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For p2M , let TpF�TpM denote the subspace fX1(p); : : : ;Xk(p)g (where fXig generates
the stalk).

Note that p!dimTpF is an upper semi-continuous function.

The dimension of F is generic dimension of TpF

A leaf of F is a maximal connected immersed submanifold L�M such that

8p2L: TpL=TpF

Integrability Theorem (Sussman): There exists a leaf of F through each point p2M .
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In this context, we can assume the subsheaf D to be locally generated by a single vector
field.

A singular foliation by curves F on M is defined by a collection f(Ui; @i)gi2I where

1) (Ui)i2I is an open covering of M

2) @i is an analytic vector field in Ui

Such that, for each i; j 2 I, we have

@i= 'ij @j

for some non-zero analytic function 'ij 2O?(Ui\Uj).

Each @i will be called a local generator of F .

More generally, each vector field @ with domain an open set U �M is a local generator if

@ jUi\U='i @i

for some 'i 2O?(Ui\U).

Remark: In general, we cannot expect to have a single global generator for a foliation.
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1-parameter family of limit cycles

Invariant fibration f"= constg



Basic goals (in decreasing degrees of ambition)



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

2) Classify foliations Ck or topologically



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

2) Classify foliations Ck or topologically

3) Determine the asymptotic behaviour of a typical leaf.



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

2) Classify foliations Ck or topologically

3) Determine the asymptotic behaviour of a typical leaf.

4) Obtain statistical information: e.g. invariant/ergodic transverse measures.



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

2) Classify foliations Ck or topologically

3) Determine the asymptotic behaviour of a typical leaf.

4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on M nSing(F).



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

2) Classify foliations Ck or topologically

3) Determine the asymptotic behaviour of a typical leaf.

4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on M nSing(F).

We would like to understand the foliation in the vicinity of its singular points.



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

2) Classify foliations Ck or topologically

3) Determine the asymptotic behaviour of a typical leaf.

4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on M nSing(F).

We would like to understand the foliation in the vicinity of its singular points.

Thom: The singularities are the organizing centers of the dynamics .



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

2) Classify foliations Ck or topologically

3) Determine the asymptotic behaviour of a typical leaf.

4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on M nSing(F).

We would like to understand the foliation in the vicinity of its singular points.

Thom: The singularities are the organizing centers of the dynamics .

As a first step, we would like to describe the transverse behaviour of the foliation by
looking at its so-called



Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

2) Classify foliations Ck or topologically

3) Determine the asymptotic behaviour of a typical leaf.

4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on M nSing(F).

We would like to understand the foliation in the vicinity of its singular points.

Thom: The singularities are the organizing centers of the dynamics .

As a first step, we would like to describe the transverse behaviour of the foliation by
looking at its so-called

Holonomy Groupoid



L



L




�

p

q



L




�

any path p! q on L can be lifted to nearby leafsp

q



L




�

hol: (�; p)! (
; q)

hol2Diff!(�!
)



Adding a singularity on the path. . .




�

Sing

hol2/ Diff!(�;
)



Adding a singularity on the path. . .




�

Sing

hol2/ Diff!(�;
)

In general, there is an intrinsic multivaluedness for such map.



Adding a singularity on the path. . .




�

Sing

hol2/ Diff!(�;
)

In general, there is an intrinsic multivaluedness for such map.

This is a very well-studied problem for foliations in surfaces.



Adding a singularity on the path. . .




�

Sing

hol2/ Diff!(�;
)

In general, there is an intrinsic multivaluedness for such map.

This is a very well-studied problem for foliations in surfaces.

It is in the heart of the Hilbert's XVIth's problem.



Adding a singularity on the path. . .




�

Sing

hol2/ Diff!(�;
)

In general, there is an intrinsic multivaluedness for such map.

This is a very well-studied problem for foliations in surfaces.

It is in the heart of the Hilbert's XVIth's problem.

(see the course of Patrick. . . )
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Notice that, for all h2O,

@(�h)= @
X
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(¡1)nf
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Therefore f ;�(g1); : : : ;�(gn¡1) is the required new coordinate system.



Singular case: Assume that now that @(m)�m.



Singular case: Assume that now that @(m)�m.

Then, (by Leibniz' rule) @(mk+1)�mk+1 for each k 2N, and @ induces an sequence of
endomorphism f@kgk on the jet spaces

Jk=O/mk+1



Singular case: Assume that now that @(m)�m.

Then, (by Leibniz' rule) @(mk+1)�mk+1 for each k 2N, and @ induces an sequence of
endomorphism f@kgk on the jet spaces

Jk=O/mk+1

which is compatible with projections �kl: Jk!J l (k > l).



Singular case: Assume that now that @(m)�m.

Then, (by Leibniz' rule) @(mk+1)�mk+1 for each k 2N, and @ induces an sequence of
endomorphism f@kgk on the jet spaces

Jk=O/mk+1

which is compatible with projections �kl: Jk!J l (k > l).

By considering the inverse limit (under Krull completion), of the classical Jordan decom-
positions of the finite dimensional endomorphisms @k, we obtain a unique Jordan
decomposition



Singular case: Assume that now that @(m)�m.

Then, (by Leibniz' rule) @(mk+1)�mk+1 for each k 2N, and @ induces an sequence of
endomorphism f@kgk on the jet spaces

Jk=O/mk+1

which is compatible with projections �kl: Jk!J l (k > l).

By considering the inverse limit (under Krull completion), of the classical Jordan decom-
positions of the finite dimensional endomorphisms @k, we obtain a unique Jordan
decomposition

@= @s+ @n; [@s; @n] = 0



Singular case: Assume that now that @(m)�m.

Then, (by Leibniz' rule) @(mk+1)�mk+1 for each k 2N, and @ induces an sequence of
endomorphism f@kgk on the jet spaces

Jk=O/mk+1

which is compatible with projections �kl: Jk!J l (k > l).

By considering the inverse limit (under Krull completion), of the classical Jordan decom-
positions of the finite dimensional endomorphisms @k, we obtain a unique Jordan
decomposition

@= @s+ @n; [@s; @n] = 0

where



Singular case: Assume that now that @(m)�m.

Then, (by Leibniz' rule) @(mk+1)�mk+1 for each k 2N, and @ induces an sequence of
endomorphism f@kgk on the jet spaces

Jk=O/mk+1

which is compatible with projections �kl: Jk!J l (k > l).

By considering the inverse limit (under Krull completion), of the classical Jordan decom-
positions of the finite dimensional endomorphisms @k, we obtain a unique Jordan
decomposition

@= @s+ @n; [@s; @n] = 0

where

� @s is semi-simple

� @n is asymptotically nilpotent (i.e. nilpotent restricted to each jet space).



Singular case: Assume that now that @(m)�m.

Then, (by Leibniz' rule) @(mk+1)�mk+1 for each k 2N, and @ induces an sequence of
endomorphism f@kgk on the jet spaces

Jk=O/mk+1

which is compatible with projections �kl: Jk!J l (k > l).

By considering the inverse limit (under Krull completion), of the classical Jordan decom-
positions of the finite dimensional endomorphisms @k, we obtain a unique Jordan
decomposition

@= @s+ @n; [@s; @n] = 0

where

� @s is semi-simple

� @n is asymptotically nilpotent (i.e. nilpotent restricted to each jet space).

Moreover, @s and @n are derivations of Ô = lim
 ¡

Jk (see Jean Martinet - Exposé Bour-
baki'81).
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8k 2N: Jk=
M
�2C

Gr�(Jk; @s)

where Gr�(Jk; @)= ff 2Jk j @f =�f g:

with the compatibility condition

8k > l: �kl(Gr�(Jk; @s))=Gr�(J l; @s)

derived from the commutative diagram

JkJk

Jk¡1 Jk¡1

@k

@k¡1

�k;k¡1�k;k¡1
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� either @(m)�m (i.e. in appropriate local coordinates @= @
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@s=/ 0

Poincaré-Dulac normalisation: (overC) Suppose that @(m)�m. Then, there exists
formal coordinates (x1; : : : ; xn) which diagonalize the semi-simple part of @, namely such
that

@s=
X
i

�ixi
@
@xi

In these coordinates, each eigenspace of the direct sum decomposition

Ô=
M
�2C

Gr�(Ô; @s)

is generated (over C) by the monomials xk=x1
k1: : :xn

kn such that hk; �i=�.
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forms an abelian Lie C-subalgebra, i.e. [L(�); L(�)]= 0.

We say that it is a maximal toral subalgebra of Der(O).

Writing @ = @s+ @n, and assuming @s= L(�) (as in the Theorem), the commutativity
relation

[@s; @n] = 0

implies that @n can be expanded as

@n=
X
k

xkL(�k)

where k ranges over the subset Zn n f0g such that h�; ki=0. These are the resonant
monomials.
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where u=xy is the generator of the subring ker(@s). By further reductions, we can write
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for some F 2C[[u]] of order >1, n> 1 and �2C.
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is a first integral of the vector field (namely, @I =0). It is an element of Ran;exp.
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@=(�x+ : : :) @
@x
¡ (�y+ � � �) @

@y

Then, Spec(@ jJ1)= f�;¡�g

�k+ �l=0
l

k

If �/�2/Q then the Poincaré-Dulac normal form is

@=�x @
@x
¡ �y @

@y

and the first integral is simply I =x�y�.
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Two saddles (�: �) and (�0: �0) have exactly the same topological phase portrait over R2

but they are completely different over C2 for �/�=/ �0/�0.

fy= 0g

Over C2: There are several rigidity phenomena

E.g. Some analytic invariants are topologically determined (for instance, linearizability).



Transverse behaviour of the foliation in the vicinity of a saddle point.



Transverse behaviour of the foliation in the vicinity of a saddle point.

There are two holonomy maps of interest:

1)



Transverse behaviour of the foliation in the vicinity of a saddle point.

There are two holonomy maps of interest:

1)

�


D

Corner transitionmap

2) In the complex setting . . .



Transverse behaviour of the foliation in the vicinity of a saddle point.

There are two holonomy maps of interest:

1)

�


D

Corner transitionmap

2) In the complex setting . . .


C

�?
�The� Holonomy map



Transverse behaviour of the foliation in the vicinity of a saddle point.

There are two holonomy maps of interest:

1)

�


D

Corner transitionmap

2) In the complex setting . . .


C

�?
�The� Holonomy map

We can recover the (orbital) analytic class of the saddle from the analytic class of one of
these maps (once we fix the ratio �/�)
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Definition: Two germs of vector fields

@; @~2Der(O)

(seen as derivations of the local ring)

are analytically conjugated if there exists an automorphism

'2Aut(O)

(i.e. an C-endomorphism of the local ring such that '(fg)= '(f)'(g)) such that

'¡1 @'= @~

Definition: Two germs of vector fields @; @~ are orbitally analytic equivalent if there
exists a unit u2Cfxg such that @ is analytically conjugated to u@~.
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Dynamics of the complex holonomy map as an element of Diff(C; 0)

parabolic fixed point

Perez¡Marco0s
hedgehogs
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Classification Problem: �Describe� the orbits of the action of Aut(Cfxg) on Der(Cfxg)
by conjugation

('; @) 7¡! ' � @= '¡1 @'

I.e. local analytic changes of coordinates.

@

Invariant

Aut(Cfxg) � @

@� @~() Invariant(@)= Invariant(@~)

The problem is reasonably well-understood for elementary singularities in dimension
two (modulo some very hard small divisor problems) see e.g. Dulac,Ecalle,Ilyashenko,Mar-
tinet,Ramis,Yoccoz and Perez Marco, . . . works.

This problem is much less understood for vector fields higher dimensions.
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The cusp ¡= ff =0g is an invariant curve.
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There are two distinct corner transition maps.
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Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

d(y2¡x3)

Blow-up 1: x! x; y!xy

d(x2(y2¡x))

Blow-up 2: x! xy; y! y

d(x2y3(y¡x))

Blow-up 3: x! x; y!xy

d(x6y3(y¡ 1))

(1: 2)

(1: 6)

(3: 1)
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The foliation is now organized in a neighborhood of the exceptional divisor..
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Can we recover the analytic moduli from the transverse behaviour?

�

(Moussu) The vanishing holonomy Hol(F ; L)= hf ; g 2Diff(C; 0) j f2= g3= idi
characterizes the analytic class of the germ of foliation.

L=P1 n fs1; s2; s3g
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The nilpotent locus of a foliated manifold is the subset Nilp(M;F) of points where F is
not elementary.

Claim: Nilp(M;F) is an analytic (or algebraic) subset of M .

(in fact, p 2Nilp(M;F) () @(mp)�mp and @1 2EndC(mp/mp
2) is a nilpotent endo-

morphism, for @ some arbitrarily chosen local generator).

Alternatively,

p2Nilp(M;F)()8k 2N9n2N : (@k)n=0

where @k: Jk!Jk is the induced derivation on the kth jet.
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Suppose that (M;F) is further equipped with a normal crossings divisor E.

Definition:We say that F is adapted toE each irreducible component is invariant by F.

More precisely, for each point p2M , consider

� @ a local generator of F, and

�f an equation for a local irreducible component of E,

Then

8i2N : @(hf ii)�hf ii

We further say that F is tightly adapted to D if there exists an index i such that

@(hf ii)�hf i+1i



In other words, for E=(x1: : :xk=0),
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�
xi

@
@xi

�
+

X
i=k+1

n

ai
@
@xi

with a1; : : : ; an2Cfxg such that ha1; : : : ; ani� hxii, for each i=1; : : : ; k.
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Example: E=(x=0)

@= ax @
@x

+ b @
@y

with ha; bi� hxi

b=/ 0: The generic point on the divisor is non-singular

b=0: The generic point on the divisor is an elementary singularity

(The singular set of the foliation can have codimension one components)

F is tightly adapted to E() no irreducible component of E lies onNilp(M;F)
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The problem of elimination of the nilpotent locus

A singularly foliated manifold is a triple (M;E;F) formed by a manifold M , equipped
with

� A normal crossings divisor E and

� A singular foliation by curves F which is tightly adapted to E.

such that Nilp(M;F) has codimension greater or equal than two.

Problem: For each relatively compact subset M0�M , find a finite sequence of blowing-
ups

(M0; E0;F0) ¡
�1 � � � ¡�n (Mn; En;Fn)

such that:

1) The center Ci of �i has normal crossings with Ei and is contained in Nilp(Mi;Fi)

2) Nilp(Mn;Fn)= ;.
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We can never get rid of a node if �2/Q.
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This model is completely stable. It is a final model.
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Formal expansion of the �handle�

We cannot take the handle as a blowing-up center because it is non-analytic.
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Weighted blowing-up

Fix some ! 2 (Z>0)n and consider the orbits of the action of C? on Cn n f0g by

(t; x) 7¡! t �x= t!x=(t!1x1; : : : ; t!nxn)

The orbit space is the so-called weighted projective space

�:Cn n f0g¡!P!
n¡1

x! orbit through x

We consider the graph of the quotient mapping as a subset of Cn�P!
n¡1

Graph(�)�Cn�P!
n¡1

The blowed-up space is its Zariski-closure

Me =Graph(�) Zar

and the projection �:Me !Cn is the weighted blowing-up of the origin in Cn.



Me



Structure of P!
n¡1: The hyperplanes fxi=1g are slices for the torus action modulo the

action of a group of symmetries.



Structure of P!
n¡1: The hyperplanes fxi=1g are slices for the torus action modulo the

action of a group of symmetries.

slice fx=1g

Z/2Z

!=(2; 1)

We have to take into account the quotient by Z/2Z.

y�¡yt � (x; y)= (t2x; ty)

Example
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x1 ! y1
!1

x2 ! y1
!1 y2

��� ���
xn ! y1

!n yn

We interpret (y1;::; yn) as an orbifold chart onMe . Namely the affine space Cn equipped
with an action of the cyclic group Z/!1Z, defined by

y1! �y1; For 26 k6n: yk¡! �¡!k yk

where � is a !1th-primitive root of unity. The other charts are defined analogously.

The glueing of these charts equipps Me with the structure of an orbifold.
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Let M be a paracompact Hausdorff space.

An orbifold chart on M is given by triple (U ;G; �) where U is a connected open subset
of Rn (or Cn), G is a finite subgroup of Diff(U) and �:U!M is an open map

which induces a homeomorphism U /G! �(U).

An embedding �: (V ;H;  ) ,! (U ;G; �) between orbifold charts on M is an embedding
�:V !U such that � ��=  (this induces an injective homomorphism H!G).

Two orbifold charts (U ;G; �) and (V ;H; ) onM are compatible if for any z2�(U)\ (v)
there exists an orbifold chart (W ;K; �) defined near z and embeddings

(W ;K; �) ,! (U ;G; �); (W ;K; �) ,! (V ;H;  )

An orbifold atlas onM is a collection U =f(Ui;Gi; �i)gi2I of pairwise compatible orbifold
charts such that f�(Ui)gi2I forms an open cover of M .

An orbifold is a pair (M;U) where M is paracompact Hausdorff topological space and
U is a maximal orbifold atlas on M .

A sub-variety Y �M is a sub-orbifold if for each point p2Y there exists a local chart
(U ;G; �) such that �¡1(Y \U) is a G-invariant submanifold of U .
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Important: 1) The local group actions are part of the structure.

�Remember the group�

2) The underlying topological space can be a singular.

Example: X =C2/G, G=Z/2Z

(x; y)¡! (¡x;¡y)

X =SpecC[x; y]G (ring of invariants)

C[x; y]G=C[x2; xy; y2]

X = specC[u; v; w]/(v2¡uw )

X is the quadratic cone.
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Over R: We can alternatively work in the category of manifold with corners

The spherical blowing-up of Rn at the origin with weight ! is the real analytic map

�:R>0�Sn¡1¡!Rn

given by �(t; x�)= t!x�. The exceptional divisor is the boundary

boundary(R>0�Sn¡1)= f0g�Sn¡1

In general, we require the blowing-up center to have normal crossings with the boundary.

(advantage: stay in the category of smooth manifolds)

(drawback: we �forget the group� and potentially loose information about the local syme-
tries)

(c.f. Melrose's �Analysis on manifolds with corners� - online)
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Existence of global Weighted blowing-ups

A weighted blowing-up of a point p2M is fully determined by a quasi-homogeneous
filtration of the local ring. Namely a filtration

Op=O0�O1�O2� � � � Ok �Ol�Ok+l;

such that in appropriate coordinates (x1; : : : ; xn), we have x12O!1; ..,xn2O!n.

In other words, Ok is the subring of functions of quasi-homogeneous weight >k.

In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) C �
M , we need to require the existence of a global trivialization of C

Such that the diffeomorphisms between the transition charts respects the local quasi-
homogeneous filtration. This is a non-trivial topological restriction.

More abstractly: This amounts to the existence of a global weighted filtration of the
structure sheaf . Namely a sequence of nested of ideal sheafs

O=F0�F1� � � �

such that FiFj �Fi+j and such that, for each point p on the support, the stalk of this
filtration coincides with a quasi-homogeneous filtration as defined above.
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Example: C =Z(x; y)�C3

!=(1; �; 0)2Z3

� > 1

All automorphisms of the form

x!x+ �ym; y! y+ �xl; l> �

preserve the (1; �; 0)-filtration of C[x; y; z].

More generally, all automorphisms obtained by integrating the Lie algebra (over C)
generated by �

x
@
@x
; y

@
@y
; xl

@
@y
; ym

@
@x

j m> 1; l> �
�
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x1! x1
!1; For 26 k6n: xk!x1
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@
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Example: @=x @

@x
+ny @

@y
, n2Z>0.

x!x; y!xny

@=x @
@x

The solution curves of @ are precisely the orbits of the torus action t � (x; y)= (tx; tny).
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@=2y @
@x

+3x2 @
@y

+�
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The resulting perturbation � is of quadratic order along E (does not change the eingen-
values)
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Suppose that the germ is singular. We can assume that a; b2Cfx; yg have no common
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After a blowing-up, the Noether's formula give,X
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where fpjg are the singular points of the blowed-up vector field and
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�(a; b)+ 1 if @ is dicritic

� If l(0)> 2 then m(pj)<m(p)

� If l(0)= 1 then this is a special case which has to be treated separately. . .
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Using weighted blowing-ups (modified version of a proof by M.Pelletier).

Initial setup: (M; E; F), where M is a two-dimensional real analytic manifold with
corners,

boundary(M)=E

is a normal crossings divisor and F is a foliation tangent to E such that

Nilp(M;F) is of codimension two (i.e. consists of isolated points).

The local desingularization strategy at a point p 2Nilp(M; F) is the choice of a
quasi-homogeneous blowing-up.

The center is obviously p, but we have to choose the appropriate quasi-homogeneous
filtration . . .
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where each bi=xi
¡1ai has potentially a pole along (xi=0).

We can reorder the expansion and write
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3) The hypersurface (xi=0) is tightly invariant by @ if and only if
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The resolution of singularities should correspond to a combinatorial game based on the
Newton polyhedron.

Can we recognize a �final situation� (a.k.a. an elementary germ) by looking at Newx(@)?

Proposition: @ 2Der(O) is a nilpotent germ if and only if there exists a local system of
coordinates x=(x1; : : : ; xn) such that 02/ Newx(@).

Proof: Assume that 02/ Newx(@). Then there exists a nonzeo !2Q>0n and �2Q>0 such
that

Newx(@)�H = fh!; �i>�g

(indeed, if some !i< 0 then for v 2 suppx(@), h!; v+ teii!¡1 as t!+1).
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Since this is a filtration, @22Gr>2� ,.., @r 2Gr>r� for all r> 1.
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As a consequence, for m= hx1; : : : ; xmi the maximal ideal, for each s there exists a r> 1
such that

@r(ms)�ms+1

(because for k 2Z>0n ; jk j> h!; ki/max f!ig). Hence, @ is nilpotent.
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associated to the weight vector h=(1; : : : ; 1).

We now consider the weight-vector �= (¡n/2; : : : ; n/2), or any other rational vector
satisfying.
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(1; 1)¡ homogeneous
of degree 0

h=(1; 1) �=(¡1/2; 1/2)
hinge !=h+ "�

Newx(@)
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Alternative proof of one of the implications of the Theorem

Suppose that @ is elementary (i.e. not-nilpotent). Then, for all choices of coordinate
systems (x1; : : : ; xn),

02Newx(@)

Indeed, the hypothesis means that either @(m)�m or that @(m)�m and @s=/ 0.

Consider the second case. Then we can find f 2 m̂ a nontrivial eigenvector of @, i.e.

@(f)= �f

for some �=/ 0. Let Gr be the graduation Gr defined by an arbitrary one-parameter group
� : Then f 2Gr>� then and @ 2Gr>� implies that @(f)2Gr�+�.

By the above choice of f , we conclude that Gr(@)= 0.

The case @(m)�m is even easier.

In fact: @(m)�m if and only if

()9i2f1; : : : ng: ¡ ei=(0; : : : ;¡1; : : : ; 0)2Newx(@)
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Initial setup: (M; E; F), where M is a two-dimensional real analytic manifold with
corners,

boundary(M)=E

is a normal crossings divisor and F is a foliation tangent to E such that

Nilp(M;F) is of codimension two (i.e. consists of isolated points).

Notation: 06 e(p)6 2 is the number of local irreducible componets of E at p2M .

Definition: A coordinate system (x; y) at p 2E is adapted if locally E = (x= 0) or
E=(xy=0).

e(p)=1 e(p)=2

The local desingularization strategy at a point p 2Nilp(M; F) is the choice of a
quasi-homogeneous blowing-up.

The center is obviously p, but we have to choose the appropriate quasi-homogeneous
filtration . . .


