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For p 2M , let TpF� TpM denote the subspace fX1(p); : : : ; Xk(p)g (where fXig generates
the stalk).

Note that p! dimTpF is an upper semi-continuous function.

The dimension of F is generic dimension of TpF

A leaf of F is a maximal connected immersed submanifold L�M such that

8p2L: TpL=TpF

Integrability Theorem (Sussman): There exists a leaf of F through each point p2M .
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In this context, we can assume the subsheaf D to be locally generated by a single vector field.

A singular foliation by curves F on M is defined by a collection f(Ui; @i)gi2I where

1) (Ui)i2I is an open covering of M

2) @i is an analytic vector field in Ui

Such that, for each i; j 2 I, we have

@i= 'ij @j

for some non-zero analytic function 'ij 2O?(Ui\Uj).

Each @i will be called a local generator of F .

More generally, each vector field @ with domain an open set U �M is a local generator if

@ jUi\U='i @i

for some 'i 2O?(Ui\U).

Remark: In general, we cannot expect to have a single global generator for a foliation.
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1-parameter family of limit cycles

Invariant fibration f"= constg
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In general, there is an intrinsic multivaluedness for such map.

This is a very well-studied problem for foliations in surfaces.

It is in the heart of the Hilbert's XVIth's problem.

(see the course of Patrick . . . )
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Notice that, for all h2O,

@(�h)= @
X
n>0

(¡1)nf
n

n!
@nh=0

Therefore f ;�(g1); : : : ;�(gn) is the required new coordinate system.
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Then, (by Leibniz' rule) @(mk+1) �mk+1 for each k 2N, and @ induces an sequence of
endomorphism f@kgk on the jet spaces

Jk=O/mk+1

which is compatible with projections �kl: Jk!J l (k > l).

By considering the inverse limit (under Krull completion), of the classical Jordan decompositions
of the finite dimensional endomorphisms @k, we obtain a unique Jordan decomposition

@= @s+ @n; [@s; @n] = 0

where

� @s is semi-simple

� @n is asymptotically nilpotent (i.e. nilpotent restricted to each jet space).

Moreover, @s and @n are derivations of Ô = lim
 ¡

Jk (see Jean Martinet - Exposé Bourbaki'81).
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8k 2N: Jk=
M
�2C

Gr�(Jk; @s)

where Gr�(Jk; @)= ff 2Jk j @f =�f g:

with the compatibility condition

8k > l: �kl(Gr�(Jk; @s))=Gr�(J l; @s)

derived from the commutative diagram

JkJk

Jk¡1 Jk¡1

@k

@k¡1

�k;k¡1�k;k¡1
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� either @(m)�m (i.e. in appropriate local coordinates @= @
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)

� Or @(m)�m and

@s=/ 0

Poincaré-Dulac normalisation: (over C) Suppose that @(m)�m. Then, there exists formal
coordinates (x1; : : : ; xn) which diagonalize the semi-simple part of @, namely such that

@s=
X
i

�ixi
@
@xi

In these coordinates, each eigenspace of the direct sum decomposition

Ô=
M
�2C

Gr�(Ô; @s)

is generated (over C) by the monomials xk=x1
k1: : :xn

kn such that hk; �i=�.
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The set of diagonal vector fields

L(�)=
X
i=1

n

�ixi
@
@xi

; �2Cn

forms an abelian Lie C-subalgebra, i.e. [L(�); L(�)]= 0.

We say that it is a maximal toral subalgebra of Der(O).

Writing @= @s+ @n, and assuming @s=L(�) (as in the Theorem), the commutativity relation

[@s; @n] = 0

implies that @n can be expanded as

@n=
X
k

xkL(�k)

where k ranges over the subset Znnf0g such that h�; ki=0. These are the resonant mono-
mials.



Example. (1: 1) saddle. Consider a vector field having an initial expansion (in arbitrary coor-
dianates)



Example. (1: 1) saddle. Consider a vector field having an initial expansion (in arbitrary coor-
dianates)

@=(x+ : : :) @
@x
¡ (y+ � � �) @

@y

Then, Spec(@ jJ1)= f1;¡1g and the resonant monomials are (xy)k, k 2Z.



Example. (1: 1) saddle. Consider a vector field having an initial expansion (in arbitrary coor-
dianates)

@=(x+ : : :) @
@x
¡ (y+ � � �) @

@y

Then, Spec(@ jJ1)= f1;¡1g and the resonant monomials are (xy)k, k 2Z.

The Poincaré-Dulac Theorem says that, up to a formal change of coordinates, we can write

@=
�
x
@
@x
¡ y @

@y

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

@s

+
X
k>1

(xy)k
�
akx

@
@x

+ bk y
@
@y

�
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

@n

where u=xy is the generator of the subring ker(@s). By further reductions, we can write

(1+F )
��

x
@
@x
¡ y @

@y

�
+ un

1+ �un

�
x
@
@x

+ y
@
@y

��
or (1+F )

�
x
@
@x
¡ y @

@y

�

for some F 2C[[u]] of order >1, n> 1 and �2C.



Example. (1: 1) saddle. Consider a vector field having an initial expansion (in arbitrary coor-
dianates)

@=(x+ : : :) @
@x
¡ (y+ � � �) @

@y

Then, Spec(@ jJ1)= f1;¡1g and the resonant monomials are (xy)k, k 2Z.

The Poincaré-Dulac Theorem says that, up to a formal change of coordinates, we can write

@=
�
x
@
@x
¡ y @

@y

�
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

@s

+
X
k>1

(xy)k
�
akx

@
@x

+ bk y
@
@y

�
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }

@n

where u=xy is the generator of the subring ker(@s). By further reductions, we can write

(1+F )
��

x
@
@x
¡ y @

@y

�
+ un

1+ �un

�
x
@
@x

+ y
@
@y

��
or (1+F )

�
x
@
@x
¡ y @

@y

�

for some F 2C[[u]] of order >1, n> 1 and �2C.



Application: Integrability of Poincaré-Dulac normal forms



Application: Integrability of Poincaré-Dulac normal forms

@=(1+F )
��
x
@

@x
¡ y @

@y

�
+ un

1+ �un

�
x
@

@x
+ y

@

@y

��



Application: Integrability of Poincaré-Dulac normal forms

@=(1+F )
��
x
@

@x
¡ y @

@y

�
+ un

1+ �un

�
x
@

@x
+ y

@

@y

��
Up to reparametrization of time, we can assume that F =0.



Application: Integrability of Poincaré-Dulac normal forms

@=(1+F )
��
x
@

@x
¡ y @

@y

�
+ un

1+ �un

�
x
@

@x
+ y

@

@y

��
Up to reparametrization of time, we can assume that F =0.

We consider the new variables u=xy; v=x/y and get



Application: Integrability of Poincaré-Dulac normal forms

@=(1+F )
��
x
@

@x
¡ y @

@y

�
+ un

1+ �un

�
x
@

@x
+ y

@

@y

��
Up to reparametrization of time, we can assume that F =0.

We consider the new variables u=xy; v=x/y and get

@(u)= 2 un+1

1+ �un
; @(v)= 2v



Application: Integrability of Poincaré-Dulac normal forms

@=(1+F )
��
x
@

@x
¡ y @

@y

�
+ un

1+ �un

�
x
@

@x
+ y

@

@y

��
Up to reparametrization of time, we can assume that F =0.

We consider the new variables u=xy; v=x/y and get

@(u)= 2 un+1

1+ �un
; @(v)= 2v

which is a fully integrable system.



Application: Integrability of Poincaré-Dulac normal forms

@=(1+F )
��
x
@

@x
¡ y @

@y

�
+ un

1+ �un

�
x
@

@x
+ y

@

@y

��
Up to reparametrization of time, we can assume that F =0.

We consider the new variables u=xy; v=x/y and get

@(u)= 2 un+1

1+ �un
; @(v)= 2v

which is a fully integrable system.

The corresponding differential system is given by�
1

un+1
+ �

1
u

�
du= dv

v

and, by direct integration,

I = 1
nun

+ � lnu¡ ln v

This is a first integral of the vector field (namely, @I =0). It is an element of Ran;exp.
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@=(�x+ : : :) @
@x
¡ (�y+ � � �) @

@y

Then, Spec(@ jJ1)= f�;¡�g

�k+ �l=0
l

k

If �/�2/Q then the Poincaré-Dulac normal form is

@=�x @
@x
¡ �y @

@y

and the first integral is simply I =x�y�.
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Two saddles (�: �) and (�0: �0) have exactly the same topological phase portrait over R2

but they are completely different over C2 for �/�=/ �0/�0.

fy= 0g

Over C2: There are several rigidity phenomena

E.g. Some analytic invariants are topologically determined (for instance, linearizability).
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Transverse behaviour of the foliation in the vicinity of a saddle point.

There are two holonomy maps of interest:

1)

�


D

Corner transitionmap

2) In the complex setting. . .


C

�?
�The� Holonomy map

We can recover the (orbital) analytic class of the saddle from the analytic class of one of these
maps (once we fix the ratio �/�)
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Definition: Two germs of vector fields

@; @~2Der(O)

(seen as derivations of the local ring)

are analytically conjugated if there exists an automorphism

'2Aut(O)

(i.e. an C-endomorphism of the local ring such that '(fg)= '(f)'(g)) such that

'¡1 @'= @~

Definition: Two germs of vector fields @; @~ are orbitally analytic equivalent if there exists a
unit u2Cfxg such that @ is analytically conjugated to u @~.
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Dynamics of the complex holonomy map as an element of Diff(C; 0)

parabolic fixed point

Perez¡Marco0s
hedgehogs
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Classification Problem: �Describe� the orbits of the action of Aut(Cfxg) on Der(Cfxg) by
conjugation

('; @) 7¡! ' � @= '¡1 @'

I.e. local analytic changes of coordinates.

@

Invariant

Aut(Cfxg) � @

@� @~() Invariat(@)= Invariant(@~)

The problem is reasonably well-understood for elementary singularities in dimension
two (modulo some very hard small divisor problems) see e.g. Dulac,Ecalle,Ilyashenko,Mar-
tinet,Ramis,Yoccoz and Perez Marco, . . . works.

This problem is much less understood for vector fields higher dimensions.
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There are two distinct corner transition maps.
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Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

d(y2¡x3)

Blow-up 1: x!x ; y! xy

d(x2(y2¡x))

Blow-up 2: x!xy; y! y

d(x2y3(y¡x))

Blow-up 3: x!x; y!xy

d(x6y3(y¡ 1))

(1: 2)

(1: 6)

(3: 1)
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The foliation is now organized in a neighborhood of the exceptional divisor..
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Can we recover the analytic moduli from the transverse behaviour?

�

(Moussu) The vanishing holonomy Hol(F ; L)= hf ; g 2Diff(C; 0) j f2= g3= idi
characterizes the analytic class of the germ of foliation.

L=P1 n fs1; s2; s3g
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The nilpotent locus of a foliated manifold is the subset Nilp(M;F) of points where F is not
elementary.

Claim: Nilp(M;F) is an analytic (or algebraic) subset of M .

(in fact, p2Nilp(M;F) () @(mp)�mp and @12EndC(mp/mp
2) is a nilpotent endomor-

phism, for @ some arbitrarily chosen local generator).

Alternatively,

p2Nilp(M;F)()8k 2N9n2N : (@k)n=0

where @k: Jk!Jk is the induced derivation on the kth jet.
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Suppose that (M;F) is further equipped with a normal crossings divisor E.

Definition: We say that F is adapted to E each irreducible component is invariant by F.

More precisely, for each point p2M , consider

� @ a local generator of F, and

�f an equation for a local irreducible component of E,

Then

8i2N : @(hf ii)�hf ii

We further say that F is tightly adapted to D if there exists an index i such that

@(hf ii)�hf i+1i



In other words, for E=(x1: : :xk=0),

@=
X
i=1

k

ai

�
xi

@
@xi

�
+

X
i=k+1

n

ai
@
@xi

with a1; : : : ; an2Cfxg such that ha1; : : : ; ani� hxii, for each i=1; : : : ; k.
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Example: E=(x=0)

@= ax @
@x

+ b @
@y

with ha; bi� hxi

b=/ 0: The generic point on the divisor is non-singular

b=0: The generic point on the divisor is an elementary singularity

(The singular set of the foliation can have codimension one components)

F is tightly adapted to E() no irreducible component of E lies onNilp(M;F)
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The problem of elimination of the nilpotent locus

A singularly foliated manifold is a triple (M;E;F) formed by a manifold M , equipped with

� A normal crossings divisor E and

� A singular foliation by curves F which is tightly adapted to E.

such that Nilp(M;F) has codimension greater or equal than two.

Problem: For each relatively compact subset M0�M , find a finite sequence of blowing-ups

(M0; E0;F0) ¡
�1 � � � ¡�n (Mn; En;Fn)

such that:

1) The center Ci of �i has normal crossings with Ei and is contained in Nilp(Mi;Fi)

2) Nilp(Mn;Fn)= ;.
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We can never get rid of a node if �2/Q.
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After m directional blowing-ups: x!x; y! xy
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This model is completely stable. It is a final model.

First integral h=(xmy) exp
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1
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We cannot take the handle as a blowing-up center because it is non-analytic.
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Fix some non-zero ! 2 (Z>0)n and consider the orbits of the action of C? on Cn n f0g by

(t; x) 7¡! t �x= t!x=(t!1x1; : : : ; t!nxn)

The orbit space is the so-called weighted projective space

�:Cn n f0g¡!P!
n¡1

x! orbit through x

We consider the graph of the quotient mapping as a subset of Cn�P!
n¡1

Graph(�)�Cn�P!
n¡1

The blowed-up space is its Zariski-closure

Me =Graph(�) Zar

and the projection �:Me !Cn is the weighted blowing-up of the origin in Cn.
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The charts of a weighted-blowing up

The x1-directional chart is given by

x1 ! y1
!1

x2 ! y1
!1 y2

��� ���
xn ! y1

!n yn

We interpret (y1;::; yn) as an orbifold chart on Me . Namely the affine space Cn equipped with
an action of the cyclic group Z/!1Z, defined by

y1! �y1; For 26 k6n: yk¡! �¡!k yk

where � is a !1
th-primitive root of unity. The other charts are defined analogously.

The glueing of these charts equipps Me with the structure of an orbifold.
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Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Let M be a paracompact Hausdorff space.

An orbifold chart on X is given by triple (U ;G; �) where U is a connected open subset of Rn

(or Cn), G is a finite subgroup of Diff(U) and �:U!M is an open map

which induces a homeomorphism U /G! �(U).

An embedding �: (V ; H;  ) ,! (U ; G; �) between orbifold charts on M is an embedding �:
V !U such that � ��=  (induces an injective homomorphism H!G).

Two orbifold charts (U ;G; �) and (V ;H;  ) on M are compatible if for any z 2 �(U)\  (v)
there exists an orbifold chart (W ;K; �) defined near z and embeddings

(W ;K; �) ,! (U ;G; �); (W ;K; �) ,! (V ;H;  )

An orbifold atlas on M is a collection U = f(Ui; Gi; �i)gi2I of pairwise compatible orbifold
charts such that f�(Ui)gi2I forms an open cover of M .

An orbifold is a pair (M;U) where M is paracompact Hausdorff topological space and U is a
maximal orbifold atlas on M .

A sub-variety Y �M is a sub-orbifold if for each point p2Y there exists a local chart (U ;G; �)
such that �¡1(Y ) is a G-invariant submanifold of U .
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Important: 1) The local group actions are part of the structure.

�Remember the group�

2) The underlying topological space can be a singular.

Example: X =C2/G, G=Z/2Z

(x; y)¡! (¡x;¡y)

X =SpecC[x; y]G (ring of invariants)

C[x; y]G=C[x2; xy; y2]

X = specC[u; v; w]/(v2¡uw )

X is the quadratic cone.
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Over R: We can alternatively work in the category of manifold with corners

The spherical blowing-up of Rn at the origin with weight ! is the real analytic map

�:R>0�Sn¡1¡!Rn

given by �(t; x�)= t!x�. The exceptional divisor is the boundary

boundary(R>0�Sn¡1)= f0g�Sn¡1

In general, we require the blowing-up center to have normal crossings with the boundary.

(advantage: stay in the category of smooth manifolds)

(drawback: we �forget the group� ==> loose information about the local symetries)

(c.f. Melrose's �Analysis on manifolds with corners� - online)
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Blowing-up along global centers

A weighted blowing-up of a point p2M is fully determined by a quasi-homogeneous filtration
of the local ring. Namely a filtration

O=O0�O1�O2� � � � Ok � Ol�Ok+l;

such that in appropriate coordinates (x1; : : : ; xn), we have x12O!1; ..,xn2O!n.

Ok is the subring of functions of quasi-homogeneous weight >k.

In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) C �M , we
need to require the existence of a global trivialization of C

C

Such that the diffeomorphisms between the transition charts respects the local quasi-homoge-
neous filtration.

This is a non-trivial topological restriction.
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Example: C =Z(x; y)�C3

!=(1; �; 0)2Z3

� > 1

All automorphisms of the form

x!x+ �ym; y! y+ �xl; l> �

preserve the (1; �; 0)-filtration of C[x; y; z].

More generally, all automorphisms obtained by integrating the Lie algebra (over C) generated by�
x
@
@x
; y

@
@y
; xl

@
@y
; ym

@
@x

j m> 1; l> �
�
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x1! x1
!1; For 26 k6n: xk!x1

!kxk

Transformation of the logarithmic basis

x1
@
@x1
¡! 1

!1

�
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@
@x1
¡!2x2

@
@x2
¡ � � � ¡!nxn

@
@xn

�

xk
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@xk
¡!xk

@
@xk

Example: @=x @

@x
+ny @

@y
, n2Z>0.

x!x; y!xny

@=x @
@x

The solution curves of @ are precisely the orbits of the torus action t � (x; y)= (tx; tny).
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The divisor fx=0g is contained in the nilpotent locus. We factor out x and write
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�1(L)= f; �; �j 2= �3=1; �= �g
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@1=xy
@
@x

+3(1¡ y2) @
@y

Z/2Z

g �x=¡x; g � y!¡y

g � @1=¡@1

Other chart

@2=2(1¡x3) @
@x
¡x2y @

@y

g �x= �¡2x; g � y= � y; (�3= id)

g � @2= �2@2
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Elimination of nilpotent points in dimension two


