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Essentials from lecture 1
• No is the class of sequences⊕	⊕ . . . indexed by ordinals. Partially ordered by the simplicity relation
≤s (a binary tree) and totally ordered by<.

• Given L, R ⊆ No sets, there is a simplest x = L | R such that L < x < R.
• We define sum, product as e.g. x + y = {xL + y, x + yL} | {xR + y, x + yR}.

• f � g :⇐⇒ |f | ≤ n|g| for some n ∈ N (say g dominates f );
• f � g :⇐⇒ f � g& g � f (say f , g are comparable in the same Archimedean class);
• f ≺ g :⇐⇒ f � g& g 6� f (say f strictly dominates f );
• f ∼ g :⇐⇒ f − g ≺ f (say f is asymptotic to g);
• N is a group of monomials of K if for every f ∈ K \ {0} there is one and only one n ∈ Nwith f � n.

Definition. LetΩ ⊂ No be the class of simplest positive elements in each�-class of No.

Theorem.Ω is a multiplicative subgroup ofNo, hence a group of monomials.

Proof sketch. Define by induction ω·x = {0, nω·xL} | { 1
n+1ω

·xR} for n ranging inN.
One can show that ω·No = Ω. Moreover, ω·xω·y = ω·(x+y), thusΩmust be a multiplicative group.
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The uniformity property
Proposition. The definition of the sum is uniform: if x = Lx | Rx , y = Ly | Ry , then

x + y = {x′ + y, x + y′} | {x′′ + y, x + y′′}

for x′ ∈ Lx , y′ ∈ Ly , x′′ ∈ Rx , y′′ ∈ Ry (note: x′, y′, x′′, y′′ need not be simpler than x, y!).

Proof. Let z be the surreal on the r.h.s. Then z ≤s x + y (exercise). For x + y ≤s z, see Gonshor (1986).

Application. Let us prove that the sum is associative. We have
(x + y) + z = {(x + y)′ + z, (x + y) + zL} | {(x + y)′′ + z, (x + y) + zR}

= {(xL + y) + z, (x + yL) + z, (x + y) + zL} | {(xR + y) + z, (x + yR) + z, (x + y) + zR}
= {xL + (y + z), x + (yL + z), x + (y + zL)} | {xR + (y + z), x + (yR + z), x + (y + zR)}
= x + (y + z).

Proposition. The definitions of the product and of ω·x are uniform.

Exercise. Prove that ω·(x+y) = ω·xω·y; ω·No = Ω; therefore,Ω is a group of monomials.
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Infinite sums in No

Recall that xZ is a group of monomials forR(x).
But we can also take formal Laurent series

∑−∞
i=n anx

n ∈ R((x−1)), and we know thatR(x) ↪→ R((x−1)).

We can reproduce the phenomenon in No.

Definition. Given an ordinal α, a decreasing sequence (mi)i<α inΩ and real numbers ri we define a
surreal

∑
i<αmiri by induction on α:

∑
i<α

miri :=


∑

i<β miri +mβrβ if α = β + 1{∑
i<β miri +mβ(rβ − 1)

}∣∣∣{∑i<β miri +mβ(rβ + 1)
}
for β < α if α is limit

Note that, if α is limit,
∑

i<αmiri is the simplest surreal such that for all β < αwe have∑
i<αmiri −

∑
i<β miri � mβ .
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Conway normal form
Proposition. Every f ∈ No can be written in the form f =

∑
i<αmiri, and uniquely so if we require ri 6= 0.

This is called the Conway normal form of f . It coincides with the Cantor Normal Formwhen f ∈ On ⊆ No.
Proof. If f = 0, we take the empty sum (so α = 0).

If f 6= 0, there is a uniquem0 ∈ Ω and a unique r0 ∈ R 6=0 such that f = m0r0 + g0 with g0 ≺ f .

Suppose we have definedmiri for each i < β so that

f =
∑
i<β

miri + gβ with gβ ≺ mi for all i < β.

If gβ = 0, we have finished. In the opposite case, define rβ andmβ so that gβ = mβrβ + hwith h ≺ mβ .

It can be shown that

β ≤ birthday

∑
i<β

miri

 ≤ birthday(f),
so the process must stop in a number of steps α ≤ birthday(f).
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Sum and product of Conway normal forms
To compute the sum of two Conway normal forms, we add the coe�icients of the corresponding
monomials, and re-index the sum. Remove the monomials with coe�icient zero to get the normal form.∑

i<α

miai +
∑
j<β

njbj =
∑
k<γ

okck, where

• (ok)k<γ is a decreasing enumeration of the monomialsmi, nj,
• ck = ai + bj ifmi = nj = ok, otherwise ck = ai ifmi = ok and ck = bj if nj = ok.

The multiplication is obtained by distributing the product over the infinite sums:(∑
i<α

aimi

)(∑
j<β

bjnj

)
=
∑
k<γ

ckok, where

• (ok)k<γ is a decreasing enumeration of the monomials of the formminj,
• ck ∈ R is the sum of all terms aibj ∈ R such thatminj = ok.

We need to observe that for a fixed k, there are at most finitely many (i, j)withminj = ok (ifmi decreases,
then nj increases, and this can happen for at most finitely many j).

With the above notion of infinite sum, No becomes a field of ‘generalized series’.
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Fields of generalized series (Hahn 1907)
Let (M, <, ·, 1) be an abelian ordered group, written in multiplicative notation.

LetR((M)) be the set of all functions f : M→ Rwith reverse well ordered support

supp(f) := {m ∈M | f(m) 6= 0}

Wewrite f in the form
∑

m∈M fmmwhere fm = f(m) ∈ R.

For f , g ∈ R((M))we define f + g and fg in the natural way:
• f + g :=

∑
m(fm + gm)m.

• fg :=
∑

m cmm where cm =
∑

no=m fngo ∈ R
Note that cm is a finite sum (once we discard the zero terms) since the supports are reverse well ordered.

R((M)) is an ordered field with f > 0 if and only if fm > 0 wherem = max supp(f).

Any subfield ofR((M))will be called a field of generalized series andR((M)) itself will be called a
maximal field of generalized series (or Hahn field).
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Example of Hahn field

Consider the multiplicative group xZ, with the order induced by Z. ThenR((xZ)) is the field of formal
Laurent series in decreasing powers of x > R.

The support of an element ofR((xZ)) has finitely many infinite monomials and possibly infinitely many
infinitesimal monomials, as in

3x2 + 2x+ 4+ x−1 + x−2 + . . . ∈ R((xZ)).

We have an embedding of the Laurent series in decreasing powers of x in No:

R((xZ)) ∼= R((ωZ)),
∑
n

anx−n 7→
∑
n

anω−n
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Summability

Definition. A family (fi)i∈I inR((M)) is summable if
•
⋃
i∈I supp(fi) ⊂M is reverse well ordered.

• for allm ∈M there are at most finitely many i ∈ I such thatm ∈ supp(fi).
In this case

∑
i∈I fi is the unique f ∈ R((M)) such that fm =

∑
i∈I (fi)m.

Remark. Every f ∈ R((M)) can be written uniquely as

f =
∑
i<α

rimi

where α is an ordinal, ri ∈ R∗ and (mi)i<α is a decreasing sequence inM.

Exercise. Let ε ≺ 1 inR((xZ)). Then (εn/n!)n∈N is summable, so we can define exp(ε) =
∑

n ε
n/n!.

Hint: all the monomials of εn are smaller or equal to x−n.



1/1

Bibliography I

Harry Gonshor. An introduction to the theory of surreal numbers. London Mathematical Society Lecture
Notes Series. Cambridge University Press, Cambridge, 1986. ISBN 0-521-31205-1.
doi:10.1017/CBO9780511629143.

http://dx.doi.org/10.1017/CBO9780511629143

	Appendix

