Surreal Numbers and Transseries — Lecture 2

Alessandro Berarducci¹, Vincenzo Mantova²

¹University of Pisa, ²University of Leeds

Fields Institute, 19 January 2022

Essentials from lecture 1

- No is the class of sequences ⊕⊖⊕... indexed by ordinals. Partially ordered by the simplicity relation ≤_s (a binary tree) and totally ordered by <.
- Given $L, R \subseteq$ **No** sets, there is a simplest $x = L \mid R$ such that L < x < R.
- We define sum, product as e.g. $x + y = \{x^{L} + y, x + y^{L}\} \mid \{x^{R} + y, x + y^{R}\}.$
- $f \leq g : \iff |f| \leq n|g|$ for some $n \in \mathbb{N}$ (say g dominates f);
- $f \simeq g : \iff f \preceq g \& g \preceq f$ (say f, g are comparable in the same Archimedean class);
- $f \prec g : \iff f \preceq g \& g \not\asymp f$ (say f strictly dominates f);
- $f \sim g : \iff f g \prec f$ (say f is asymptotic to g);
- \mathfrak{N} is a group of monomials of K if for every $f \in K \setminus \{0\}$ there is one and only one $\mathfrak{n} \in \mathfrak{N}$ with $f \asymp \mathfrak{n}$.

Definition. Let $\Omega \subset No$ be the class of simplest positive elements in each \asymp -class of No.

Theorem. Ω is a multiplicative subgroup of **No**, hence a group of monomials.

Proof sketch. Define by induction $\omega^{\cdot x} = \{0, n\omega^{\cdot x^{L}}\} \mid \{\frac{1}{n+1}\omega^{\cdot x^{R}}\}$ for *n* ranging in \mathbb{N} . One can show that $\omega^{\cdot No} = \Omega$. Moreover, $\omega^{\cdot x}\omega^{\cdot y} = \omega^{\cdot (x+y)}$, thus Ω must be a multiplicative group.

The uniformity property

Proposition. The definition of the sum is uniform: if $x = L_x | R_x$, $y = L_y | R_y$, then

$$x + y = \{x' + y, x + y'\} \mid \{x'' + y, x + y''\}$$

for $x' \in L_x$, $y' \in L_y$, $x'' \in R_x$, $y'' \in R_y$ (note: x', y', x'', y'' need not be simpler than x, y!).

Proof. Let *z* be the surreal on the r.h.s. Then $z \leq_s x + y$ (exercise). For $x + y \leq_s z$, see Gonshor (1986).

Application. Let us prove that the sum is associative. We have

$$(x + y) + z = \{(x + y)' + z, (x + y) + z^{L}\} | \{(x + y)'' + z, (x + y) + z^{R}\}$$

$$= \{(x^{L} + y) + z, (x + y^{L}) + z, (x + y) + z^{L}\} | \{(x^{R} + y) + z, (x + y^{R}) + z, (x + y) + z^{R}\}$$

$$= \{x^{L} + (y + z), x + (y^{L} + z), x + (y + z^{L})\} | \{x^{R} + (y + z), x + (y^{R} + z), x + (y + z^{R})\}$$

$$= x + (y + z).$$

Proposition. The definitions of the product and of $\omega^{\cdot x}$ are uniform.

Exercise. Prove that $\omega^{\cdot(x+y)} = \omega^{\cdot x} \omega^{\cdot y}$; $\omega^{\cdot No} = \Omega$; therefore, Ω is a group of monomials.

Infinite sums in No

Recall that $\mathbf{x}^{\mathbb{Z}}$ is a group of monomials for $\mathbb{R}(\mathbf{x})$. But we can also take formal Laurent series $\sum_{n=0}^{\infty} a_n \mathbf{x}_n^n \in \mathbb{R}((\mathbf{x}^{-1}))$ and we know

But we can also take formal Laurent series $\sum_{i=n}^{-\infty} a_n \mathbf{x}^n \in \mathbb{R}((\mathbf{x}^{-1}))$, and we know that $\mathbb{R}(\mathbf{x}) \hookrightarrow \mathbb{R}((\mathbf{x}^{-1}))$.

We can reproduce the phenomenon in $\ensuremath{\textbf{No}}$.

Definition. Given an ordinal α , a decreasing sequence $(\mathfrak{m}_i)_{i < \alpha}$ in Ω and real numbers r_i we define a surreal $\sum_{i < \alpha} \mathfrak{m}_i r_i$ by induction on α :

$$\sum_{i<\alpha} \mathfrak{m}_i r_i := \begin{cases} \sum_{i<\beta} \mathfrak{m}_i r_i + \mathfrak{m}_{\beta} r_{\beta} & \text{if } \alpha = \beta + 1 \\ \left\{ \sum_{i<\beta} \mathfrak{m}_i r_i + \mathfrak{m}_{\beta} (r_{\beta} - 1) \right\} \middle| \left\{ \sum_{i<\beta} \mathfrak{m}_i r_i + \mathfrak{m}_{\beta} (r_{\beta} + 1) \right\} \text{ for } \beta < \alpha & \text{if } \alpha \text{ is limit} \end{cases}$$

Note that, if α is limit, $\sum_{i < \alpha} \mathfrak{m}_i r_i$ is the simplest surreal such that for all $\beta < \alpha$ we have $\sum_{i < \alpha} \mathfrak{m}_i r_i - \sum_{i < \beta} \mathfrak{m}_i r_i \approx \mathfrak{m}_{\beta}$.

Conway normal form

Proposition. Every $f \in \mathbf{No}$ can be written in the form $f = \sum_{i < \alpha} \mathfrak{m}_i r_i$, and uniquely so if we require $r_i \neq 0$.

This is called the Conway normal form of f. It coincides with the Cantor Normal Form when $f \in \mathbf{On} \subseteq \mathbf{No}$. Proof. If f = 0, we take the empty sum (so $\alpha = 0$).

If $f \neq 0$, there is a unique $\mathfrak{m}_0 \in \Omega$ and a unique $r_0 \in \mathbb{R}^{\neq 0}$ such that $f = \mathfrak{m}_0 r_0 + g_0$ with $g_0 \prec f$.

Suppose we have defined $\mathfrak{m}_i r_i$ for each $i < \beta$ so that

$$f = \sum_{i < \beta} \mathfrak{m}_i r_i + g_{eta}$$
 with $g_{eta} \prec \mathfrak{m}_i$ for all $i < eta$.

If $g_{\beta} = 0$, we have finished. In the opposite case, define r_{β} and \mathfrak{m}_{β} so that $g_{\beta} = \mathfrak{m}_{\beta}r_{\beta} + h$ with $h \prec \mathfrak{m}_{\beta}$. It can be shown that

$$\beta \leq \text{birthday}\left(\sum_{i < \beta} \mathfrak{m}_i r_i\right) \leq \text{birthday}(f),$$

so the process must stop in a number of steps $\alpha \leq \text{birthday}(f)$.

Sum and product of Conway normal forms

To compute the sum of two Conway normal forms, we add the coefficients of the corresponding monomials, and re-index the sum. Remove the monomials with coefficient zero to get the normal form.

$$\sum_{i < lpha} \mathfrak{m}_i a_i + \sum_{j < eta} \mathfrak{n}_j b_j = \sum_{k < \gamma} \mathfrak{o}_k c_k, \quad ext{where}$$

- $(\mathfrak{o}_k)_{k < \gamma}$ is a decreasing enumeration of the monomials $\mathfrak{m}_i, \mathfrak{n}_j$,
- $c_k = a_i + b_j$ if $\mathfrak{m}_i = \mathfrak{n}_j = \mathfrak{o}_k$, otherwise $c_k = a_i$ if $\mathfrak{m}_i = \mathfrak{o}_k$ and $c_k = b_j$ if $\mathfrak{n}_j = \mathfrak{o}_k$.

The multiplication is obtained by distributing the product over the infinite sums:

$$\left(\sum_{i$$

- $(\mathfrak{o}_k)_{k<\gamma}$ is a decreasing enumeration of the monomials of the form $\mathfrak{m}_i\mathfrak{n}_j$,
- $c_k \in \mathbb{R}$ is the sum of all terms $a_i b_j \in \mathbb{R}$ such that $\mathfrak{m}_i \mathfrak{n}_j = \mathfrak{o}_k$.

We need to observe that for a fixed k, there are at most finitely many (i, j) with $\mathfrak{m}_i \mathfrak{n}_j = \mathfrak{o}_k$ (if \mathfrak{m}_i decreases, then \mathfrak{n}_j increases, and this can happen for at most finitely many j).

With the above notion of infinite sum, **No** becomes a field of 'generalized series'.

Fields of generalized series (Hahn 1907)

Let $(\mathfrak{M}, <, \cdot, 1)$ be an abelian ordered group, written in multiplicative notation.

Let $\mathbb{R}(\mathfrak{M})$ be the set of all functions $f : \mathfrak{M} \to \mathbb{R}$ with reverse well ordered support

 $\operatorname{supp}(f) := \{\mathfrak{m} \in \mathfrak{M} \mid f(\mathfrak{m}) \neq 0\}$

We write *f* in the form $\sum_{\mathfrak{m}\in\mathfrak{M}} f_{\mathfrak{m}}\mathfrak{m}$ where $f_{\mathfrak{m}} = f(\mathfrak{m}) \in \mathbb{R}$.

For $f, g \in \mathbb{R}((\mathfrak{M}))$ we define f + g and fg in the natural way:

- $f + g := \sum_{\mathfrak{m}} (f_{\mathfrak{m}} + g_{\mathfrak{m}})\mathfrak{m}.$
- $fg := \sum_{\mathfrak{m}} c_{\mathfrak{m}}\mathfrak{m}$ where $c_{\mathfrak{m}} = \sum_{\mathfrak{n}\mathfrak{o}=\mathfrak{m}} f_{\mathfrak{n}}g_{\mathfrak{o}} \in \mathbb{R}$

Note that c_m is a finite sum (once we discard the zero terms) since the supports are reverse well ordered.

 $\mathbb{R}((\mathfrak{M}))$ is an ordered field with f > 0 if and only if $f_{\mathfrak{m}} > 0$ where $\mathfrak{m} = \max \operatorname{supp}(f)$.

Any subfield of $\mathbb{R}((\mathfrak{M}))$ will be called a field of generalized series and $\mathbb{R}((\mathfrak{M}))$ itself will be called a maximal field of generalized series (or Hahn field).

Example of Hahn field

Consider the multiplicative group $\mathbf{x}^{\mathbb{Z}}$, with the order induced by \mathbb{Z} . Then $\mathbb{R}((\mathbf{x}^{\mathbb{Z}}))$ is the field of formal Laurent series in decreasing powers of $\mathbf{x} > \mathbb{R}$.

The support of an element of $\mathbb{R}((\mathbf{x}^{\mathbb{Z}}))$ has finitely many infinite monomials and possibly infinitely many infinitesimal monomials, as in

$$3\mathbf{x}^2 + 2\mathbf{x} + 4 + \mathbf{x}^{-1} + \mathbf{x}^{-2} + \ldots \in \mathbb{R}((\mathbf{x}^{\mathbb{Z}})).$$

We have an embedding of the Laurent series in decreasing powers of **x** in **No**:

$$\mathbb{R}((\mathbf{x}^{\mathbb{Z}})) \cong \mathbb{R}((\omega^{\mathbb{Z}})), \quad \sum_{n} a_{n} x^{-n} \mapsto \sum_{n} a_{n} \omega^{-n}$$

Summability

Definition. A family $(f_i)_{i \in I}$ in $\mathbb{R}((\mathfrak{M}))$ is summable if

- $\bigcup_{i \in I} \operatorname{supp}(f_i) \subset \mathfrak{M}$ is reverse well ordered.
- for all $\mathfrak{m} \in \mathfrak{M}$ there are at most finitely many $i \in I$ such that $\mathfrak{m} \in \operatorname{supp}(f_i)$.

In this case $\sum_{i \in I} f_i$ is the unique $f \in \mathbb{R}(\mathfrak{M})$ such that $f_{\mathfrak{m}} = \sum_{i \in I} (f_i)_{\mathfrak{m}}$.

Remark. Every $f \in \mathbb{R}((\mathfrak{M}))$ can be written uniquely as

$$f = \sum_{i < \alpha} r_i \mathfrak{m}_i$$

where α is an ordinal, $r_i \in \mathbb{R}^*$ and $(\mathfrak{m}_i)_{i < \alpha}$ is a decreasing sequence in \mathfrak{M} .

Exercise. Let $\varepsilon \prec 1$ in $\mathbb{R}((\mathbf{x}^{\mathbb{Z}}))$. Then $(\varepsilon^n/n!)_{n\in\mathbb{N}}$ is summable, so we can define $\exp(\varepsilon) = \sum_n \varepsilon^n/n!$. Hint: all the monomials of ε^n are smaller or equal to \mathbf{x}^{-n} .

Bibliography I

Harry Gonshor. *An introduction to the theory of surreal numbers*. London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1986. ISBN 0-521-31205-1. doi:10.1017/CBO9780511629143.