a diagonal vector field, i.e. an element of the \mathbb{C}-maximal toral subalgebra

$$
\mathfrak{t}=\left\langle x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\rangle
$$

defined by $\left(x_{1}, \ldots, x_{n}\right)$.

$$
\partial=\sum_{k \in \mathbb{Z}^{n}} x^{k} L\left(\mu_{k}\right)
$$

$$
\partial=\sum_{k \in \mathbb{Z}^{n}} x^{k} L\left(\mu_{k}\right)
$$

The support of ∂ with (respect to x) is defined by $\operatorname{supp}_{x}(\partial)=\left\{k \mid \mu_{k} \neq 0\right\}$ and

$$
\partial=\sum_{k \in \mathbb{Z}^{n}} x^{k} L\left(\mu_{k}\right)
$$

The support of ∂ with (respect to $x)$ is defined by $\operatorname{supp}_{x}(\partial)=\left\{k \mid \mu_{k} \neq 0\right\}$ and

$$
\operatorname{New}_{x}(\partial)=\operatorname{conv}\left(\operatorname{supp}_{x}(\partial)\right)+\mathbb{R}_{\geqslant 0}^{n}
$$

is the Newton polyhedron of ∂ (with respect to the coordinates x).

$$
\partial=\sum_{k \in \mathbb{Z}^{n}} x^{k} L\left(\mu_{k}\right)
$$

The support of ∂ with (respect to x) is defined by $\operatorname{supp}_{x}(\partial)=\left\{k \mid \mu_{k} \neq 0\right\}$ and

$$
\operatorname{New}_{x}(\partial)=\operatorname{conv}\left(\operatorname{supp}_{x}(\partial)\right)+\mathbb{R}_{\geqslant 0}^{n}
$$

is the Newton polyhedron of ∂ (with respect to the coordinates x).
Example: (cuspidal case) $\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta$

$$
\partial=\sum_{k \in \mathbb{Z}^{n}} x^{k} L\left(\mu_{k}\right)
$$

The support of ∂ with $($ respect to $x)$ is defined by $\operatorname{supp}_{x}(\partial)=\left\{k \mid \mu_{k} \neq 0\right\}$ and

$$
\operatorname{New}_{x}(\partial)=\operatorname{conv}\left(\operatorname{supp}_{x}(\partial)\right)+\mathbb{R}_{\geqslant 0}^{n}
$$

is the Newton polyhedron of ∂ (with respect to the coordinates x).
Example: (cuspidal case) $\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta$

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

$$
\partial=\sum_{k \in \mathbb{Z}^{n}} x^{k} L\left(\mu_{k}\right)
$$

The support of ∂ with (respect to $x)$ is defined by $\operatorname{supp}_{x}(\partial)=\left\{k \mid \mu_{k} \neq 0\right\}$ and

$$
\operatorname{New}_{x}(\partial)=\operatorname{conv}\left(\operatorname{supp}_{x}(\partial)\right)+\mathbb{R}_{\geqslant 0}^{n}
$$

is the Newton polyhedron of ∂ (with respect to the coordinates x).
Example: (cuspidal case) $\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta$

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)+\Delta
$$

Remarks: 1) $\operatorname{New}_{x}(\partial)$ is always contained in the convex region

Remarks: 1) $\operatorname{New}_{x}(\partial)$ is always contained in the convex region

$$
\mathcal{N}=-\underbrace{\left(\left\{k \in \mathbb{N}_{\geqslant 0}|\quad| k \mid \leqslant 1\right\}\right)}_{P}+\mathbb{R}_{\geqslant 0}^{n}
$$

Remarks: 1) $\operatorname{New}_{x}(\partial)$ is always contained in the convex region

$$
\mathcal{N}=-\underbrace{\left(\left\{k \in \mathbb{N}_{\geqslant 0}|\quad| k \mid \leqslant 1\right\}\right)}_{P}+\mathbb{R}_{\geqslant 0}^{n}
$$

2) The hypersurface $\left(x_{i}=0\right)$ is invariant by ∂ if and only if $\operatorname{supp}_{x}(\partial) \subset\left\{k: k_{i} \geqslant 0\right\}$.

Remarks: 1) $\operatorname{New}_{x}(\partial)$ is always contained in the convex region

$$
\mathcal{N}=-\underbrace{\left(\left\{k \in \mathbb{N}_{\geqslant 0}|\quad| k \mid \leqslant 1\right\}\right)}_{P}+\mathbb{R}_{\geqslant 0}^{n}
$$

2) The hypersurface $\left(x_{i}=0\right)$ is invariant by ∂ if and only if $\operatorname{supp}_{x}(\partial) \subset\left\{k: k_{i} \geqslant 0\right\}$.
3) The hypersurface $\left(x_{i}=0\right)$ is tightly invariant by ∂ if and only if

$$
\operatorname{supp}_{x}(\partial) \subset\left\{k: k_{i} \geqslant 0\right\} \quad \wedge \operatorname{supp}_{x}(\partial) \cap\left\{k: k_{i}=0\right\} \neq \emptyset
$$

Example. $\partial=a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}$

Example. $\partial=a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}$
$(x=0)$ invariant $\Longleftrightarrow \partial(\langle x\rangle) \subset\langle x\rangle \Longleftrightarrow a \in \mathbb{C}\{x, y\} \Longleftrightarrow[(k, l) \in \operatorname{supp}(\partial) \Longrightarrow k \geqslant 0]$

Example. $\partial=a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}$
$(x=0)$ invariant $\Longleftrightarrow \partial(\langle x\rangle) \subset\langle x\rangle \Longleftrightarrow a \in \mathbb{C}\{x, y\} \Longleftrightarrow[(k, l) \in \operatorname{supp}(\partial) \Longrightarrow k \geqslant 0]$
$(x=0)$ not tightly invariant $\Longleftrightarrow\left(\partial(\langle x\rangle) \subset\langle x\rangle^{2}\right.$

Example. $\partial=a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}$
$(x=0)$ invariant $\Longleftrightarrow \partial(\langle x\rangle) \subset\langle x\rangle \Longleftrightarrow a \in \mathbb{C}\{x, y\} \Longleftrightarrow[(k, l) \in \operatorname{supp}(\partial) \Longrightarrow k \geqslant 0]$
$(x=0)$ not tightly invariant $\Longleftrightarrow\left(\partial(\langle x\rangle) \subset\langle x\rangle^{2}\right.$
$\Longleftrightarrow(a x, b x y) \subset\langle x\rangle^{2} \Longleftrightarrow[(k, l) \in \operatorname{supp}(\partial) \Longrightarrow k \geqslant 1]$

Example. $\partial=a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}$
$(x=0)$ invariant $\Longleftrightarrow \partial(\langle x\rangle) \subset\langle x\rangle \Longleftrightarrow a \in \mathbb{C}\{x, y\} \Longleftrightarrow[(k, l) \in \operatorname{supp}(\partial) \Longrightarrow k \geqslant 0]$
$(x=0)$ not tightly invariant $\Longleftrightarrow\left(\partial(\langle x\rangle) \subset\langle x\rangle^{2}\right.$
$\Longleftrightarrow(a x, b x y) \subset\langle x\rangle^{2} \Longleftrightarrow[(k, l) \in \operatorname{supp}(\partial) \Longrightarrow k \geqslant 1]$

Very classical idea (see Newton, I. 1676):
The resolution of singularities should correspond to a combinatorial game based on the Newton polyhedron.

Very classical idea (see Newton, I. 1676):
The resolution of singularities should correspond to a combinatorial game based on the Newton polyhedron.

Can we recognize a "final situation" (a.k.a. an elementary germ) by looking at $\mathrm{New}_{x}(\partial)$?

Very classical idea (see Newton, I. 1676):
The resolution of singularities should correspond to a combinatorial game based on the Newton polyhedron.

Can we recognize a "final situation" (a.k.a. an elementary germ) by looking at $\mathrm{New}_{x}(\partial)$? Proposition: $\partial \in \operatorname{Der}(\mathcal{O})$ is a nilpotent germ if and only if there exists a local system of coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ such that $0 \notin \operatorname{New}_{x}(\partial)$.

Very classical idea (see Newton, I. 1676):
The resolution of singularities should correspond to a combinatorial game based on the Newton polyhedron.

Can we recognize a "final situation" (a.k.a. an elementary germ) by looking at $\mathrm{New}_{x}(\partial)$? Proposition: $\partial \in \operatorname{Der}(\mathcal{O})$ is a nilpotent germ if and only if there exists a local system of coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ such that $0 \notin \operatorname{New}_{x}(\partial)$.

Proof: Assume that $0 \notin \operatorname{New}_{x}(\partial)$. Then there exists a nonzero $\omega \in \mathbb{Q}_{\geqslant 0}^{n}$ and $\alpha \in \mathbb{Q}_{>0}$ such that

Very classical idea (see Newton, I. 1676):
The resolution of singularities should correspond to a combinatorial game based on the Newton polyhedron.

Can we recognize a "final situation" (a.k.a. an elementary germ) by looking at $\mathrm{New}_{x}(\partial)$? Proposition: $\partial \in \operatorname{Der}(\mathcal{O})$ is a nilpotent germ if and only if there exists a local system of coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ such that $0 \notin \operatorname{New}_{x}(\partial)$.

Proof: Assume that $0 \notin \operatorname{New}_{x}(\partial)$. Then there exists a nonzero $\omega \in \mathbb{Q}_{\geqslant 0}^{n}$ and $\alpha \in \mathbb{Q}_{>0}$ such that

$$
\operatorname{New}_{x}(\partial) \subset H=\{\langle\omega, \cdot\rangle \geqslant \alpha\}
$$

(indeed, if some $\omega_{i}<0$ then for $v \in \operatorname{supp}_{x}(\partial),\left\langle\omega, v+t e_{i}\right\rangle \rightarrow-\infty$ as $t \rightarrow+\infty$).

We can assume that $\omega \in \mathbb{Z}_{\geqslant 0}^{n} \backslash\{0\}$ and consider the quasi-homogeneous graduation of \mathcal{O} associated to the torus action $\lambda: \mathbb{C}^{\star} \rightarrow \operatorname{Aut}(\mathcal{O})$

We can assume that $\omega \in \mathbb{Z}_{\geqslant 0}^{n} \backslash\{0\}$ and consider the quasi-homogeneous graduation of \mathcal{O} associated to the torus action $\lambda: \mathbb{C}^{\star} \rightarrow \operatorname{Aut}(\mathcal{O})$

$$
\lambda(t) \cdot x_{i}=t^{\omega_{i}} x_{i}, \quad i=1, \ldots, n
$$

(or, equivalently, the graduation associted to the infinitesimal semisimple generator $\delta=$ $\left.\sum \omega_{i} x_{i} \frac{\partial}{\partial x_{i}}\right)$. This action is diagonalizable and we have a direct sum decomposition

We can assume that $\omega \in \mathbb{Z}_{\geqslant 0}^{n} \backslash\{0\}$ and consider the quasi-homogeneous graduation of \mathcal{O} associated to the torus action $\lambda: \mathbb{C}^{\star} \rightarrow \operatorname{Aut}(\mathcal{O})$

$$
\lambda(t) \cdot x_{i}=t^{\omega_{i}} x_{i}, \quad i=1, \ldots, n
$$

(or, equivalently, the graduation associted to the infinitesimal semisimple generator $\delta=$ $\left.\sum \omega_{i} x_{i} \frac{\partial}{\partial x_{i}}\right)$. This action is diagonalizable and we have a direct sum decomposition

$$
\mathcal{O}=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\mathcal{O}, \lambda)=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\mathcal{O}, \delta)
$$

where $\operatorname{Gr}_{\alpha}(\mathcal{O}, \lambda)=\left\{f: \lambda(t) \cdot f=t^{\alpha} f\right\}=\{f: \delta(f)=\alpha f\}$ is the module of ω-quasi homogeneous germs of degree α.

We can assume that $\omega \in \mathbb{Z}_{\geqslant 0}^{n} \backslash\{0\}$ and consider the quasi-homogeneous graduation of \mathcal{O} associated to the torus action $\lambda: \mathbb{C}^{\star} \rightarrow \operatorname{Aut}(\mathcal{O})$

$$
\lambda(t) \cdot x_{i}=t^{\omega_{i}} x_{i}, \quad i=1, \ldots, n
$$

(or, equivalently, the graduation associted to the infinitesimal semisimple generator $\delta=$ $\left.\sum \omega_{i} x_{i} \frac{\partial}{\partial x_{i}}\right)$. This action is diagonalizable and we have a direct sum decomposition

$$
\mathcal{O}=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\mathcal{O}, \lambda)=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\mathcal{O}, \delta)
$$

where $\operatorname{Gr}_{\alpha}(\mathcal{O}, \lambda)=\left\{f: \lambda(t) \cdot f=t^{\alpha} f\right\}=\{f: \delta(f)=\alpha f\}$ is the module of ω-quasi homogeneous germs of degree α.

This induces an action of \mathbb{C}^{\star} on $\operatorname{Der}(\mathcal{O})$ given by conjugation

$$
\lambda(t) \cdot \partial=\lambda(t) \partial \lambda(t)^{-1}
$$

We can assume that $\omega \in \mathbb{Z}_{\geqslant 0}^{n} \backslash\{0\}$ and consider the quasi-homogeneous graduation of \mathcal{O} associated to the torus action $\lambda: \mathbb{C}^{\star} \rightarrow \operatorname{Aut}(\mathcal{O})$

$$
\lambda(t) \cdot x_{i}=t^{\omega_{i}} x_{i}, \quad i=1, \ldots, n
$$

(or, equivalently, the graduation associted to the infinitesimal semisimple generator $\delta=$ $\left.\sum \omega_{i} x_{i} \frac{\partial}{\partial x_{i}}\right)$. This action is diagonalizable and we have a direct sum decomposition

$$
\mathcal{O}=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\mathcal{O}, \lambda)=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\mathcal{O}, \delta)
$$

where $\operatorname{Gr}_{\alpha}(\mathcal{O}, \lambda)=\left\{f: \lambda(t) \cdot f=t^{\alpha} f\right\}=\{f: \delta(f)=\alpha f\}$ is the module of ω-quasi homogeneous germs of degree α.

This induces an action of \mathbb{C}^{\star} on $\operatorname{Der}(\mathcal{O})$ given by conjugation

$$
\lambda(t) \cdot \partial=\lambda(t) \partial \lambda(t)^{-1}
$$

and equally induces a direct sum decomposition $\operatorname{Der}=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\operatorname{Der}, \lambda)$.

We can assume that $\omega \in \mathbb{Z}_{\geqslant 0}^{n} \backslash\{0\}$ and consider the quasi-homogeneous graduation of \mathcal{O} associated to the torus action $\lambda: \mathbb{C}^{\star} \rightarrow \operatorname{Aut}(\mathcal{O})$

$$
\lambda(t) \cdot x_{i}=t^{\omega_{i}} x_{i}, \quad i=1, \ldots, n
$$

(or, equivalently, the graduation associted to the infinitesimal semisimple generator $\delta=$ $\left.\sum \omega_{i} x_{i} \frac{\partial}{\partial x_{i}}\right)$. This action is diagonalizable and we have a direct sum decomposition

$$
\mathcal{O}=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\mathcal{O}, \lambda)=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\mathcal{O}, \delta)
$$

where $\operatorname{Gr}_{\alpha}(\mathcal{O}, \lambda)=\left\{f: \lambda(t) \cdot f=t^{\alpha} f\right\}=\{f: \delta(f)=\alpha f\}$ is the module of ω-quasi homogeneous germs of degree α.

This induces an action of \mathbb{C}^{\star} on $\operatorname{Der}(\mathcal{O})$ given by conjugation

$$
\lambda(t) \cdot \partial=\lambda(t) \partial \lambda(t)^{-1}
$$

and equally induces a direct sum decomposition $\operatorname{Der}=\bigoplus_{\alpha} \operatorname{Gr}_{\alpha}(\operatorname{Der}, \lambda)$.
And, naturally $\partial \in \operatorname{Gr}_{\alpha}, f \in \operatorname{Gr}_{\beta} \Longrightarrow \partial f \in \operatorname{Gr}_{\alpha+\beta}$.

$$
\partial \in \operatorname{Gr}_{\alpha}(\operatorname{Der}, \lambda) \Longleftrightarrow \operatorname{supp}_{x}(\partial) \subset\{k:\langle\omega, k\rangle=\alpha\}
$$

$$
\partial \in \operatorname{Gr}_{\alpha}(\operatorname{Der}, \lambda) \Longleftrightarrow \sup _{x}(\partial) \subset\{k:\langle\omega, k\rangle=\alpha\}
$$

By the above hypothesis, our original derivation satisfies

$$
\operatorname{supp}_{x}(\partial) \subset\{k:\langle\omega, k\rangle \geqslant \alpha\} \Longrightarrow \partial \in \operatorname{Gr}_{\geqslant \alpha}(\operatorname{Der}, \lambda)
$$

$$
\partial \in \operatorname{Gr}_{\alpha}(\operatorname{Der}, \lambda) \Longleftrightarrow \sup _{x}(\partial) \subset\{k:\langle\omega, k\rangle=\alpha\}
$$

By the above hypothesis, our original derivation satisfies

$$
\operatorname{supp}_{x}(\partial) \subset\{k:\langle\omega, k\rangle \geqslant \alpha\} \Longrightarrow \partial \in \operatorname{Gr}_{\geqslant \alpha}(\operatorname{Der}, \lambda)
$$

Since this is a filtration, $\partial^{2} \in \mathrm{Gr}_{\geqslant 2 \alpha}, . ., \partial^{r} \in \mathrm{Gr}_{\geqslant r \alpha}$ for all $r \geqslant 1$.

$$
\partial \in \operatorname{Gr}_{\alpha}(\operatorname{Der}, \lambda) \Longleftrightarrow \operatorname{supp}_{x}(\partial) \subset\{k:\langle\omega, k\rangle=\alpha\}
$$

By the above hypothesis, our original derivation satisfies

$$
\operatorname{supp}_{x}(\partial) \subset\{k:\langle\omega, k\rangle \geqslant \alpha\} \Longrightarrow \partial \in \operatorname{Gr}_{\geqslant \alpha}(\operatorname{Der}, \lambda)
$$

Since this is a filtration, $\partial^{2} \in \mathrm{Gr}_{\geqslant 2 \alpha}, . ., \partial^{r} \in \mathrm{Gr}_{\geqslant r \alpha}$ for all $r \geqslant 1$. and if if $f \in \operatorname{Gr}_{\geqslant \beta}(\mathcal{O}, \lambda)$ then $\partial^{r}(f) \in \operatorname{Gr}_{\geqslant r \alpha+\beta}(\mathcal{O}, \lambda)$.

$$
\partial \in \operatorname{Gr}_{\alpha}(\operatorname{Der}, \lambda) \Longleftrightarrow \sup _{x}(\partial) \subset\{k:\langle\omega, k\rangle=\alpha\}
$$

By the above hypothesis, our original derivation satisfies

$$
\operatorname{supp}_{x}(\partial) \subset\{k:\langle\omega, k\rangle \geqslant \alpha\} \Longrightarrow \partial \in \operatorname{Gr}_{\geqslant \alpha}(\operatorname{Der}, \lambda)
$$

Since this is a filtration, $\partial^{2} \in \mathrm{Gr}_{\geqslant 2 \alpha}, . ., \partial^{r} \in \mathrm{Gr}_{\geqslant r \alpha}$ for all $r \geqslant 1$.
and if if $f \in \operatorname{Gr}_{\geqslant \beta}(\mathcal{O}, \lambda)$ then $\partial^{r}(f) \in \operatorname{Gr}_{\geqslant r \alpha+\beta}(\mathcal{O}, \lambda)$.
As a consequence, for $\mathfrak{m}=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ the maximal ideal, for each s there exists a $r \geqslant 1$ such that

$$
\partial^{r}\left(\mathfrak{m}^{s}\right) \subset \mathfrak{m}^{s+1}
$$

(because for $k \in \mathbb{Z}_{\geqslant 0}^{n},|k| \geqslant\langle\omega, k\rangle / \max \left\{\omega_{i}\right\}$). Hence, ∂ is nilpotent.

Reciprocally, assume that ∂ is nilpotent. Then, $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{S}=0$. There exists a local coordinate system such that $\left.\partial\right|_{J^{1}}=\left(\begin{array}{ccccc}0 & & & \\ 1 & 0 & & \\ & 1 & \ddots & \\ & & 1 & 0\end{array}\right)$, i.e. such that

$$
\partial\left(x_{i}\right)=\varepsilon_{i} x_{i+1} \quad\left(\bmod \mathfrak{m}^{2}\right)
$$

Reciprocally, assume that ∂ is nilpotent. Then, $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{S}=0$. There exists a local coordinate system such that $\left.\partial\right|_{J^{1}}=\left(\begin{array}{ccccc}0 & & & \\ 1 & 0 & & \\ & 1 & \ddots & \\ & & 1 & 0\end{array}\right)$, i.e. such that

$$
\partial\left(x_{i}\right)=\varepsilon_{i} x_{i+1} \quad\left(\bmod \mathfrak{m}^{2}\right)
$$

where $\varepsilon_{i} \in\{0,1\}$. In other words, in the logarithmic basis, we obtain

$$
\partial=\sum_{i \leqslant n-1} \varepsilon_{i} x_{i+1} x_{i}^{-1}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)+R
$$

Reciprocally, assume that ∂ is nilpotent. Then, $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{S}=0$. There exists a local coordinate system such that $\left.\partial\right|_{J^{1}}=\left(\begin{array}{cccc}0 & & & \\ 1 & 0 & & \\ & 1 & \ddots & \\ & & 1 & 0\end{array}\right)$, i.e. such that

$$
\partial\left(x_{i}\right)=\varepsilon_{i} x_{i+1} \quad\left(\bmod \mathfrak{m}^{2}\right)
$$

where $\varepsilon_{i} \in\{0,1\}$. In other words, in the logarithmic basis, we obtain

$$
\partial=\sum_{i \leqslant n-1} \varepsilon_{i} x_{i+1} x_{i}^{-1}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)+R
$$

where R is a derivation with of degree $\geqslant 1$ with respect the usual homogeneous filtration associated to the derivation $h=x_{1} \frac{\partial}{\partial x_{1}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}}=L(\mathbf{1})$, with weights $\mathbf{1}=(1, \ldots, 1)$.

Reciprocally, assume that ∂ is nilpotent. Then, $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{S}=0$. There exists a local coordinate system such that $\left.\partial\right|_{J^{1}}=\left(\begin{array}{ccccc}0 & & & \\ 1 & 0 & & \\ & 1 & \ddots & \\ & & 1 & 0\end{array}\right)$, i.e. such that

$$
\partial\left(x_{i}\right)=\varepsilon_{i} x_{i+1} \quad\left(\bmod \mathfrak{m}^{2}\right)
$$

where $\varepsilon_{i} \in\{0,1\}$. In other words, in the logarithmic basis, we obtain

$$
\partial=\sum_{i \leqslant n-1} \varepsilon_{i} x_{i+1} x_{i}^{-1}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)+R
$$

where R is a derivation with of degree $\geqslant 1$ with respect the usual homogeneous filtration associated to the derivation $h=x_{1} \frac{\partial}{\partial x_{1}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}}=L(\mathbf{1})$, with weights $\mathbf{1}=(1, \ldots, 1)$. We now consider the weight-vector $\rho=(-n / 2, \ldots, n / 2)$, or any other rational vector satisfying.

$$
\langle\mathbf{1}, \rho\rangle=0, \quad\left\langle\rho, e_{i+1}-e_{i}\right\rangle>0, \quad e_{i}=(0, \ldots, 1, \ldots 0)
$$

Reciprocally, assume that ∂ is nilpotent. Then, $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{S}=0$. There exists a local coordinate system such that $\left.\partial\right|_{J^{1}}=\left(\begin{array}{ccccc}0 & & & \\ 1 & 0 & & \\ & 1 & \ddots & \\ & & 1 & 0\end{array}\right)$, i.e. such that

$$
\partial\left(x_{i}\right)=\varepsilon_{i} x_{i+1} \quad\left(\bmod \mathfrak{m}^{2}\right)
$$

where $\varepsilon_{i} \in\{0,1\}$. In other words, in the logarithmic basis, we obtain

$$
\partial=\sum_{i \leqslant n-1} \varepsilon_{i} x_{i+1} x_{i}^{-1}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)+R
$$

where R is a derivation with of degree $\geqslant 1$ with respect the usual homogeneous filtration associated to the derivation $h=x_{1} \frac{\partial}{\partial x_{1}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}}=L(\mathbf{1})$, with weights $\mathbf{1}=(1, \ldots, 1)$. We now consider the weight-vector $\rho=(-n / 2, \ldots, n / 2)$, or any other rational vector satisfying.

$$
\langle\mathbf{1}, \rho\rangle=0, \quad\left\langle\rho, e_{i+1}-e_{i}\right\rangle>0, \quad e_{i}=(0, \ldots, 1, \ldots 0)
$$

Then, for all sufficiently small $\varepsilon \in \mathbb{Q}_{>0}$, the semi-simple derivation $\omega=h+\varepsilon L(\rho)$ defines a half-space which separates $\operatorname{New}_{x}(\partial)$ from 0 .

Reciprocally, assume that ∂ is nilpotent. Then, $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{S}=0$. There exists a local coordinate system such that $\left.\partial\right|_{J^{1}}=\left(\begin{array}{ccccc}0 & & & \\ 1 & 0 & & \\ & 1 & \ddots & \\ & & 1 & 0\end{array}\right)$, i.e. such that

$$
\partial\left(x_{i}\right)=\varepsilon_{i} x_{i+1} \quad\left(\bmod \mathfrak{m}^{2}\right)
$$

where $\varepsilon_{i} \in\{0,1\}$. In other words, in the logarithmic basis, we obtain

$$
\partial=\sum_{i \leqslant n-1} \varepsilon_{i} x_{i+1} x_{i}^{-1}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)+R
$$

where R is a derivation with of degree $\geqslant 1$ with respect the usual homogeneous filtration associated to the derivation $h=x_{1} \frac{\partial}{\partial x_{1}}+\cdots+x_{n} \frac{\partial}{\partial x_{n}}=L(\mathbf{1})$, with weights $\mathbf{1}=(1, \ldots, 1)$. We now consider the weight-vector $\rho=(-n / 2, \ldots, n / 2)$, or any other rational vector satisfying.

$$
\langle\mathbf{1}, \rho\rangle=0, \quad\left\langle\rho, e_{i+1}-e_{i}\right\rangle>0, \quad e_{i}=(0, \ldots, 1, \ldots 0)
$$

Then, for all sufficiently small $\varepsilon \in \mathbb{Q}_{>0}$, the semi-simple derivation $\omega=h+\varepsilon L(\rho)$ defines a half-space which separates $\operatorname{New}_{x}(\partial)$ from 0 . (because for $|k| \geqslant 2,\langle\omega, k\rangle \geqslant 2-n \varepsilon|k|$, and $\operatorname{New}_{x}(\partial)$ has finitely many vertices)

Geometrically, we have used... The hinge method

Geometrically, we have used... The hinge method

$$
x^{-1} y\left(x \frac{\partial}{\partial x}\right)
$$

$(1,1)$ - homogeneous of degree 0

Geometrically, we have used... The hinge method

$$
x^{-1} y\left(x \frac{\partial}{\partial x}\right)
$$

$(1,1)$ - homogeneous of degree 0

Geometrically, we have used... The hinge method
$x^{-1} y\left(x \frac{\partial}{\partial x}\right)$

$(1,1)$ - homogeneous of degree 0

Geometrically, we have used... The hinge method
$x^{-1} y\left(x \frac{\partial}{\partial x}\right)$

$(1,1)$ - homogeneous of degree 0

Geometrically, we have used... The hinge method
$x^{-1} y\left(x \frac{\partial}{\partial x}\right)$

$(1,1)$ - homogeneous of degree 0

Geometrically, we have used... The hinge method
$x^{-1} y\left(x \frac{\partial}{\partial x}\right)$

$(1,1)$ - homogeneous of degree 0

Geometrically, we have used... The hinge method

Alternative proof of one of the implications of the Theorem

Alternative proof of one of the implications of the Theorem

Claim: Suppose that ∂ is elementary (i.e. not-nilpotent). Then, for all choices of coordinate systems $\left(x_{1}, \ldots, x_{n}\right)$,

$$
0 \in \operatorname{New}_{x}(\partial)
$$

Indeed, the hypothesis means that either $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$ or that $\quad \partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{s} \neq 0$.

Alternative proof of one of the implications of the Theorem

Claim: Suppose that ∂ is elementary (i.e. not-nilpotent). Then, for all choices of coordinate systems $\left(x_{1}, \ldots, x_{n}\right)$,

$$
0 \in \operatorname{New}_{x}(\partial)
$$

Indeed, the hypothesis means that either $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$ or that $\quad \partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{s} \neq 0$. Consider the second case. Then we can find a nonzero $f \in \hat{\mathfrak{m}}$ such that

Alternative proof of one of the implications of the Theorem

Claim: Suppose that ∂ is elementary (i.e. not-nilpotent). Then, for all choices of coordinate systems $\left(x_{1}, \ldots, x_{n}\right)$,

$$
0 \in \operatorname{New}_{x}(\partial)
$$

Indeed, the hypothesis means that either $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$ or that $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{s} \neq 0$. Consider the second case. Then we can find a nonzero $f \in \hat{\mathfrak{m}}$ such that

$$
\partial(f)=u f
$$

for some unit $u \in \hat{\mathcal{O}}$.

Alternative proof of one of the implications of the Theorem

Claim: Suppose that ∂ is elementary (i.e. not-nilpotent). Then, for all choices of coordinate systems $\left(x_{1}, \ldots, x_{n}\right)$,

$$
0 \in \operatorname{New}_{x}(\partial)
$$

Indeed, the hypothesis means that either $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$ or that $\quad \partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{s} \neq 0$. Consider the second case. Then we can find a nonzero $f \in \hat{\mathfrak{m}}$ such that

$$
\partial(f)=u f
$$

for some unit $u \in \hat{\mathcal{O}}$.
Let Gr be the graduation defined by an arbitrary one-parameter group λ, with positive weights (i.e. such that $\hat{\mathfrak{m}} \subset \mathrm{Gr}_{\geqslant 0}$). Then $f \in \mathrm{Gr}_{\geqslant \alpha}$ and $\partial \in \mathrm{Gr}_{\geqslant \beta}$ implies that $\partial(f) \in$ $\mathrm{Gr} \geqslant \alpha+\beta$.

Alternative proof of one of the implications of the Theorem

Claim: Suppose that ∂ is elementary (i.e. not-nilpotent). Then, for all choices of coordinate systems $\left(x_{1}, \ldots, x_{n}\right)$,

$$
0 \in \operatorname{New}_{x}(\partial)
$$

Indeed, the hypothesis means that either $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$ or that $\partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{s} \neq 0$. Consider the second case. Then we can find a nonzero $f \in \hat{\mathfrak{m}}$ such that

$$
\partial(f)=u f
$$

for some unit $u \in \hat{\mathcal{O}}$.
Let Gr be the graduation defined by an arbitrary one-parameter group λ, with positive weights (i.e. such that $\mathfrak{\mathfrak { m }} \subset \mathrm{Gr} \geqslant 0$). Then $f \in \mathrm{Gr}_{\geqslant \alpha}$ and $\partial \in \mathrm{Gr}_{\geqslant \beta}$ implies that $\partial(f) \in$ $\mathrm{Gr} \geqslant \alpha+\beta$.

By the above choice of f, we conclude that $\beta=0$ (because $u \in \mathrm{Gr}_{\geqslant 0} \backslash \mathrm{Gr}_{\geqslant 1}$)

Alternative proof of one of the implications of the Theorem

Claim: Suppose that ∂ is elementary (i.e. not-nilpotent). Then, for all choices of coordinate systems $\left(x_{1}, \ldots, x_{n}\right)$,

$$
0 \in \operatorname{New}_{x}(\partial)
$$

Indeed, the hypothesis means that either $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$ or that $\quad \partial(\mathfrak{m}) \subset \mathfrak{m}$ and $\partial_{s} \neq 0$. Consider the second case. Then we can find a nonzero $f \in \hat{\mathfrak{m}}$ such that

$$
\partial(f)=u f
$$

for some unit $u \in \hat{\mathcal{O}}$.
Let Gr be the graduation defined by an arbitrary one-parameter group λ, with positive weights (i.e. such that $\mathfrak{\mathfrak { m }} \subset \mathrm{Gr} \geqslant 0$). Then $f \in \mathrm{Gr}_{\geqslant \alpha}$ and $\partial \in \mathrm{Gr}_{\geqslant \beta}$ implies that $\partial(f) \in$ $\mathrm{Gr} \geqslant \alpha+\beta$.

By the above choice of f, we conclude that $\beta=0$ (because $u \in \mathrm{Gr}_{\geqslant 0} \backslash \mathrm{Gr}_{\geqslant 1}$)
The case $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$ is even easier. In fact, $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$ if and only if

$$
\exists i \in\{1, \ldots n\}: \quad-e_{i}=(0, \ldots,-1, \ldots, 0) \in \operatorname{New}_{x}(\partial) \quad{ }^{(0,0)}
$$

Example: $\partial=y \frac{\partial}{\partial x}+x^{2} \frac{\partial}{\partial y}$. The graduation defined by the one parameter group

$$
t \cdot(x, y)=\left(t^{2} x, t^{3} y\right)
$$

is such that $\partial \in \mathrm{Gr}_{\geqslant 1}$. (write $x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)$ and $\left.x^{-1} y, x^{2} y^{-1} \in \mathrm{Gr}_{1}\right)$

Example: $\partial=y \frac{\partial}{\partial x}+x^{2} \frac{\partial}{\partial y}$. The graduation defined by the one parameter group

$$
t \cdot(x, y)=\left(t^{2} x, t^{3} y\right)
$$

is such that $\partial \in \mathrm{Gr}_{\geqslant 1}$. (write $x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)$ and $\left.x^{-1} y, x^{2} y^{-1} \in \mathrm{Gr}_{1}\right)$

Example: $\partial=y \frac{\partial}{\partial x}+x^{2} \frac{\partial}{\partial y}$. The graduation defined by the one parameter group

$$
t \cdot(x, y)=\left(t^{2} x, t^{3} y\right)
$$

is such that $\partial \in \mathrm{Gr}_{\geqslant 1}$. (write $x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)$ and $\left.x^{-1} y, x^{2} y^{-1} \in \mathrm{Gr}_{1}\right)$

If we make the coordinate change $y \rightarrow y+\xi x$, the action on the polygon corresponds to a "sliding" of the vertices along the $(1,-1)$ direction.

Example: $\partial=y \frac{\partial}{\partial x}+x^{2} \frac{\partial}{\partial y}$. The graduation defined by the one parameter group

$$
t \cdot(x, y)=\left(t^{2} x, t^{3} y\right)
$$

is such that $\partial \in \mathrm{Gr}_{\geqslant 1}$. (write $x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)$ and $\left.x^{-1} y, x^{2} y^{-1} \in \mathrm{Gr}_{1}\right)$

If we make the coordinate change $y \rightarrow y+\xi x$, the action on the polygon corresponds to a "sliding" of the vertices along the $(1,-1)$ direction.

In these new coordinates, $0 \in \operatorname{New}_{(x, y)}(\partial)$.

Back to the proof in dimension two

Back to the proof in dimension two

Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

Back to the proof in dimension two

Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E

Back to the proof in dimension two

Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E
Notation: $0 \leqslant e(p) \leqslant 2$ is the number of local irreducible componets of E at $p \in M$.

Back to the proof in dimension two
Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E
Notation: $0 \leqslant e(p) \leqslant 2$ is the number of local irreducible componets of E at $p \in M$.
Definition: A coordinate system (x, y) at $p \in E$ is adapted if locally $E=(x=0)$ or $E=(x y=0)$.

Back to the proof in dimension two

Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E
Notation: $0 \leqslant e(p) \leqslant 2$ is the number of local irreducible componets of E at $p \in M$.
Definition: A coordinate system (x, y) at $p \in E$ is adapted if locally $E=(x=0)$ or $E=(x y=0)$.

$$
e(p)=1 \quad e(p)=2
$$

Back to the proof in dimension two

Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E
Notation: $0 \leqslant e(p) \leqslant 2$ is the number of local irreducible componets of E at $p \in M$.
Definition: A coordinate system (x, y) at $p \in E$ is adapted if locally $E=(x=0)$ or $E=(x y=0)$.

$$
\mid e(p)=1 \quad e(p)=2
$$

Inclusion into the divisor: We can always assume that $\operatorname{Nilp}(M, \mathcal{F}) \subset E$ by eventually blowing-up these points with an arbitrary weight.

Back to the proof in dimension two
Initial setup: (M, E, \mathcal{F}), where M is a two-dimensional real analytic manifold with corners,

$$
\operatorname{boundary}(M)=E
$$

is a normal crossings divisor and \mathcal{F} is a foliation tangent to E
Notation: $0 \leqslant e(p) \leqslant 2$ is the number of local irreducible componets of E at $p \in M$.
Definition: A coordinate system (x, y) at $p \in E$ is adapted if locally $E=(x=0)$ or $E=(x y=0)$.

$$
\mid e(p)=1 \quad e(p)=2
$$

Inclusion into the divisor: We can always assume that $\operatorname{Nilp}(M, \mathcal{F}) \subset E$ by eventually blowing-up these points with an arbitrary weight.

To simplify, we will assume that $e(p)=1$ for all points $p \in \operatorname{Nilp}(M, \mathcal{F})$.
(otherwise it suffices to slightly modify the invariant by including $e(p)$ lexicographically).

Suppose that $p \in E$. In adapted coordinates (x, y), the Newton polygon has the form

Suppose that $p \in E$. In adapted coordinates (x, y), the Newton polygon has the form

Invariance of $(x=0)$ implies that $\partial \in \operatorname{Gr}_{\geqslant 0}\left(\cdot, x \frac{\partial}{\partial x}\right)$ (i.e. $\partial(\langle x\rangle) \subset\langle x\rangle)$

Suppose that $p \in E$. In adapted coordinates (x, y), the Newton polygon has the form

Invariance of $(x=0)$ implies that $\partial \in \mathrm{Gr}_{\geqslant 0}\left(\cdot, x \frac{\partial}{\partial x}\right)$ (i.e. $\partial(\langle x\rangle) \subset\langle x\rangle)$

Claim: $\quad p \in \operatorname{Nilp}(M, \partial) \Longleftrightarrow \mathfrak{h} \geqslant 1$ (which is equivalent to say that $0 \notin \operatorname{New}_{(x, y)}(\partial)$)

Suppose that $p \in E$. In adapted coordinates (x, y), the Newton polygon has the form

Invariance of $(x=0)$ implies that $\partial \in \mathrm{Gr}_{\geqslant 0}\left(\cdot, x \frac{\partial}{\partial x}\right)$ (i.e. $\partial(\langle x\rangle) \subset\langle x\rangle)$

Claim: $\quad p \in \operatorname{Nilp}(M, \partial) \Longleftrightarrow \mathfrak{h} \geqslant 1$ (which is equivalent to say that $0 \notin \operatorname{New}_{(x, y)}(\partial)$)
Indeed, if $0 \in \operatorname{New}(\partial)$ then the initial $(1,1)$-homogeneous part of ∂ would be either

$$
b \frac{\partial}{\partial y} \quad(\operatorname{case} h=-1), \quad \text { or } \quad a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}+c x y^{-1}\left(y \frac{\partial}{\partial y}\right) \quad(\text { case } h=0)
$$

where for some constants a, b, c such that $(a, b) \neq(0,0)$.

Suppose that $p \in E$. In adapted coordinates (x, y), the Newton polygon has the form

Invariance of $(x=0)$ implies that $\partial \in \mathrm{Gr}_{\geqslant 0}\left(\cdot, x \frac{\partial}{\partial x}\right)$ (i.e. $\partial(\langle x\rangle) \subset\langle x\rangle)$

Claim: $\quad p \in \operatorname{Nilp}(M, \partial) \Longleftrightarrow \mathfrak{h} \geqslant 1$ (which is equivalent to say that $0 \notin \operatorname{New}_{(x, y)}(\partial)$)
Indeed, if $0 \in \operatorname{New}(\partial)$ then the initial $(1,1)$-homogeneous part of ∂ would be either

$$
b \frac{\partial}{\partial y} \quad(\operatorname{case} h=-1), \quad \text { or } \quad a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}+c x y^{-1}\left(y \frac{\partial}{\partial y}\right) \quad(\text { case } h=0)
$$

where for some constants a, b, c such that $(a, b) \neq(0,0)$.

- In the first case, $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$.

Suppose that $p \in E$. In adapted coordinates (x, y), the Newton polygon has the form

Invariance of $(x=0)$ implies that $\partial \in \mathrm{Gr}_{\geqslant 0}\left(\cdot, x \frac{\partial}{\partial x}\right)$ (i.e. $\partial(\langle x\rangle) \subset\langle x\rangle)$

Claim: $\quad p \in \operatorname{Nilp}(M, \partial) \Longleftrightarrow \mathfrak{h} \geqslant 1$ (which is equivalent to say that $0 \notin \operatorname{New}_{(x, y)}(\partial)$)
Indeed, if $0 \in \operatorname{New}(\partial)$ then the initial $(1,1)$-homogeneous part of ∂ would be either

$$
b \frac{\partial}{\partial y} \quad(\operatorname{case} h=-1), \quad \text { or } \quad a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}+c x y^{-1}\left(y \frac{\partial}{\partial y}\right) \quad(\text { case } h=0)
$$

where for some constants a, b, c such that $(a, b) \neq(0,0)$.

- In the first case, $\partial(\mathfrak{m}) \not \subset \mathfrak{m}$.
- In this second case, it is obvious that $\operatorname{Spec}\left(\partial_{s}\right)=\{a, b\} \neq 0$.

Definition: $\mathfrak{h}_{x}(\partial):=\mathfrak{h}$ will be called the height of the main vertex.

Definition: $\mathfrak{h}_{x}(\partial):=\mathfrak{h}$ will be called the height of the main vertex.
Claim: \mathfrak{h} is does not depend on the choice of (adapted) coordinates.

Definition: $\mathfrak{h}_{x}(\partial):=\mathfrak{h}$ will be called the height of the main vertex.
Claim: \mathfrak{h} is does not depend on the choice of (adapted) coordinates.
In fact, the group of local automorphisms (preserving $x=0$) has the form

$$
x \rightarrow x f(x, y), \quad y \rightarrow g(x, y)
$$

f unit, $\partial g / \partial y(0,0) \neq 0$. Its Lie algebra is generated by vector fields with support in

$$
x^{k} y^{l} x \frac{\partial}{\partial x}, \quad x^{u} y^{v} y \frac{\partial}{\partial y}, \quad k+l \geqslant 0, u+v \geqslant 0
$$

$k, l \geqslant 0$ and $v \geqslant-1$. This Lie algebra lies in $\operatorname{Gr}_{\geqslant 0}\left(\cdot, x \frac{\partial}{\partial x}\right) \cap \operatorname{Gr}_{\geqslant 0}\left(\cdot, x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$.

Definition: $\mathfrak{h}_{x}(\partial):=\mathfrak{h}$ will be called the height of the main vertex.
Claim: \mathfrak{h} is does not depend on the choice of (adapted) coordinates.
In fact, the group of local automorphisms (preserving $x=0$) has the form

$$
x \rightarrow x f(x, y), \quad y \rightarrow g(x, y)
$$

f unit, $\partial g / \partial y(0,0) \neq 0$. Its Lie algebra is generated by vector fields with support in

$$
x^{k} y^{l} x \frac{\partial}{\partial x}, \quad x^{u} y^{v} y \frac{\partial}{\partial y}, \quad k+l \geqslant 0, u+v \geqslant 0
$$

$k, l \geqslant 0$ and $v \geqslant-1$. This Lie algebra lies in $\operatorname{Gr} \geqslant 0\left(\cdot, x \frac{\partial}{\partial x}\right) \cap \operatorname{Gr} \geqslant 0\left(\cdot, x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$.
Hence, the main vertex is preserved.

Definition: $\mathfrak{h}_{x}(\partial):=\mathfrak{h}$ will be called the height of the main vertex.
Claim: \mathfrak{h} is does not depend on the choice of (adapted) coordinates.
In fact, the group of local automorphisms (preserving $x=0$) has the form

$$
x \rightarrow x f(x, y), \quad y \rightarrow g(x, y)
$$

f unit, $\partial g / \partial y(0,0) \neq 0$. Its Lie algebra is generated by vector fields with support in

$$
x^{k} y^{l} x \frac{\partial}{\partial x}, \quad x^{u} y^{v} y \frac{\partial}{\partial y}, \quad k+l \geqslant 0, u+v \geqslant 0
$$

$k, l \geqslant 0$ and $v \geqslant-1$. This Lie algebra lies in $\operatorname{Gr}_{\geqslant 0}\left(\cdot, x \frac{\partial}{\partial x}\right) \cap \operatorname{Gr}_{\geqslant 0}\left(\cdot, x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)$.
Hence, the main vertex is preserved.

Final touch (and essential idea to generalize to dim.3)

Final touch (and essential idea to generalize to dim.3)

Final touch (and essential idea to generalize to dim.3)

Definition: The main edge of $\operatorname{New}(\partial)$ is the edge \mathfrak{e} determined by the intersection

$$
\text { New } \cap\{(i, j): j=\mathfrak{h}-1 / 2\}
$$

Final touch (and essential idea to generalize to dim.3)

Definition: The main edge of $\operatorname{New}(\partial)$ is the edge \mathfrak{e} determined by the intersection

$$
\text { New } \cap\{(i, j): j=\mathfrak{h}-1 / 2\}
$$

Important: Notice that $\mathfrak{e}=\mathfrak{e}_{x}(\partial)$ potentially depends on the choice of coordinates.

Final touch (and essential idea to generalize to dim.3)

Definition: The main edge of $\operatorname{New}(\partial)$ is the edge \mathfrak{e} determined by the intersection

$$
\text { New } \cap\{(i, j): j=\mathfrak{h}-1 / 2\}
$$

Important: Notice that $\mathfrak{e}=\mathfrak{e}_{x}(\partial)$ potentially depends on the choice of coordinates.
Let $\mathrm{wt}(\mathfrak{e})=\alpha x \frac{\partial}{\partial x}+\beta y \frac{\partial}{\partial x}$ denote the irreducible weight-vector determined by \mathfrak{e}.

Action of the blowing-up with weight (α, β) on the polygon

Action of the blowing-up with weight (α, β) on the polygon

We would like to prove that, for each $\tilde{p} \in \Phi^{-1}(p), \tilde{\mathfrak{h}} \leqslant \mathfrak{h}-1$ (i.e. the invariant decreases)

Action of the blowing-up with weight (α, β) on the polygon

We would like to prove that, for each $\tilde{p} \in \Phi^{-1}(p), \tilde{h} \leqslant \mathfrak{h}-1 \quad$ (i.e. the invariant decreases) This is obvious for $\tilde{p}=(1: 0) \in \mathbb{P}^{1} \ldots$ But...

Action of the blowing-up with weight (α, β) on the polygon

We would like to prove that, for each $\tilde{p} \in \Phi^{-1}(p), \tilde{\mathfrak{h}} \leqslant \mathfrak{h}-1$ (i.e. the invariant decreases) This is obvious for $\tilde{p}=(1: 0) \in \mathbb{P}^{1} \ldots$ But...

We can have a full compensation phenomena in the "sliding phase".

Example: $\partial=\left(y+\xi x^{k}\right)^{\mathfrak{h}}\left(\lambda\left(x \frac{\partial}{\partial x}-\xi k x^{k} \frac{\partial}{\partial y}\right)+\mu\left(y+\xi x^{k}\right) \frac{\partial}{\partial y}\right),(\lambda, \mu) \neq 0, \mathfrak{h}, k \geqslant 1, \xi \neq 0$

Example: $\partial=\left(y+\xi x^{k}\right)^{\mathfrak{h}}\left(\lambda\left(x \frac{\partial}{\partial x}-\xi k x^{k} \frac{\partial}{\partial y}\right)+\mu\left(y+\xi x^{k}\right) \frac{\partial}{\partial y}\right),(\lambda, \mu) \neq 0, \mathfrak{h}, k \geqslant 1, \xi \neq 0$ (up to a unit, this is the unique family where full compensation happens)

Example: $\partial=\left(y+\xi x^{k}\right)^{\mathfrak{h}}\left(\lambda\left(x \frac{\partial}{\partial x}-\xi k x^{k} \frac{\partial}{\partial y}\right)+\mu\left(y+\xi x^{k}\right) \frac{\partial}{\partial y}\right),(\lambda, \mu) \neq 0, \mathfrak{h}, k \geqslant 1, \xi \neq 0$ (up to a unit, this is the unique family where full compensation happens)
$\partial \in \operatorname{Gr}_{k \mathfrak{h}}(\operatorname{Der}, \omega)$, where $\omega=x \frac{\partial}{\partial x}+k y \frac{\partial}{\partial y} \quad$ (i.e. $[\omega, \partial]=k \mathfrak{h} \partial$)
Blow-up: $\quad x \rightarrow x, \quad y \rightarrow x^{k} y$

$$
\begin{gathered}
\left(y+\xi x^{k}\right)^{\mathfrak{h}} \longrightarrow x^{k \mathfrak{h}}(y+\xi)^{\mathfrak{h}} \\
x \frac{\partial}{\partial x} \longrightarrow\left(x \frac{\partial}{\partial x}-k y \frac{\partial}{\partial y}\right), \quad x^{k} \frac{\partial}{\partial y} \longrightarrow \frac{\partial}{\partial y}
\end{gathered}
$$

Example: $\partial=\left(y+\xi x^{k}\right)^{\mathfrak{h}}\left(\lambda\left(x \frac{\partial}{\partial x}-\xi k x^{k} \frac{\partial}{\partial y}\right)+\mu\left(y+\xi x^{k}\right) \frac{\partial}{\partial y}\right),(\lambda, \mu) \neq 0, \mathfrak{h}, k \geqslant 1, \xi \neq 0$ (up to a unit, this is the unique family where full compensation happens)
$\partial \in \operatorname{Gr}_{k \mathfrak{h}}(\operatorname{Der}, \omega)$, where $\omega=x \frac{\partial}{\partial x}+k y \frac{\partial}{\partial y} \quad$ (i.e. $[\omega, \partial]=k \mathfrak{h} \partial$)
Blow-up: $\quad x \rightarrow x, \quad y \rightarrow x^{k} y$

$$
\begin{gathered}
\left(y+\xi x^{k}\right)^{\mathfrak{h}} \longrightarrow x^{k \mathfrak{h}}(y+\xi)^{\mathfrak{h}} \\
x \frac{\partial}{\partial x} \longrightarrow\left(x \frac{\partial}{\partial x}-k y \frac{\partial}{\partial y}\right), \quad x^{k} \frac{\partial}{\partial y} \longrightarrow \frac{\partial}{\partial y} \\
\left(y+\xi x^{k}\right) \frac{\partial}{\partial y} \longrightarrow(y+\xi) \frac{\partial}{\partial y}
\end{gathered}
$$

Example: $\partial=\left(y+\xi x^{k}\right)^{\mathfrak{h}}\left(\lambda\left(x \frac{\partial}{\partial x}-\xi k x^{k} \frac{\partial}{\partial y}\right)+\mu\left(y+\xi x^{k}\right) \frac{\partial}{\partial y}\right),(\lambda, \mu) \neq 0, \mathfrak{h}, k \geqslant 1, \xi \neq 0$ (up to a unit, this is the unique family where full compensation happens)
$\partial \in \operatorname{Gr}_{k \mathfrak{h}}(\operatorname{Der}, \omega)$, where $\omega=x \frac{\partial}{\partial x}+k y \frac{\partial}{\partial y} \quad$ (i.e. $[\omega, \partial]=k \mathfrak{h} \partial$)
Blow-up: $\quad x \rightarrow x, \quad y \rightarrow x^{k} y$

$$
\begin{gathered}
\left(y+\xi x^{k}\right)^{\mathfrak{h}} \longrightarrow x^{k \mathfrak{h}}(y+\xi)^{\mathfrak{h}} \\
x \frac{\partial}{\partial x} \longrightarrow\left(x \frac{\partial}{\partial x}-k y \frac{\partial}{\partial y}\right), \quad x^{k} \frac{\partial}{\partial y} \longrightarrow \frac{\partial}{\partial y} \\
\left(y+\xi x^{k}\right) \frac{\partial}{\partial y} \longrightarrow(y+\xi) \frac{\partial}{\partial y} \\
\tilde{\partial}=x^{-k \mathfrak{h}} \partial=(y+\xi)^{\mathfrak{h}}\left(\lambda x \frac{\partial}{\partial x}+(\mu-k \lambda)(y+\xi) \frac{\partial}{\partial y}\right)
\end{gathered}
$$

Example: $\partial=\left(y+\xi x^{k}\right)^{\mathfrak{h}}\left(\lambda\left(x \frac{\partial}{\partial x}-\xi k x^{k} \frac{\partial}{\partial y}\right)+\mu\left(y+\xi x^{k}\right) \frac{\partial}{\partial y}\right),(\lambda, \mu) \neq 0, \mathfrak{h}, k \geqslant 1, \xi \neq 0$ (up to a unit, this is the unique family where full compensation happens)
$\partial \in \operatorname{Gr}_{k \mathfrak{h}}(\operatorname{Der}, \omega)$, where $\omega=x \frac{\partial}{\partial x}+k y \frac{\partial}{\partial y} \quad$ (i.e. $[\omega, \partial]=k \mathfrak{h} \partial$)
Blow-up: $\quad x \rightarrow x, \quad y \rightarrow x^{k} y$

$$
\begin{gathered}
\left(y+\xi x^{k}\right)^{\mathfrak{h}} \longrightarrow x^{k \mathfrak{h}}(y+\xi)^{\mathfrak{h}} \\
x \frac{\partial}{\partial x} \longrightarrow\left(x \frac{\partial}{\partial x}-k y \frac{\partial}{\partial y}\right), \quad x^{k} \frac{\partial}{\partial y} \longrightarrow \frac{\partial}{\partial y} \\
\left(y+\xi x^{k}\right) \frac{\partial}{\partial y} \longrightarrow(y+\xi) \frac{\partial}{\partial y} \\
\tilde{\partial}=x^{-k \mathfrak{h}} \partial=(y+\xi)^{\mathfrak{h}}\left(\lambda x \frac{\partial}{\partial x}+(\mu-k \lambda)(y+\xi) \frac{\partial}{\partial y}\right)
\end{gathered}
$$

Translation $y \rightarrow y-\xi$

$$
\tilde{\partial}=y^{\mathfrak{h}}\left(\mu x \frac{\partial}{\partial x}+(\lambda-k \mu) y \frac{\partial}{\partial y}\right) \Longrightarrow \tilde{\mathfrak{h}}=\mathfrak{h}
$$

How to prevent this? The main edge \mathfrak{e} should be stable.

How to prevent this? The main edge \mathfrak{e} should be stable.
Definition. We say that $\operatorname{New}_{(x, y)}(\partial)$ is edge-unstable if there exists a polynomial change of coordinates of the form

How to prevent this? The main edge \mathfrak{e} should be stable.
Definition. We say that $\operatorname{New}_{(x, y)}(\partial)$ is edge-unstable if there exists a polynomial change of coordinates of the form

$$
y \rightarrow y+\xi x^{\frac{\beta}{\alpha}}=: y_{1}
$$

such that $\operatorname{New}_{\left(x, y_{1}\right)}(\partial) \cap \mathfrak{e}=\{\boldsymbol{m}\}$. Otherwise, we say that $\operatorname{New}_{(x, y)}(\partial)$ are edge-stable.

How to prevent this? The main edge \mathfrak{e} should be stable.
Definition. We say that $\operatorname{New}_{(x, y)}(\partial)$ is edge-unstable if there exists a polynomial change of coordinates of the form

$$
y \rightarrow y+\xi x^{\frac{\beta}{\alpha}}=: y_{1}
$$

such that $\operatorname{New}_{\left(x, y_{1}\right)}(\partial) \cap \mathfrak{e}=\{\boldsymbol{m}\}$. Otherwise, we say that $\operatorname{New}_{(x, y)}(\partial)$ are edge-stable. Notice that $\operatorname{New}_{(x, y)}(\partial)$ is always edge-stable if $\beta / \alpha \notin \mathbb{Z}_{\geqslant 1}$.

How to prevent this? The main edge \mathfrak{e} should be stable.
Definition. We say that $\operatorname{New}_{(x, y)}(\partial)$ is edge-unstable if there exists a polynomial change of coordinates of the form

$$
y \rightarrow y+\xi x^{\frac{\beta}{\alpha}}=: y_{1}
$$

such that $\operatorname{New}_{\left(x, y_{1}\right)}(\partial) \cap \mathfrak{e}=\{\boldsymbol{m}\}$. Otherwise, we say that $\operatorname{New}_{(x, y)}(\partial)$ are edge-stable. Notice that $\operatorname{New}_{(x, y)}(\partial)$ is always edge-stable if $\beta / \alpha \notin \mathbb{Z} \geqslant 1$.

The above map slides the monomials in the direction of the main edge.

Theorem (Local resolution) Suppose that $\operatorname{New}_{(x, y)}(\partial)$ is edge stable, and let

$$
\Phi: \tilde{M} \rightarrow M
$$

be the blowing-up of $p \in \operatorname{Nilp}(M, \mathcal{F})$ with weight $\mathrm{wt}(\mathfrak{e})$. Then,

Theorem (Local resolution) Suppose that $\operatorname{New}_{(x, y)}(\partial)$ is edge stable, and let

$$
\Phi: \tilde{M} \rightarrow M
$$

be the blowing-up of $p \in \operatorname{Nilp}(M, \mathcal{F})$ with weight $\mathrm{wt}(\mathfrak{e})$. Then,

$$
\forall \tilde{p} \in \Phi^{-1}(p): \quad \tilde{\mathfrak{h}} \leqslant \mathfrak{h}-1 .
$$

Theorem (Local resolution) Suppose that $\operatorname{New}_{(x, y)}(\partial)$ is edge stable, and let

$$
\Phi: \tilde{M} \rightarrow M
$$

be the blowing-up of $p \in \operatorname{Nilp}(M, \mathcal{F})$ with weight $\mathrm{wt}(\mathfrak{e})$. Then,

$$
\forall \tilde{p} \in \Phi^{-1}(p): \quad \tilde{\mathfrak{h}} \leqslant \mathfrak{h}-1
$$

(very simple) Proof: Firstly, we do not have to care about the y-directional chart

$$
x \rightarrow y^{\alpha} x, \quad y \rightarrow y^{\beta}
$$

Theorem (Local resolution) Suppose that $\operatorname{New}_{(x, y)}(\partial)$ is edge stable, and let

$$
\Phi: \tilde{M} \rightarrow M
$$

be the blowing-up of $p \in \operatorname{Nilp}(M, \mathcal{F})$ with weight $\mathrm{wt}(\mathfrak{e})$. Then,

$$
\forall \tilde{p} \in \Phi^{-1}(p): \quad \tilde{\mathfrak{h}} \leqslant \mathfrak{h}-1
$$

(very simple) Proof: Firstly, we do not have to care about the y-directional chart

$$
x \rightarrow y^{\alpha} x, \quad y \rightarrow y^{\beta}
$$

as $\tilde{p}=(0: 1)$ will always be elementary.

Theorem (Local resolution) Suppose that $\operatorname{New}_{(x, y)}(\partial)$ is edge stable, and let

$$
\Phi: \tilde{M} \rightarrow M
$$

be the blowing-up of $p \in \operatorname{Nilp}(M, \mathcal{F})$ with weight $\mathrm{wt}(\mathfrak{e})$. Then,

$$
\forall \tilde{p} \in \Phi^{-1}(p): \quad \tilde{\mathfrak{h}} \leqslant \mathfrak{h}-1
$$

(very simple) Proof: Firstly, we do not have to care about the y-directional chart

$$
x \rightarrow y^{\alpha} x, \quad y \rightarrow y^{\beta}
$$

as $\tilde{p}=(0: 1)$ will always be elementary.

We look the x-directional chart

$$
x \rightarrow x^{\alpha}, \quad y \rightarrow x^{\beta} y
$$

Suppose that $\tilde{\mathfrak{h}}=\mathfrak{h}$. Then, there should exists a non-zero constant ξ such that the translation (in blowed-up coordinates)

$$
y \rightarrow y+\xi
$$

gives a Newton polyhedron with main vertex $\tilde{\boldsymbol{m}}=\boldsymbol{m}$. We split into two cases:

We look the x-directional chart

$$
x \rightarrow x^{\alpha}, \quad y \rightarrow x^{\beta} y
$$

Suppose that $\tilde{\mathfrak{h}}=\mathfrak{h}$. Then, there should exists a non-zero constant ξ such that the translation (in blowed-up coordinates)

$$
y \rightarrow y+\xi
$$

gives a Newton polyhedron with main vertex $\tilde{\boldsymbol{m}}=\boldsymbol{m}$. We split into two cases:

- $\beta / \alpha \in \mathbb{Q}_{>0} \backslash \mathbb{Z}_{>0}$.

We look the x-directional chart

$$
x \rightarrow x^{\alpha}, \quad y \rightarrow x^{\beta} y
$$

Suppose that $\tilde{\mathfrak{h}}=\mathfrak{h}$. Then, there should exists a non-zero constant ξ such that the translation (in blowed-up coordinates)

$$
y \rightarrow y+\xi
$$

gives a Newton polyhedron with main vertex $\tilde{\boldsymbol{m}}=\boldsymbol{m}$. We split into two cases:

- $\beta / \alpha \in \mathbb{Q}_{>0} \backslash \mathbb{Z}_{>0}$.
- $\beta / \alpha \in \mathbb{Z}_{>0}$

We look the x-directional chart

$$
x \rightarrow x^{\alpha}, \quad y \rightarrow x^{\beta} y
$$

Suppose that $\tilde{\mathfrak{h}}=\mathfrak{h}$. Then, there should exists a non-zero constant ξ such that the translation (in blowed-up coordinates)

$$
y \rightarrow y+\xi
$$

gives a Newton polyhedron with main vertex $\tilde{\boldsymbol{m}}=\boldsymbol{m}$. We split into two cases:

- $\beta / \alpha \in \mathbb{Q}_{>0} \backslash \mathbb{Z}_{>0}$.
- $\beta / \alpha \in \mathbb{Z}_{>0}$

In the latter case, the above map corresponds (in the original coordinates), to the polynomial map $y \rightarrow y+\xi x^{\beta / \alpha} \quad$ (just write $y \rightarrow x^{-\beta} y, x \rightarrow x^{1 / \alpha}$).

We look the x-directional chart

$$
x \rightarrow x^{\alpha}, \quad y \rightarrow x^{\beta} y
$$

Suppose that $\tilde{\mathfrak{h}}=\mathfrak{h}$. Then, there should exists a non-zero constant ξ such that the translation (in blowed-up coordinates)

$$
y \rightarrow y+\xi
$$

gives a Newton polyhedron with main vertex $\tilde{\boldsymbol{m}}=\boldsymbol{m}$. We split into two cases:

- $\beta / \alpha \in \mathbb{Q}_{>0} \backslash \mathbb{Z}_{>0}$.
- $\beta / \alpha \in \mathbb{Z}_{>0}$

In the latter case, the above map corresponds (in the original coordinates), to the polynomial map $y \rightarrow y+\xi x^{\beta / \alpha} \quad$ (just write $y \rightarrow x^{-\beta} y, x \rightarrow x^{1 / \alpha}$).

The assumption $\tilde{\mathfrak{h}}=\mathfrak{h}$ is equivalent to say that $\operatorname{New}_{(x, y)}(\partial)$ is edge-unstable, which contradicts the hypothesis of the Theorem.

In the former case $($ i.e. $\beta / \alpha \notin \mathbb{Z})$, the \mathfrak{e}-initial form of ∂ has a gap at height $\mathfrak{h}-1$.
Example: $\beta / \alpha=2 / 3$

In the former case (i.e. $\beta / \alpha \notin \mathbb{Z}$), the \mathfrak{e}-initial form of ∂ has a gap at height $\mathfrak{h}-1$.
Example: $\beta / \alpha=2 / 3$

After blowing-up, followed by an arbitrary translation $y \rightarrow y+\xi$, we have

$$
\left(y^{\mathfrak{h}}\right)\left(\alpha x \frac{\partial}{\partial x}+\beta y \frac{\partial}{\partial y}\right)+\text { terms in } y^{\leqslant \mathfrak{h}-2} \longrightarrow(y+\xi)^{\mathfrak{h}}\left(\alpha x \frac{\partial}{\partial x}+\beta(y+\xi) \frac{\partial}{\partial y}\right)+\cdots
$$

which gives a monomial on the support at height $\mathfrak{h}-1$.

In the former case (i.e. $\beta / \alpha \notin \mathbb{Z}$), the \mathfrak{e}-initial form of ∂ has a gap at height $\mathfrak{h}-1$.
Example: $\beta / \alpha=2 / 3$

After blowing-up, followed by an arbitrary translation $y \rightarrow y+\xi$, we have

$$
\left(y^{\mathfrak{h}}\right)\left(\alpha x \frac{\partial}{\partial x}+\beta y \frac{\partial}{\partial y}\right)+\text { terms in } y^{\leqslant \mathfrak{h}-2} \longrightarrow(y+\xi)^{\mathfrak{h}}\left(\alpha x \frac{\partial}{\partial x}+\beta(y+\xi) \frac{\partial}{\partial y}\right)+\cdots
$$

which gives a monomial on the support at height $\mathfrak{h}-1$.
(Abhyankar called this argument the "lazy Tschirnhaussen").

What is "behind" this argument?

What is "behind" this argument?
To simplify, let us look at the case of function germs:

What is "behind" this argument?
To simplify, let us look at the case of function germs:
$f \in \mathcal{O}_{p}$ is "elementary" iff f is a unit (i.e. iff $\left.0 \in \operatorname{New}_{(x, y)}(f)\right)$.

What is "behind" this argument?
To simplify, let us look at the case of function germs:
$f \in \mathcal{O}_{p}$ is "elementary" iff f is a unit (i.e. iff $\left.0 \in \operatorname{New}_{(x, y)}(f)\right)$.
Supposing that $\boldsymbol{m}=(0, \mathfrak{h})$, the \mathfrak{e}-initial part of f is a (α, β)-homogeneous polynomial

$$
f_{\mathfrak{e}}=c y^{\mathfrak{h}}+\sum_{\substack{\alpha i+\beta j=d \\ j \geqslant 1}} c_{i j} x^{i} y^{j}
$$

What is "behind" this argument?
To simplify, let us look at the case of function germs:
$f \in \mathcal{O}_{p}$ is "elementary" iff f is a unit (i.e. iff $\left.0 \in \operatorname{New}_{(x, y)}(f)\right)$.
Supposing that $\boldsymbol{m}=(0, \mathfrak{h})$, the \mathfrak{e}-initial part of f is a (α, β)-homogeneous polynomial

$$
f_{\mathfrak{e}}=c y^{\mathfrak{h}}+\sum_{\substack{\alpha i+\beta j=d \\ j \geqslant 1}} c_{i j} x^{i} y^{j}
$$

(i.e. $f_{\mathfrak{e}}$ is a section a line (orbi)-bundle $\mathcal{L} \rightarrow \mathbb{P}_{(\alpha, \beta)}^{1}$, equal to $\mathcal{O}_{\mathbb{P}^{1}}(d)$ in the classical homogeneous case).

We can look at the divisor $\operatorname{Div}\left(f_{\mathfrak{e}}\right)=\sum m_{i}\left[\xi_{i}\right]$ on $\mathbb{P}_{(\alpha, \beta)}^{1}\left(\right.$ write $\left.f_{\mathfrak{e}}(1, y)=\prod\left(y-\xi_{i}\right)^{m_{i}}\right)$

What is "behind" this argument?
To simplify, let us look at the case of function germs:
$f \in \mathcal{O}_{p}$ is "elementary" iff f is a unit (i.e. iff $\left.0 \in \operatorname{New}_{(x, y)}(f)\right)$.
Supposing that $\boldsymbol{m}=(0, \mathfrak{h})$, the \mathfrak{e}-initial part of f is a (α, β)-homogeneous polynomial

$$
f_{\mathfrak{e}}=c y^{\mathfrak{h}}+\sum_{\substack{\alpha i+\beta j=d \\ j \geqslant 1}} c_{i j} x^{i} y^{j}
$$

(i.e. $f_{\mathfrak{e}}$ is a section a line (orbi)-bundle $\mathcal{L} \rightarrow \mathbb{P}_{(\alpha, \beta)}^{1}$, equal to $\mathcal{O}_{\mathbb{P}^{1}}(d)$ in the classical homogeneous case).

We can look at the divisor $\operatorname{Div}\left(f_{\mathfrak{e}}\right)=\sum m_{i}\left[\xi_{i}\right]$ on $\mathbb{P}_{(\alpha, \beta)}^{1}\left(\right.$ write $\left.f_{\mathfrak{e}}(1, y)=\prod\left(y-\xi_{i}\right)^{m_{i}}\right)$ The choice of \mathfrak{e} implies that $\operatorname{Div}\left(f_{\mathfrak{e}}\right) \neq \mathfrak{h}[(1: 0)]$. (i.e. the support of the divisor is not concentrated at $[(1: 0)])$

What is "behind" this argument?
To simplify, let us look at the case of function germs:
$f \in \mathcal{O}_{p}$ is "elementary" iff f is a unit (i.e. iff $0 \in \operatorname{New}_{(x, y)}(f)$).
Supposing that $\boldsymbol{m}=(0, \mathfrak{h})$, the \mathfrak{e}-initial part of f is a (α, β)-homogeneous polynomial

$$
f_{\mathfrak{e}}=c y^{\mathfrak{h}}+\sum_{\substack{\alpha i+\beta j=d \\ j \geqslant 1}} c_{i j} x^{i} y^{j}
$$

(i.e. $f_{\mathfrak{e}}$ is a section a line (orbi)-bundle $\mathcal{L} \rightarrow \mathbb{P}_{(\alpha, \beta)}^{1}$, equal to $\mathcal{O}_{\mathbb{P}^{1}(d)}$ in the classical homogeneous case).

We can look at the divisor $\operatorname{Div}\left(f_{\mathfrak{e}}\right)=\sum m_{i}\left[\xi_{i}\right]$ on $\mathbb{P}_{(\alpha, \beta)}^{1}\left(\right.$ write $\left.f_{\mathfrak{e}}(1, y)=\prod\left(y-\xi_{i}\right)^{m_{i}}\right)$
The choice of \mathfrak{e} implies that $\operatorname{Div}\left(f_{\mathfrak{e}}\right) \neq \mathfrak{h}[(1: 0)]$. (i.e. the support of the divisor is not concentrated at $[(1: 0)])$
$\operatorname{New}_{(x, y)}(f)$ is edge-unstable $\operatorname{iff} \operatorname{Div}\left(f_{\mathfrak{e}}\right)=\mathfrak{h}[\xi]$ (i.e. the support of the divisor is a point $\xi \neq(1: 0)$. In this case:
(1) This point is necessarily unique and,

What is "behind" this argument?
To simplify, let us look at the case of function germs:
$f \in \mathcal{O}_{p}$ is "elementary" iff f is a unit (i.e. iff $\left.0 \in \operatorname{New}_{(x, y)}(f)\right)$.
Supposing that $\boldsymbol{m}=(0, \mathfrak{h})$, the \mathfrak{e}-initial part of f is a (α, β)-homogeneous polynomial

$$
f_{\mathfrak{e}}=c y^{\mathfrak{h}}+\sum_{\substack{\alpha i+\beta j=d \\ j \geqslant 1}} c_{i j} x^{i} y^{j}
$$

(i.e. $f_{\mathfrak{e}}$ is a section a line (orbi)-bundle $\mathcal{L} \rightarrow \mathbb{P}_{(\alpha, \beta)}^{1}$, equal to $\mathcal{O}_{\mathbb{P}^{1}}(d)$ in the classical homogeneous case).

We can look at the divisor $\operatorname{Div}\left(f_{\mathfrak{e}}\right)=\sum m_{i}\left[\xi_{i}\right]$ on $\mathbb{P}_{(\alpha, \beta)}^{1}\left(\right.$ write $\left.f_{\mathfrak{e}}(1, y)=\prod\left(y-\xi_{i}\right)^{m_{i}}\right)$
The choice of \mathfrak{e} implies that $\operatorname{Div}\left(f_{\mathfrak{e}}\right) \neq \mathfrak{h}[(1: 0)]$. (i.e. the support of the divisor is not concentrated at $[(1: 0)])$
$\operatorname{New}_{(x, y)}(f)$ is edge-unstable $\operatorname{iff} \operatorname{Div}\left(f_{\mathfrak{e}}\right)=\mathfrak{h}[\xi]$ (i.e. the support of the divisor is a point $\xi \neq(1: 0)$. In this case:
(1) This point is necessarily unique and,
(2) $\beta / \alpha \notin \mathbb{Z}_{>0}$

Simply because there is a $\mathbb{Z} / \alpha \mathbb{Z}$-symmetry on the divisor.

Simply because there is a $\mathbb{Z} / \alpha \mathbb{Z}$-symmetry on the divisor.

Symmetry breaking

Simply because there is a $\mathbb{Z} / \alpha \mathbb{Z}$-symmetry on the divisor.

Symmetry breaking

It remains to prove that the following

It remains to prove that the following
Theorem (on edge stabilization)
(Existence) There exists adapted coordinates (x, y) such that

It remains to prove that the following
Theorem (on edge stabilization)
(Existence) There exists adapted coordinates (x, y) such that

$$
\operatorname{New}_{(x, y)}(\partial)
$$

is edge stable.

It remains to prove that the following
Theorem (on edge stabilization)
(Existence) There exists adapted coordinates (x, y) such that

$$
\operatorname{New}_{(x, y)}(\partial)
$$

is edge stable.
(Uniqueness of the associated filtration) Let $(x, y),\left(x^{\prime}, y^{\prime}\right)$ be coordinates such that $\operatorname{New}_{(x, y)}(\partial)$ and $\operatorname{New}_{\left(x^{\prime}, y^{\prime}\right)}(\partial)$ are edge stable. Then the local resolution algorithm (i.e. the local filtration of the local ring) defined throught these coordinates coïncide.

It remains to prove that the following
Theorem (on edge stabilization)
(Existence) There exists adapted coordinates (x, y) such that

$$
\operatorname{New}_{(x, y)}(\partial)
$$

is edge stable.
(Uniqueness of the associated filtration) Let $(x, y),\left(x^{\prime}, y^{\prime}\right)$ be coordinates such that $\operatorname{New}_{(x, y)}(\partial)$ and $\operatorname{New}_{\left(x^{\prime}, y^{\prime}\right)}(\partial)$ are edge stable. Then the local resolution algorithm (i.e. the local filtration of the local ring) defined throught these coordinates coïncide.

In other words, the filtration is intrinsically determined by ∂ (and the divisor E).

It remains to prove that the following
Theorem (on edge stabilization)
(Existence) There exists adapted coordinates (x, y) such that

$$
\operatorname{New}_{(x, y)}(\partial)
$$

is edge stable.
(Uniqueness of the associated filtration) Let $(x, y),\left(x^{\prime}, y^{\prime}\right)$ be coordinates such that $\operatorname{New}_{(x, y)}(\partial)$ and $\operatorname{New}_{\left(x^{\prime}, y^{\prime}\right)}(\partial)$ are edge stable. Then the local resolution algorithm (i.e. the local filtration of the local ring) defined throught these coordinates coïncide.

In other words, the filtration is intrinsically determined by ∂ (and the divisor E).
Proof: We start with an arbitrary adapted coordinate system $\left(x, y_{0}\right)$.

1) If $\operatorname{New}_{\left(x, y_{0}\right)}(\partial)$ is edge-stable, we stop
2) If $\operatorname{New}_{\left(x, y_{0}\right)}(\partial)$ is edge-unstable, we choose a polynomial coordinate change $\left(x, y_{0}\right) \rightarrow$ $\left(x, y_{1}\right)$, where

$$
y_{1}=y_{0}+\xi_{0} x^{k_{0}}, \quad k_{0}=\beta_{0} / \alpha_{0}
$$

eliminates the main edge \mathfrak{e}_{0}.

We now consider the new coordinates $\left(x, y_{1}\right)$ and apply the same argument. I claim that this procedure eventually stops with an edge stable situation.

Indeed, assume the contrary. Then, we end-up with an infinite sequence of coordinate changes

$$
y_{i+1}=y_{i}+\xi_{i} x^{k_{i}}, \quad i \geqslant 1
$$

where $\left\{k_{i}=\beta_{i} / \alpha_{i}\right\}$ forms an strictly increasing sequence of integers, corresponding to the successive slopes of the edges \mathfrak{e}_{i}.

We now consider the new coordinates $\left(x, y_{1}\right)$ and apply the same argument. I claim that this procedure eventually stops with an edge stable situation.

Indeed, assume the contrary. Then, we end-up with an infinite sequence of coordinate changes

$$
y_{i+1}=y_{i}+\xi_{i} x^{k_{i}}, \quad i \geqslant 1
$$

where $\left\{k_{i}=\beta_{i} / \alpha_{i}\right\}$ forms an strictly increasing sequence of integers, corresponding to the successive slopes of the edges \mathfrak{e}_{i}.

We now consider the new coordinates $\left(x, y_{1}\right)$ and apply the same argument. I claim that this procedure eventually stops with an edge stable situation.

Indeed, assume the contrary. Then, we end-up with an infinite sequence of coordinate changes

$$
y_{i+1}=y_{i}+\xi_{i} x^{k_{i}}, \quad i \geqslant 1
$$

where $\left\{k_{i}=\beta_{i} / \alpha_{i}\right\}$ forms an strictly increasing sequence of integers, corresponding to the successive slopes of the edges \mathfrak{e}_{i}.

The composition of these maps converges to a formal coordinate change $\widehat{y_{\infty}}=y_{0}+\sum \xi_{i} x^{k i}$

We now consider the new coordinates $\left(x, y_{1}\right)$ and apply the same argument. I claim that this procedure eventually stops with an edge stable situation.

Indeed, assume the contrary. Then, we end-up with an infinite sequence of coordinate changes

$$
y_{i+1}=y_{i}+\xi_{i} x^{k_{i}}, \quad i \geqslant 1
$$

where $\left\{k_{i}=\beta_{i} / \alpha_{i}\right\}$ forms an strictly increasing sequence of integers, corresponding to the successive slopes of the edges \mathfrak{e}_{i}.

The composition of these maps converges to a formal coordinate change $\widehat{y_{\infty}}=y_{0}+\sum \xi_{i} x^{k i}$

In these coordinates,

Uniqueness of the filtration. Suppose that $\operatorname{New}_{(x, y)}(\partial), \operatorname{New}_{\left(x^{\prime}, y^{\prime \prime}\right)}(\partial)$ are edge stable

Uniqueness of the filtration. Suppose that $\operatorname{New}_{(x, y)}(\partial), \operatorname{New}_{\left(x^{\prime}, y^{\prime \prime}\right)}(\partial)$ are edge stable

write $x^{\prime}=x f(x, y), y^{\prime}=g(x, y)$. We claim that this map preserves the $\mathrm{wt}(\mathfrak{e})$ filtration.

Uniqueness of the filtration. Suppose that $\operatorname{New}_{(x, y)}(\partial), \operatorname{New}_{\left(x^{\prime}, y^{\prime \prime}\right)}(\partial)$ are edge stable

write $x^{\prime}=x f(x, y), y^{\prime}=g(x, y)$. We claim that this map preserves the $\mathrm{wt}(\mathfrak{e})$ filtration.
Let us write $g(x, y)=g_{0}(x)+y G(x, y)$. Then, the change of coordinates preserves the filtration if and only if

Uniqueness of the filtration. Suppose that $\operatorname{New}_{(x, y)}(\partial), \operatorname{New}_{\left(x^{\prime}, y^{\prime \prime}\right)}(\partial)$ are edge stable

write $x^{\prime}=x f(x, y), y^{\prime}=g(x, y)$. We claim that this map preserves the $\mathrm{wt}(\mathfrak{e})$ filtration.
Let us write $g(x, y)=g_{0}(x)+y G(x, y)$. Then, the change of coordinates preserves the filtration if and only if

$$
g_{0}(x)=O\left(x^{\frac{\beta}{\alpha}}\right)
$$

Uniqueness of the filtration. Suppose that $\operatorname{New}_{(x, y)}(\partial), \operatorname{New}_{\left(x^{\prime}, y^{\prime \prime}\right)}(\partial)$ are edge stable

write $x^{\prime}=x f(x, y), y^{\prime}=g(x, y)$. We claim that this map preserves the $\mathrm{wt}(\mathfrak{e})$ filtration.
Let us write $g(x, y)=g_{0}(x)+y G(x, y)$. Then, the change of coordinates preserves the filtration if and only if

$$
g_{0}(x)=O\left(x^{\frac{\beta}{\alpha}}\right)
$$

Suppose that this is not the case. Then, looking at the smallest order term of g_{0}, we find a polynomial change of coordinates $y_{1}=y+\xi x^{k}$ with $\xi \neq 0$ and $k<\frac{\beta}{\alpha}$ such that

Uniqueness of the filtration. Suppose that $\operatorname{New}_{(x, y)}(\partial), \operatorname{New}_{\left(x^{\prime}, y^{\prime \prime}\right)}(\partial)$ are edge stable

write $x^{\prime}=x f(x, y), y^{\prime}=g(x, y)$. We claim that this map preserves the $\mathrm{wt}(\mathfrak{e})$ filtration.
Let us write $g(x, y)=g_{0}(x)+y G(x, y)$. Then, the change of coordinates preserves the filtration if and only if

$$
g_{0}(x)=O\left(x^{\frac{\beta}{\alpha}}\right)
$$

Suppose that this is not the case. Then, looking at the smallest order term of g_{0}, we find a polynomial change of coordinates $y_{1}=y+\xi x^{k}$ with $\xi \neq 0$ and $k<\frac{\beta}{\alpha}$ such that

$$
\operatorname{New}_{\left(x, y_{1}\right)}(\partial)
$$

is has a main edge \mathfrak{e}^{\prime} of slope $k<\beta / \alpha$ (because the action of $y \rightarrow y+\xi x^{k}$ on $\mathrm{New}_{(x, y)}(\partial)$ is effective).

However, $\operatorname{New}_{\left(x, y_{1}\right)}(\partial)$ should also be edge-stable.

However, $\operatorname{New}_{\left(x, y_{1}\right)}(\partial)$ should also be edge-stable.
(because the $(1, k)$-initial part of ∂ with respect to $\left(x, y_{1}\right)$ equals its \mathfrak{e}^{\prime}-initial part with respect to $\left(x^{\prime}, y^{\prime}\right)$, which is stable by the hypothesis).

However, $\operatorname{New}_{\left(x, y_{1}\right)}(\partial)$ should also be edge-stable.
(because the $(1, k)$-initial part of ∂ with respect to $\left(x, y_{1}\right)$ equals its \mathfrak{e}^{\prime}-initial part with respect to $\left(x^{\prime}, y^{\prime}\right)$, which is stable by the hypothesis).

But this contradicts the fact that the inverse transformation $y=y_{1}-\xi x^{k}$ eliminates the main edge.

Some general remarks:

Some general remarks:

1) We cannot expect to obtain a fully convergent Tchirnhaussen preparation (or, more generally, a maximal contact hypersurface which would allow to use induction in the dimension)

Recall that, in the classical case of a germ of singular hypersurface S, this corresponds to choose a local equation of the form

$$
f(\underline{x}, y)=y^{h}+\sum a_{i}(\underline{x}) y^{h-i}
$$

Some general remarks:

1) We cannot expect to obtain a fully convergent Tchirnhaussen preparation (or, more generally, a maximal contact hypersurface which would allow to use induction in the dimension)

Recall that, in the classical case of a germ of singular hypersurface S, this corresponds to choose a local equation of the form

$$
f(\underline{x}, y)=y^{h}+\sum a_{i}(\underline{x}) y^{h-i}
$$

and eliminate the term in y^{h-1} by the local change of coordinates $y \rightarrow y-\frac{1}{h} a_{1}$ (Tschirnhaussen transformation)

Some general remarks:

1) We cannot expect to obtain a fully convergent Tchirnhaussen preparation (or, more generally, a maximal contact hypersurface which would allow to use induction in the dimension)

Recall that, in the classical case of a germ of singular hypersurface S, this corresponds to choose a local equation of the form

$$
f(\underline{x}, y)=y^{h}+\sum a_{i}(\underline{x}) y^{h-i}
$$

and eliminate the term in y^{h-1} by the local change of coordinates $y \rightarrow y-\frac{1}{h} a_{1}$ (Tschirnhaussen transformation)

As a consequence, simply because $(\partial / \partial y)^{h-1} f=y$, the multiplicity h-locus Sing $^{h}(f)$ is contained in the hypersurface $H=\{y=0\}$

Some general remarks:

1) We cannot expect to obtain a fully convergent Tchirnhaussen preparation (or, more generally, a maximal contact hypersurface which would allow to use induction in the dimension)

Recall that, in the classical case of a germ of singular hypersurface S, this corresponds to choose a local equation of the form

$$
f(\underline{x}, y)=y^{h}+\sum a_{i}(\underline{x}) y^{h-i}
$$

and eliminate the term in y^{h-1} by the local change of coordinates $y \rightarrow y-\frac{1}{h} a_{1}$ (Tschirnhaussen transformation)

As a consequence, simply because $(\partial / \partial y)^{h-1} f=y$, the multiplicity h-locus $\operatorname{Sing}^{h}(f)$ is contained in the hypersurface $H=\{y=0\}$ and this remains true for all blowings-up with center on $\operatorname{Sing}^{h}(f)$.

Analogous question for vector fields, say in dim. 2:

Analogous question for vector fields, say in dim. 2:

$$
\partial=y^{h}\left(a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right)+\sum y^{h-i} a(x)
$$

Analogous question for vector fields, say in dim. 2:

$$
\partial=y^{h}\left(a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right)+\sum y^{h-i} a(x)
$$

The differential operator $\left(\frac{\partial}{\partial y}\right)$ acts on $\operatorname{Der}(\mathcal{O})$ by Lie brackets.

Analogous question for vector fields, say in dim. 2:

$$
\partial=y^{h}\left(a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right)+\sum y^{h-i} a(x)
$$

The differential operator $\left(\frac{\partial}{\partial y}\right)$ acts on $\operatorname{Der}(\mathcal{O})$ by Lie brackets.

Analogous question for vector fields, say in dim. 2:

$$
\partial=y^{h}\left(a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right)+\sum y^{h-i} a(x)
$$

The differential operator $\left(\frac{\partial}{\partial y}\right)$ acts on $\operatorname{Der}(\mathcal{O})$ by Lie brackets.

$$
\delta=\left(\operatorname{ad}_{\partial / \partial y}\right)^{h} \partial=\left(\left[\frac{\partial}{\partial y}, \cdot\right]\right)^{h} \partial=(h+1)!b y \frac{\partial}{\partial y}+h!a x \frac{\partial}{\partial x}+(\text { terms of higher order })
$$

Analogous question for vector fields, say in dim. 2:

$$
\partial=y^{h}\left(a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right)+\sum y^{h-i} a(x)
$$

The differential operator $\left(\frac{\partial}{\partial y}\right)$ acts on $\operatorname{Der}(\mathcal{O})$ by Lie brackets.

$$
\delta=\left(\operatorname{ad}_{\partial / \partial y}\right)^{h} \partial=\left(\left[\frac{\partial}{\partial y}, \cdot\right]\right)^{h} \partial=(h+1)!b y \frac{\partial}{\partial y}+h!a x \frac{\partial}{\partial x}+(\text { terms of higher order })
$$

In this situation, the analogous of a maximal contact surface should be

Analogous question for vector fields, say in dim. 2:

$$
\partial=y^{h}\left(a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right)+\sum y^{h-i} a(x)
$$

The differential operator $\left(\frac{\partial}{\partial y}\right)$ acts on $\operatorname{Der}(\mathcal{O})$ by Lie brackets.

$$
\delta=\left(\operatorname{ad}_{\partial / \partial y}\right)^{h} \partial=\left(\left[\frac{\partial}{\partial y}, \cdot\right]\right)^{h} \partial=(h+1)!b y \frac{\partial}{\partial y}+h!a x \frac{\partial}{\partial x}+(\text { terms of higher order })
$$

In this situation, the analogous of a maximal contact surface should be an invariant curve for δ of the form $H=\{y=f(x)\}$.

Analogous question for vector fields, say in dim. 2:

$$
\partial=y^{h}\left(a x \frac{\partial}{\partial x}+b y \frac{\partial}{\partial y}\right)+\sum y^{h-i} a(x)
$$

The differential operator $\left(\frac{\partial}{\partial y}\right)$ acts on $\operatorname{Der}(\mathcal{O})$ by Lie brackets.

$$
\delta=\left(\operatorname{ad}_{\partial / \partial y}\right)^{h} \partial=\left(\left[\frac{\partial}{\partial y}, \cdot\right]\right)^{h} \partial=(h+1)!b y \frac{\partial}{\partial y}+h!a x \frac{\partial}{\partial x}+(\text { terms of higher order })
$$

In this situation, the analogous of a maximal contact surface should be an invariant curve for δ of the form $H=\{y=f(x)\}$.
i.e. satisfying

$$
\delta(y-f) \subset\langle y-f\rangle
$$

Example (Euler's equation): Assume that $\delta=\operatorname{ad}_{(\partial / \partial y)^{r}}(\partial)$ has the form

Example (Euler's equation): Assume that $\delta=\operatorname{ad}_{(\partial / \partial y)^{r}(\partial)}$ has the form

$$
\delta=x^{2} \frac{\partial}{\partial x}+(y-x) \frac{\partial}{\partial y}
$$

$$
(0,0)(1,0) \quad \operatorname{supp}_{(x, y)}(\delta) \cap(\mathbb{Z} \times\{h-1\})
$$

$(-1,1)$

Example (Euler's equation): Assume that $\delta=\operatorname{ad}_{(\partial / \partial y)^{r}(\partial)}$ has the form

$$
\delta=x^{2} \frac{\partial}{\partial x}+(y-x) \frac{\partial}{\partial y}
$$

$$
(0,0)(1,0) \quad \operatorname{supp}_{(x, y)}(\delta) \cap(\mathbb{Z} \times\{h-1\})
$$

$(-1,1)$

$$
y \rightarrow y-x
$$

Example (Euler's equation): Assume that $\delta=\operatorname{ad}_{(\partial / \partial y)^{r}(\partial)}$ has the form

$$
\delta=x^{2} \frac{\partial}{\partial x}+\left(y-x^{2}\right) \frac{\partial}{\partial y}
$$

Example (Euler's equation): Assume that $\delta=\operatorname{ad}_{(\partial / \partial y)^{r}(\partial)}$ has the form

$$
\delta=x^{2} \frac{\partial}{\partial x}+\left(y-x^{2}\right) \frac{\partial}{\partial y}
$$

$$
y \rightarrow y-x^{2}
$$

Example (Euler's equation): Assume that $\delta=\operatorname{ad}_{(\partial / \partial y)^{r}(\partial)}$ has the form

$$
\delta=x^{2} \frac{\partial}{\partial x}+\left(y-2 x^{3}\right) \frac{\partial}{\partial y}
$$

$$
\operatorname{supp}_{(x, y)}(\delta) \cap(\mathbb{Z} \times\{h-1\})
$$

Example (Euler's equation): Assume that $\delta=\operatorname{ad}_{(\partial / \partial y)^{r}(\partial)}$ has the form

$$
\delta=x^{2} \frac{\partial}{\partial x}+\left(y-2 x^{3}\right) \frac{\partial}{\partial y}
$$

$$
y \rightarrow y-2 x^{3}
$$

Example (Euler's equation): Assume that $\delta=\operatorname{ad}_{(\partial / \partial y)^{r}(\partial)}$ has the form

$$
\delta=x^{2} \frac{\partial}{\partial x}+\left(y-3 x^{4}\right) \frac{\partial}{\partial y}
$$

$$
\operatorname{supp}_{(x, y)}(\delta) \cap(\mathbb{Z} \times\{h-1\})
$$

Example (Euler's equation): Assume that $\delta=\operatorname{ad}_{(\partial / \partial y)^{r}(\partial)}$ has the form

$$
\delta=x^{2} \frac{\partial}{\partial x}+\left(y-3 x^{4}\right) \frac{\partial}{\partial y}
$$

$$
\operatorname{supp}_{(x, y)}(\delta) \cap(\mathbb{Z} \times\{h-1\})
$$

At the "Krull"-limit, we obtain

$$
H=\left\{y=\sum_{n \geqslant 1}(n-1)!x^{n}\right\}
$$

which is the so-called "center manifold" of the Euler's equation.

At the "Krull"-limit, we obtain

$$
H=\left\{y=\sum_{n \geqslant 1}(n-1)!x^{n}\right\}
$$

which is the so-called "center manifold" of the Euler's equation.

At the "Krull"-limit, we obtain

$$
H=\left\{y=\sum_{n \geqslant 1}(n-1)!x^{n}\right\}
$$

which is the so-called "center manifold" of the Euler's equation.

In this case, the maximal contact surface is a formal, non-convergent curve.

At the "Krull"-limit, we obtain

$$
H=\left\{y=\sum_{n \geqslant 1}(n-1)!x^{n}\right\}
$$

which is the so-called "center manifold" of the Euler's equation.

In this case, the maximal contact surface is a formal, non-convergent curve.
But which is a C^{∞}-curve, lying on the pfaffian extension of \mathbb{R}_{an}.

What comes next:

What comes next:

1) How to generalize these ideas to eliminate the nilpotent locus for foliations in dimension three?
2) What to do with the final models in dimension three? (There is no such well developped theory)
3) Interesting particular case for the Hilbert's 16^{\wedge} th problem: The case " $2+1$ ". Attainable goal: stuty of one-parameter families of planar analytic foliations.

What comes next:

1) How to generalize these ideas to eliminate the nilpotent locus for foliations in dimension three?
2) What to do with the final models in dimension three? (There is no such well developped theory)
3) Interesting particular case for the Hilbert's 16^{\wedge} th problem: The case " $2+1$ ". Attainable goal: stuty of one-parameter families of planar analytic foliations.

- Full catalog of final cases

What comes next:

1) How to generalize these ideas to eliminate the nilpotent locus for foliations in dimension three?
2) What to do with the final models in dimension three? (There is no such well developped theory)
3) Interesting particular case for the Hilbert's 16^{\wedge} th problem: The case " $2+1$ ". Attainable goal: stuty of one-parameter families of planar analytic foliations.

- Full catalog of final cases
- Study of normal forms

What comes next:

1) How to generalize these ideas to eliminate the nilpotent locus for foliations in dimension three?
2) What to do with the final models in dimension three? (There is no such well developped theory)
3) Interesting particular case for the Hilbert's 16^{\wedge} th problem: The case " $2+1$ ". Attainable goal: stuty of one-parameter families of planar analytic foliations.

- Full catalog of final cases
- Study of normal forms
- Finite cyclicity conjecture for one-parameter families of planar analytic foliations.

What comes next:

1) How to generalize these ideas to eliminate the nilpotent locus for foliations in dimension three?
2) What to do with the final models in dimension three? (There is no such well developped theory)
3) Interesting particular case for the Hilbert's 16^{\wedge} th problem: The case " $2+1$ ". Attainable goal: stuty of one-parameter families of planar analytic foliations.

- Full catalog of final cases
- Study of normal forms
- Finite cyclicity conjecture for one-parameter families of planar analytic foliations.

4) New ideas for dimension greater or equal than four (The Kempf's unstability approach)

Some new phenomena in for

final models in dimension three...

1) Center manifolds are not necessarily C^{∞}.
2) Center manifolds are not necessarily C^{∞}.

Example (van Strien 1979 - further simplyfied by M. Mcquillan)

1) Center manifolds are not necessarily C^{∞}.

Example (van Strien 1979 - further simplyfied by M. Mcquillan) a.k.a. "THE MONSTER"

1) Center manifolds are not necessarily C^{∞}.

Example (van Strien 1979 - further simplyfied by M. Mcquillan)
a.k.a. "THE MONSTER"

$$
\partial=x y \frac{\partial}{\partial y}+\left(z-\frac{y}{1-y}\right) \frac{\partial}{\partial z}
$$

1) Center manifolds are not necessarily C^{∞}.

Example (van Strien 1979 - further simplyfied by M. Mcquillan) a.k.a. "THE MONSTER"

$$
\begin{gathered}
\partial=x y \frac{\partial}{\partial y}+\left(z-\frac{y}{1-y}\right) \frac{\partial}{\partial z} \\
C=\{z=f(x, y)\}, \quad\left(1-x y \frac{\partial}{\partial y}\right) f=\frac{y}{1-y}
\end{gathered}
$$

1) Center manifolds are not necessarily C^{∞}.

Example (van Strien 1979 - further simplyfied by M. Mcquillan) a.k.a. "THE MONSTER"

$$
\begin{gathered}
\partial=x y \frac{\partial}{\partial y}+\left(z-\frac{y}{1-y}\right) \frac{\partial}{\partial z} \\
C=\{z=f(x, y)\}, \quad\left(1-x y \frac{\partial}{\partial y}\right) f=\frac{y}{1-y} \\
f=\sum a_{k}(x) y^{k} \Longrightarrow a_{k}=\frac{1}{1-k x}
\end{gathered}
$$

1) Center manifolds are not necessarily C^{∞}.

Example (van Strien 1979 - further simplyfied by M. Mcquillan) a.k.a. "THE MONSTER"

$$
\begin{gathered}
\partial=x y \frac{\partial}{\partial y}+\left(z-\frac{y}{1-y}\right) \frac{\partial}{\partial z} \\
C=\{z=f(x, y)\}, \quad\left(1-x y \frac{\partial}{\partial y}\right) f=\frac{y}{1-y} \\
f=\sum_{k}(x) y^{k} \Longrightarrow a_{k}=\frac{1}{1-k x}
\end{gathered}
$$

Example of $(2+1)$ foliations: Singularly perturbed van der Pol's equation

Example of $(2+1)$ foliations: Singularly perturbed van der Pol's equation

$$
\partial_{\varepsilon, a}=\left(y-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}+\varepsilon(a-x) \frac{\partial}{\partial y}, \quad(x, y) \in \mathbb{R}^{2}, \varepsilon \in \mathbb{R}_{\geqslant 0}
$$

Example of $(2+1)$ foliations: Singularly perturbed van der Pol's equation

$$
\partial_{\varepsilon, a}=\left(y-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}+\varepsilon(a-x) \frac{\partial}{\partial y}, \quad(x, y) \in \mathbb{R}^{2}, \varepsilon \in \mathbb{R}_{\geqslant 0}
$$

Example of $(2+1)$ foliations: Singularly perturbed van der Pol's equation

$$
\partial_{\varepsilon, a}=\left(y-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}+\varepsilon(a-x) \frac{\partial}{\partial y}, \quad(x, y) \in \mathbb{R}^{2}, \varepsilon \in \mathbb{R}_{\geqslant 0}
$$

Example of resolution (in families). We assume $a=0$ to simplify

$$
\left(y-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}-\varepsilon x \frac{\partial}{\partial y}=\left(x^{-1} y-\frac{x}{2}-\frac{x^{2}}{3}\right)\left(x \frac{\partial}{\partial x}\right)-\varepsilon x y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

Is a three dimensional foliation Tangent to the fibration: $F=\{d \varepsilon=0\}$

Example of resolution (in families). We assume $a=0$ to simplify

$$
\left(y-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}-\varepsilon x \frac{\partial}{\partial y}=\left(x^{-1} y-\frac{x}{2}-\frac{x^{2}}{3}\right)\left(x \frac{\partial}{\partial x}\right)-\varepsilon x y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

Is a three dimensional foliation Tangent to the fibration: $F=\{d \varepsilon=0\}$
Choice of weights: $-\mathrm{wt}(x)+\mathrm{wt}(y)=\mathrm{wt}(x), \quad \mathrm{wt}(\varepsilon)+\mathrm{wt}(x)-\mathrm{wt}(y)=\mathrm{wt}(x)$

Example of resolution (in families). We assume $a=0$ to simplify

$$
\left(y-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}-\varepsilon x \frac{\partial}{\partial y}=\left(x^{-1} y-\frac{x}{2}-\frac{x^{2}}{3}\right)\left(x \frac{\partial}{\partial x}\right)-\varepsilon x y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

Is a three dimensional foliation Tangent to the fibration: $F=\{d \varepsilon=0\}$
Choice of weights: $-\mathrm{wt}(x)+\mathrm{wt}(y)=\mathrm{wt}(x), \quad \mathrm{wt}(\varepsilon)+\mathrm{wt}(x)-\mathrm{wt}(y)=\mathrm{wt}(x)$

$$
\mathrm{wt}(x)=1, \mathrm{wt}(y)=2, \mathrm{wt}(\varepsilon)=2
$$

Example of resolution (in families). We assume $a=0$ to simplify

$$
\left(y-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}-\varepsilon x \frac{\partial}{\partial y}=\left(x^{-1} y-\frac{x}{2}-\frac{x^{2}}{3}\right)\left(x \frac{\partial}{\partial x}\right)-\varepsilon x y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

Is a three dimensional foliation Tangent to the fibration: $F=\{d \varepsilon=0\}$
Choice of weights: $-\mathrm{wt}(x)+\mathrm{wt}(y)=\mathrm{wt}(x), \quad \mathrm{wt}(\varepsilon)+\mathrm{wt}(x)-\mathrm{wt}(y)=\mathrm{wt}(x)$

$$
\mathrm{wt}(x)=1, \mathrm{wt}(y)=2, \mathrm{wt}(\varepsilon)=2
$$

y - directional blowing up: $x \rightarrow y x, \quad y \rightarrow y^{2}, \varepsilon \rightarrow y^{2} \varepsilon$

$$
\left(1-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}-\frac{\varepsilon x}{2}\left(y \frac{\partial}{\partial y}-x \frac{\partial}{\partial x}-2 \varepsilon \frac{\partial}{\partial \varepsilon}\right), \quad F=\left\{d\left(y^{2} \varepsilon\right)=0\right\}
$$

Example of resolution (in families). We assume $a=0$ to simplify

$$
\left(y-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}-\varepsilon x \frac{\partial}{\partial y}=\left(x^{-1} y-\frac{x}{2}-\frac{x^{2}}{3}\right)\left(x \frac{\partial}{\partial x}\right)-\varepsilon x y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

Is a three dimensional foliation Tangent to the fibration: $F=\{d \varepsilon=0\}$
Choice of weights: $-\mathrm{wt}(x)+\mathrm{wt}(y)=\mathrm{wt}(x), \quad \mathrm{wt}(\varepsilon)+\mathrm{wt}(x)-\mathrm{wt}(y)=\mathrm{wt}(x)$

$$
\mathrm{wt}(x)=1, \mathrm{wt}(y)=2, \mathrm{wt}(\varepsilon)=2
$$

y - directional blowing up: $x \rightarrow y x, \quad y \rightarrow y^{2}, \varepsilon \rightarrow y^{2} \varepsilon$

$$
\left(1-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right) \frac{\partial}{\partial x}-\frac{\varepsilon x}{2}\left(y \frac{\partial}{\partial y}-x \frac{\partial}{\partial x}-2 \varepsilon \frac{\partial}{\partial \varepsilon}\right), \quad F=\left\{d\left(y^{2} \varepsilon\right)=0\right\}
$$

Globally, we obtain a foliation by curves on a three-dimensional manifold, now tangent to a dimension two singular fibration

Globally, we obtain a foliation by curves on a three-dimensional manifold, now tangent to a dimension two singular fibration
(c.f. a very nice recent book of Maeschaalk, Dumortier, Roussarie - Canard cycles:from birth to transition).

