Surreal Numbers and Transseries - Lecture 2

Alessandro Berarducci', Vincenzo Mantova ${ }^{2}$
${ }^{1}$ University of Pisa, ${ }^{2}$ University of Leeds

Fields Institute, 19 January 2022

Essentials from lecture 1

- No is the class of sequences $\oplus \ominus \oplus \ldots$ indexed by ordinals. Partially ordered by the simplicity relation \leq_{s} (a binary tree) and totally ordered by $<$.
- Given $L, R \subseteq$ No sets, there is a simplest $x=L \mid R$ such that $L<x<R$.
- We define sum, product as e.g. $x+y=\left\{x^{L}+y, x+y^{L}\right\} \mid\left\{x^{R}+y, x+y^{R}\right\}$.
- $f \preceq g: \Longleftrightarrow|f| \leq n|g|$ for some $n \in \mathbb{N}$ (say g dominates f);
- $f \asymp g: \Longleftrightarrow f \preceq g \& g \preceq f$ (say f, g are comparable in the same Archimedean class);
- $f \prec g: \Longleftrightarrow f \preceq g \& g \nprec f$ (say f strictly dominates f);
- $f \sim g: \Longleftrightarrow f-g \prec f$ (say f is asymptotic to g);
- \mathfrak{N} is a group of monomials of K if for every $f \in K \backslash\{0\}$ there is one and only one $\mathfrak{n} \in \mathfrak{N}$ with $f \asymp \mathfrak{n}$.

Definition. Let $\Omega \subset$ No be the class of simplest positive elements in each \asymp-class of No.
Theorem. $\boldsymbol{\Omega}$ is a multiplicative subgroup of $\mathbf{N o}$, hence a group of monomials.
Proof sketch. Define by induction $\omega^{\cdot x}=\left\{0, n \omega^{\cdot x^{L}}\right\} \left\lvert\,\left\{\frac{1}{n+1} \omega^{\cdot x^{R}}\right\}\right.$ for n ranging in \mathbb{N}.
One can show that $\omega^{\cdot N o}=\boldsymbol{\Omega}$. Moreover, $\omega^{\cdot x} \omega^{\cdot y}=\omega^{\cdot(x+y)}$, thus $\boldsymbol{\Omega}$ must be a multiplicative group.

The uniformity property

Proposition. The definition of the sum is uniform: if $x=L_{x}\left|R_{x}, y=L_{y}\right| R_{y}$, then

$$
x+y=\left\{x^{\prime}+y, x+y^{\prime}\right\} \mid\left\{x^{\prime \prime}+y, x+y^{\prime \prime}\right\}
$$

for $x^{\prime} \in L_{x}, y^{\prime} \in L_{y}, x^{\prime \prime} \in R_{x}, y^{\prime \prime} \in R_{y}$ (note: $x^{\prime}, y^{\prime}, x^{\prime \prime}, y^{\prime \prime}$ need not be simpler than $x, y!$).
Proof. Let z be the surreal on the r.h.s. Then $z \leq_{s} x+y$ (exercise). For $x+y \leq_{s} z$, see Gonshor (1986).
Application. Let us prove that the sum is associative. We have

$$
\begin{aligned}
(x+y)+z & =\left\{(x+y)^{\prime}+z,(x+y)+z^{L}\right\} \mid\left\{(x+y)^{\prime \prime}+z,(x+y)+z^{R}\right\} \\
& =\left\{\left(x^{L}+y\right)+z,\left(x+y^{L}\right)+z,(x+y)+z^{L}\right\} \mid\left\{\left(x^{R}+y\right)+z,\left(x+y^{R}\right)+z,(x+y)+z^{R}\right\} \\
& =\left\{x^{L}+(y+z), x+\left(y^{L}+z\right), x+\left(y+z^{L}\right)\right\} \mid\left\{x^{R}+(y+z), x+\left(y^{R}+z\right), x+\left(y+z^{R}\right)\right\} \\
& =x+(y+z) .
\end{aligned}
$$

Proposition. The definitions of the product and of $\omega^{\cdot x}$ are uniform.
Exercise. Prove that $\omega^{\cdot(x+y)}=\omega^{\cdot x} \omega^{\cdot y} ; \omega^{\cdot N o}=\boldsymbol{\Omega}$; therefore, $\boldsymbol{\Omega}$ is a group of monomials.

Infinite sums in No

Recall that $\mathbf{x}^{\mathbb{Z}}$ is a group of monomials for $\mathbb{R}(\mathbf{x})$.
But we can also take formal Laurent series $\sum_{i=n}^{-\infty} a_{n} \mathbf{x}^{n} \in \mathbb{R}\left(\left(\mathbf{x}^{-1}\right)\right)$, and we know that $\mathbb{R}(\mathbf{x}) \hookrightarrow \mathbb{R}\left(\left(\mathbf{x}^{-1}\right)\right)$.
We can reproduce the phenomenon in No.
Definition. Given an ordinal α, a decreasing sequence $\left(\mathfrak{m}_{i}\right)_{i<\alpha}$ in Ω and real numbers r_{i} we define a surreal $\sum_{i<\alpha} \mathfrak{m}_{i} r_{i}$ by induction on α :

$$
\sum_{i<\alpha} \mathfrak{m}_{i} r_{i}:= \begin{cases}\sum_{i<\beta} \mathfrak{m}_{i} r_{i}+\mathfrak{m}_{\beta} r_{\beta} & \text { if } \alpha=\beta+1 \\ \left\{\sum_{i<\beta} \mathfrak{m}_{i} r_{i}+\mathfrak{m}_{\beta}\left(r_{\beta}-1\right)\right\} \mid\left\{\sum_{i<\beta} \mathfrak{m}_{i} r_{i}+\mathfrak{m}_{\beta}\left(r_{\beta}+1\right)\right\} \text { for } \beta<\alpha & \text { if } \alpha \text { is limit }\end{cases}
$$

Note that, if α is limit, $\sum_{i<\alpha} \mathfrak{m}_{i} r_{i}$ is the simplest surreal such that for all $\beta<\alpha$ we have $\sum_{i<\alpha} \mathfrak{m}_{i} r_{i}-\sum_{i<\beta} \mathfrak{m}_{i} r_{i} \asymp \mathfrak{m}_{\beta}$.

Conway normal form

Proposition. Every $f \in$ No can be written in the form $f=\sum_{i<\alpha} \mathfrak{m}_{i} r_{i}$, and uniquely so if we require $r_{i} \neq 0$.
This is called the Conway normal form of f. It coincides with the Cantor Normal Form when $f \in \mathbf{O n} \subseteq$ No.
Proof. If $f=0$, we take the empty sum (so $\alpha=0$).
If $f \neq 0$, there is a unique $\mathfrak{m}_{0} \in \Omega$ and a unique $r_{0} \in \mathbb{R}^{\neq 0}$ such that $f=\mathfrak{m}_{0} r_{0}+g_{0}$ with $g_{0} \prec f$.
Suppose we have defined $\mathfrak{m}_{i} r_{i}$ for each $i<\beta$ so that

$$
f=\sum_{i<\beta} \mathfrak{m}_{i} r_{i}+g_{\beta} \quad \text { with } g_{\beta} \prec \mathfrak{m}_{i} \text { for all } i<\beta
$$

If $g_{\beta}=0$, we have finished. In the opposite case, define r_{β} and \mathfrak{m}_{β} so that $g_{\beta}=\mathfrak{m}_{\beta} r_{\beta}+h$ with $h \prec \mathfrak{m}_{\beta}$.
It can be shown that

$$
\beta \leq \operatorname{birthday}\left(\sum_{i<\beta} \mathfrak{m}_{i} r_{i}\right) \leq \operatorname{birthday}(f)
$$

so the process must stop in a number of steps $\alpha \leq \operatorname{birthday}(f)$.

Sum and product of Conway normal forms

To compute the sum of two Conway normal forms, we add the coefficients of the corresponding monomials, and re-index the sum. Remove the monomials with coefficient zero to get the normal form.

$$
\sum_{i<\alpha} \mathfrak{m}_{i} a_{i}+\sum_{j<\beta} \mathfrak{n}_{j} b_{j}=\sum_{k<\gamma} \mathfrak{o}_{k} c_{k}, \quad \text { where }
$$

- $\left(\mathfrak{o}_{k}\right)_{k<\gamma}$ is a decreasing enumeration of the monomials $\mathfrak{m}_{i}, \mathfrak{n}_{j}$,
- $c_{k}=a_{i}+b_{j}$ if $\mathfrak{m}_{i}=\mathfrak{n}_{j}=\mathfrak{o}_{k}$, otherwise $c_{k}=a_{i}$ if $\mathfrak{m}_{i}=\mathfrak{o}_{k}$ and $c_{k}=b_{j}$ if $\mathfrak{n}_{j}=\mathfrak{o}_{k}$.

The multiplication is obtained by distributing the product over the infinite sums:

$$
\left(\sum_{i<\alpha} a_{i} \mathfrak{m}_{i}\right)\left(\sum_{j<\beta} b_{j} \mathfrak{n}_{j}\right)=\sum_{k<\gamma} c_{k} \mathfrak{o}_{k}, \quad \text { where }
$$

- $\left(\mathfrak{o}_{k}\right)_{k<\gamma}$ is a decreasing enumeration of the monomials of the form $\mathfrak{m}_{i} \mathfrak{n}_{j}$,
- $c_{k} \in \mathbb{R}$ is the sum of all terms $a_{i} b_{j} \in \mathbb{R}$ such that $\mathfrak{m}_{i} \mathfrak{n}_{j}=\mathfrak{o}_{k}$.

We need to observe that for a fixed k, there are at most finitely many (i, j) with $\mathfrak{m}_{i} \mathfrak{n}_{j}=\mathfrak{o}_{k}$ (if \mathfrak{m}_{i} decreases, then \mathfrak{n}_{j} increases, and this can happen for at most finitely many j).
With the above notion of infinite sum, No becomes a field of 'generalized series'.

Fields of generalized series (Hahn 1907)

Let $(\mathfrak{M},<, \cdot, 1)$ be an abelian ordered group, written in multiplicative notation.
Let $\mathbb{R}((\mathfrak{M}))$ be the set of all functions $f: \mathfrak{M} \rightarrow \mathbb{R}$ with reverse well ordered support

$$
\operatorname{supp}(f):=\{\mathfrak{m} \in \mathfrak{M} \mid f(\mathfrak{m}) \neq 0\}
$$

We write f in the form $\sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$ where $f_{\mathfrak{m}}=f(\mathfrak{m}) \in \mathbb{R}$.
For $f, g \in \mathbb{R}((\mathfrak{M}))$ we define $f+g$ and $f g$ in the natural way:

- $f+g:=\sum_{\mathfrak{m}}\left(f_{\mathfrak{m}}+g_{\mathfrak{m}}\right) \mathfrak{m}$.
- $f g:=\sum_{\mathfrak{m}} c_{\mathfrak{m}} \mathfrak{m} \quad$ where $c_{\mathfrak{m}}=\sum_{\mathfrak{n o}=\mathfrak{m}} f_{\mathfrak{n}} g_{\mathfrak{o}} \in \mathbb{R}$

Note that $c_{\mathfrak{m}}$ is a finite sum (once we discard the zero terms) since the supports are reverse well ordered.
$\mathbb{R}((\mathfrak{M}))$ is an ordered field with $f>0$ if and only if $f_{\mathfrak{m}}>0$ where $\mathfrak{m}=\max \operatorname{supp}(f)$.
Any subfield of $\mathbb{R}((\mathfrak{M}))$ will be called a field of generalized series and $\mathbb{R}((\mathfrak{M}))$ itself will be called a maximal field of generalized series (or Hahn field).

Example of Hahn field

Consider the multiplicative group $\mathbf{x}^{\mathbb{Z}}$, with the order induced by \mathbb{Z}. Then $\mathbb{R}\left(\left(\mathbf{x}^{\mathbb{Z}}\right)\right)$ is the field of formal Laurent series in decreasing powers of $\mathbf{x}>\mathbb{R}$.

The support of an element of $\mathbb{R}\left(\left(\mathbf{x}^{\mathbb{Z}}\right)\right)$ has finitely many infinite monomials and possibly infinitely many infinitesimal monomials, as in

$$
3 \mathbf{x}^{2}+2 \mathbf{x}+4+\mathbf{x}^{-1}+\mathbf{x}^{-2}+\ldots \in \mathbb{R}\left(\left(\mathbf{x}^{\mathbb{Z}}\right)\right) .
$$

We have an embedding of the Laurent series in decreasing powers of \mathbf{x} in No:

$$
\mathbb{R}\left(\left(\mathbf{x}^{\mathbb{Z}}\right)\right) \cong \mathbb{R}\left(\left(\omega^{\mathbb{Z}}\right)\right), \quad \sum_{n} a_{n} x^{-n} \mapsto \sum_{n} a_{n} \omega^{-n}
$$

Summability

Definition. A family $\left(f_{i}\right)_{i \in I}$ in $\mathbb{R}((\mathfrak{M}))$ is summable if

- $\bigcup_{i \in I} \operatorname{supp}\left(f_{i}\right) \subset \mathfrak{M}$ is reverse well ordered.
- for all $\mathfrak{m} \in \mathfrak{M}$ there are at most finitely many $i \in I \operatorname{such}$ that $\mathfrak{m} \in \operatorname{supp}\left(f_{i}\right)$.

In this case $\sum_{i \in I} f_{i}$ is the unique $f \in \mathbb{R}((\mathfrak{M}))$ such that $f_{\mathfrak{m}}=\sum_{i \in I}\left(f_{i}\right)_{\mathfrak{m}}$.

Remark. Every $f \in \mathbb{R}((\mathfrak{M}))$ can be written uniquely as

$$
f=\sum_{i<\alpha} r_{i} \mathfrak{m}_{i}
$$

where α is an ordinal, $r_{i} \in \mathbb{R}^{*}$ and $\left(\mathfrak{m}_{i}\right)_{i<\alpha}$ is a decreasing sequence in \mathfrak{M}.

Exercise. Let $\varepsilon \prec 1$ in $\mathbb{R}\left(\left(\mathbf{x}^{\mathbb{Z}}\right)\right)$. Then $\left(\varepsilon^{n} / n!\right)_{n \in \mathbb{N}}$ is summable, so we can define $\exp (\varepsilon)=\sum_{n} \varepsilon^{n} / n!$. Hint: all the monomials of ε^{n} are smaller or equal to \mathbf{x}^{-n}.

Bibliography I

Harry Gonshor. An introduction to the theory of surreal numbers. London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1986. ISBN 0-521-31205-1. doi:10.1017/CBO9780511629143.

