Singular Foliations

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots, X_{k}\right\}$.

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots, X_{k}\right\}$.
A (singular) foliation is an analytic distribution \mathcal{F} which is involutive

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots, X_{k}\right\}$.
A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots, X_{k}\right\}$.
A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots, X_{k}\right\}$.
A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots, X_{k}\right\}$.
A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Note that $p \rightarrow \operatorname{dim} T_{p} \mathcal{F}$ is an upper semi-continuous function.

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots, X_{k}\right\}$.
A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Note that $p \rightarrow \operatorname{dim} T_{p} \mathcal{F}$ is an upper semi-continuous function.
The dimension of \mathcal{F} is generic dimension of $T_{p} \mathcal{F}$

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots, X_{k}\right\}$.
A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Note that $p \rightarrow \operatorname{dim} T_{p} \mathcal{F}$ is an upper semi-continuous function.
The dimension of \mathcal{F} is generic dimension of $T_{p} \mathcal{F}$
A leaf of \mathcal{F} is a maximal connected immersed submanifold $L \subset M$ such that

$$
\forall p \in L: \quad T_{p} L=T_{p} \mathcal{F}
$$

Singular Foliations

We consider an n-dimensional analytic manifold M (real or complex)
An analytic distribution \mathcal{D} on M is a coherent subsheaf of the sheaf of sections of TM.
At each point p, the stalk \mathcal{D}_{p} is generated by a finite set of germs of vector fields $\left\{X_{1}, \ldots, X_{k}\right\}$.
A (singular) foliation is an analytic distribution \mathcal{F} which is involutive
Namely,

$$
\forall X, Y \in \mathcal{F}_{x}: \quad[X, Y] \in \mathcal{F}_{x}
$$

For $p \in M$, let $T_{p} \mathcal{F} \subset T_{p} M$ denote the subspace $\left\{X_{1}(p), \ldots, X_{k}(p)\right\}$ (where $\left\{X_{i}\right\}$ generates the stalk).

Note that $p \rightarrow \operatorname{dim} T_{p} \mathcal{F}$ is an upper semi-continuous function.
The dimension of \mathcal{F} is generic dimension of $T_{p} \mathcal{F}$
A leaf of \mathcal{F} is a maximal connected immersed submanifold $L \subset M$ such that

$$
\forall p \in L: \quad T_{p} L=T_{p} \mathcal{F}
$$

Integrability Theorem (Sussman): There exists a leaf of \mathcal{F} through each point $p \in M$.

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that
The leafs of \mathcal{F} are locally given by

$$
x_{d+1}=\cdots=x_{n}=\mathrm{const}
$$

where $d=\operatorname{dim} T_{p} \mathcal{F}$.

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that
The leafs of \mathcal{F} are locally given by

$$
x_{d+1}=\cdots=x_{n}=\mathrm{const}
$$

where $d=\operatorname{dim} T_{p} \mathcal{F}$.

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that
The leafs of \mathcal{F} are locally given by

$$
x_{d+1}=\cdots=x_{n}=\mathrm{const}
$$

where $d=\operatorname{dim} T_{p} \mathcal{F}$.

Singular example (with degeneracy of the rank): \mathcal{D} is generated by $x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$

Classical Frobenius Theorem: Let $p \in M$ be such that \mathcal{F} locally defines a subbundle of the tangent bundle $T M$ (i.e. $T \mathcal{F}$ is locally of constant dimension d).

Then, there exists local coordinates $\left(x_{1}, \ldots, x_{n}\right)$ such that
The leafs of \mathcal{F} are locally given by

$$
x_{d+1}=\cdots=x_{n}=\mathrm{const}
$$

where $d=\operatorname{dim} T_{p} \mathcal{F}$.

Singular example (with degeneracy of the rank): \mathcal{D} is generated by $x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ and $\frac{\partial}{\partial z}$

In this course, we will be mostly interested in foliations by curves

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field. A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field. A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where 1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.
A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field.
A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field. A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field. A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field. A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field. A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.
More generally, each vector field ∂ with domain an open set $U \subset M$ is a local generator if

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field. A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.
More generally, each vector field ∂ with domain an open set $U \subset M$ is a local generator if

$$
\left.\partial\right|_{U_{i} \cap U}=\varphi_{i} \partial_{i}
$$

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field. A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.
More generally, each vector field ∂ with domain an open set $U \subset M$ is a local generator if

$$
\left.\partial\right|_{U_{i} \cap U}=\varphi_{i} \partial_{i}
$$

for some $\varphi_{i} \in \mathcal{O}^{\star}\left(U_{i} \cap U\right)$.

In this course, we will be mostly interested in foliations by curves
In this context, we can assume the subsheaf \mathcal{D} to be locally generated by a single vector field. A singular foliation by curves \mathcal{F} on M is defined by a collection $\left\{\left(U_{i}, \partial_{i}\right)\right\}_{i \in I}$ where

1) $\left(U_{i}\right)_{i \in I}$ is an open covering of M
2) ∂_{i} is an analytic vector field in U_{i}

Such that, for each $i, j \in I$, we have

$$
\partial_{i}=\varphi_{i j} \partial_{j}
$$

for some non-zero analytic function $\varphi_{i j} \in \mathcal{O}^{\star}\left(U_{i} \cap U_{j}\right)$.
Each ∂_{i} will be called a local generator of \mathcal{F}.
More generally, each vector field ∂ with domain an open set $U \subset M$ is a local generator if

$$
\left.\partial\right|_{U_{i} \cap U}=\varphi_{i} \partial_{i}
$$

for some $\varphi_{i} \in \mathcal{O}^{\star}\left(U_{i} \cap U\right)$.
Remark: In general, we cannot expect to have a single global generator for a foliation.

We authorize reparametrizations of time for the solution curves

We authorize reparametrizations of time for the solution curves

In the real analytic setting, we usually demand that $\varphi_{i j}>0$.

We authorize reparametrizations of time for the solution curves

In the real analytic setting, we usually demand that $\varphi_{i j}>0$.

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by $\left(a_{1}, \ldots, a_{n}\right)$

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by $\left(a_{1}, \ldots, a_{n}\right)$

$$
\operatorname{Sing}(\mathcal{F})=Z\left(a_{1}, \ldots, a_{n}\right)
$$

Some simple examples...

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by $\left(a_{1}, \ldots, a_{n}\right)$

$$
\operatorname{Sing}(\mathcal{F})=Z\left(a_{1}, \ldots, a_{n}\right)
$$

Some simple examples...

Example 1:

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by $\left(a_{1}, \ldots, a_{n}\right)$

$$
\operatorname{Sing}(\mathcal{F})=Z\left(a_{1}, \ldots, a_{n}\right)
$$

Some simple examples...

Example 1:

$$
\partial=f(x) \frac{\partial}{\partial x}
$$

In local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$, each local generator can be written

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with a_{1}, \ldots, a_{n} analytic functions.
The singular set of \mathcal{F} is the locally defined by the vanishing locus of the ideal generated by $\left(a_{1}, \ldots, a_{n}\right)$

$$
\operatorname{Sing}(\mathcal{F})=Z\left(a_{1}, \ldots, a_{n}\right)
$$

Some simple examples...

Example 1:

$$
\partial=f(x) \frac{\partial}{\partial x}
$$

Example 2:

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

In these examples, $\operatorname{Sing}(\mathcal{F})$ is a codimension one analytic subset.

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

In these examples, $\operatorname{Sing}(\mathcal{F})$ is a codimension one analytic subset.
We could potentially consider the so-called saturated foliation $\mathcal{F}^{\text {sat }}$, defined by $\frac{1}{f} \partial$

Example 2:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)
$$

In these examples, $\operatorname{Sing}(\mathcal{F})$ is a codimension one analytic subset.
We could potentially consider the so-called saturated foliation $\mathcal{F}^{\text {sat }}$, defined by $\frac{1}{f} \partial$

Example 3:

Example 3:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)+\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)
$$

Example 3:

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)+\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)
$$

Example 4: ("singular perturbation problems") \mathbb{R}^{3} with coordinates (x, y, ε)

Example 4: ("singular perturbation problems") \mathbb{R}^{3} with coordinates (x, y, ε)

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)+\varepsilon\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)
$$

Example 4: ("singular perturbation problems") \mathbb{R}^{3} with coordinates (x, y, ε)

$$
\partial=f\left(x^{2}+y^{2}\right)\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)+\varepsilon\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)
$$

Basic goals (in decreasing degrees of ambition)

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.
We would like to understand the foliation in the vicinity of its singular points.

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.
We would like to understand the foliation in the vicinity of its singular points.
Thom: The singularities are the organizing centers of the dynamics .

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.
We would like to understand the foliation in the vicinity of its singular points.
Thom: The singularities are the organizing centers of the dynamics .
As a first step, we would like to describe the transverse behaviour of the foliation by looking at its so-called

Basic goals (in decreasing degrees of ambition)

1) Classify foliations analytically
2) Classify foliations C^{k} or topologically
3) Determine the asymptotic behaviour of a typical leaf.
4) Obtain statistical information: e.g. invariant/ergodic transverse measures.

Local description: The foliation is locally trivial on $M \backslash \operatorname{Sing}(\mathcal{F})$.
We would like to understand the foliation in the vicinity of its singular points.
Thom: The singularities are the organizing centers of the dynamics .
As a first step, we would like to describe the transverse behaviour of the foliation by looking at its so-called

Holonomy Groupoid

$$
\underbrace{L}
$$

any path $p \rightarrow q$ on L can be lifted to nearby leafs

Adding a singularity on the path...

Adding a singularity on the path...

In general, there is an intrinsic multivaluedness for such map.

Adding a singularity on the path...

In general, there is an intrinsic multivaluedness for such map.
This is a very well-studied problem for foliations in surfaces.

Adding a singularity on the path...

In general, there is an intrinsic multivaluedness for such map.
This is a very well-studied problem for foliations in surfaces.
It is in the heart of the Hilbert's XVIth's problem.

Adding a singularity on the path...

In general, there is an intrinsic multivaluedness for such map.
This is a very well-studied problem for foliations in surfaces.
It is in the heart of the Hilbert's XVIth's problem.
(see the course of Patrick...)

Elementary germs - and some words about classical normal forms... (over \mathbb{C})

Elementary germs - and some words about classical normal forms... (over \mathbb{C})

A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \boldsymbol{m})=\left(\mathcal{O}_{p}, \boldsymbol{m}_{p}\right)$.

Elementary germs - and some words about classical normal forms... (over \mathbb{C})

A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \boldsymbol{m})=\left(\mathcal{O}_{p}, \boldsymbol{m}_{p}\right)$. Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

Elementary germs - and some words about classical normal forms... (over \mathbb{C})

A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \boldsymbol{m})=\left(\mathcal{O}_{p}, \boldsymbol{m}_{p}\right)$. Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

Elementary germs - and some words about classical normal forms... (over \mathbb{C})

A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \boldsymbol{m})=\left(\mathcal{O}_{p}, \boldsymbol{m}_{p}\right)$. Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

$$
f \longmapsto \partial f=a_{1} \frac{\partial f}{\partial x_{1}}+\cdots+a_{n} \frac{\partial f}{\partial x_{n}}
$$

which moreover satisfies the Leibniz rule $\partial(f g)=(\partial f) g+f(\partial g)$. We note $\partial \in \operatorname{Der}(\mathcal{O})$.

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \boldsymbol{m})=\left(\mathcal{O}_{p}, \boldsymbol{m}_{p}\right)$.
Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

$$
f \longmapsto \partial f=a_{1} \frac{\partial f}{\partial x_{1}}+\cdots+a_{n} \frac{\partial f}{\partial x_{n}}
$$

which moreover satisfies the Leibniz rule $\partial(f g)=(\partial f) g+f(\partial g)$. We note $\partial \in \operatorname{Der}(\mathcal{O})$.
The germ is singular if a_{1}, \ldots, a_{n} vanish at p (i.e. $a_{1}, \ldots, a_{n} \in \boldsymbol{m}$)

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \boldsymbol{m})=\left(\mathcal{O}_{p}, \boldsymbol{m}_{p}\right)$.
Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

$$
f \longmapsto \partial f=a_{1} \frac{\partial f}{\partial x_{1}}+\cdots+a_{n} \frac{\partial f}{\partial x_{n}}
$$

which moreover satisfies the Leibniz rule $\partial(f g)=(\partial f) g+f(\partial g)$. We note $\partial \in \operatorname{Der}(\mathcal{O})$. The germ is singular if a_{1}, \ldots, a_{n} vanish at p (i.e. $a_{1}, \ldots, a_{n} \in \boldsymbol{m}$)
This is equivalent to require that

$$
\partial(\boldsymbol{m}) \subset \boldsymbol{m}, \quad \text { where } \boldsymbol{m}=\left(x_{1}, \ldots, x_{n}\right) \mathcal{O}
$$

Elementary germs - and some words about classical normal forms... (over \mathbb{C})
A germ of vector field ∂ at $p \in M$ defines a derivation of the local ring $(\mathcal{O}, \boldsymbol{m})=\left(\mathcal{O}_{p}, \boldsymbol{m}_{p}\right)$.
Namely, in local coordinates $x=\left(x_{1}, \ldots, x_{n}\right)$ we can write

$$
\partial=a_{1} \frac{\partial}{\partial x_{1}}+\cdots+a_{n} \frac{\partial}{\partial x_{n}}
$$

with $a_{1}, \ldots, a_{n} \in \mathcal{O}$ and ∂ defines a linear \mathbb{C}-endomorphism of \mathcal{O} by

$$
f \longmapsto \partial f=a_{1} \frac{\partial f}{\partial x_{1}}+\cdots+a_{n} \frac{\partial f}{\partial x_{n}}
$$

which moreover satisfies the Leibniz rule $\partial(f g)=(\partial f) g+f(\partial g)$. We note $\partial \in \operatorname{Der}(\mathcal{O})$.
The germ is singular if a_{1}, \ldots, a_{n} vanish at p (i.e. $a_{1}, \ldots, a_{n} \in \boldsymbol{m}$)
This is equivalent to require that

$$
\partial(\boldsymbol{m}) \subset \boldsymbol{m}, \quad \text { where } \boldsymbol{m}=\left(x_{1}, \ldots, x_{n}\right) \mathcal{O}
$$

(i.e. that $\partial \in \operatorname{End}_{\mathbb{C}}(\mathcal{O})$ stabilizes the maximal ideal)

Non-singular case: Assume that $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Non-singular case: Assume that $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \boldsymbol{m}$ such that $\partial f=u$ (unit).

Non-singular case: Assume that $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \boldsymbol{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.

Non-singular case: Assume that $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \boldsymbol{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.
We complete f to a local system of coordinates $\left(f, g_{1}, \ldots, g_{n}\right)$,

Non-singular case: Assume that $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \boldsymbol{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.
We complete f to a local system of coordinates $\left(f, g_{1}, \ldots, g_{n}\right)$, and consider the linear operator $\mathcal{O} \rightarrow \mathcal{O}$ given by

$$
\Phi=I-f \partial+\cdots+(-1)^{n} \frac{f^{n}}{n!} \partial^{n}+\cdots
$$

Non-singular case: Assume that $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \boldsymbol{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.
We complete f to a local system of coordinates $\left(f, g_{1}, \ldots, g_{n}\right)$, and consider the linear operator $\mathcal{O} \rightarrow \mathcal{O}$ given by

$$
\Phi=I-f \partial+\cdots+(-1)^{n} \frac{f^{n}}{n!} \partial^{n}+\cdots
$$

Notice that, for all $h \in \mathcal{O}$,

$$
\partial(\Phi h)=\partial \sum_{n \geqslant 0}(-1)^{n} \frac{f^{n}}{n!} \partial^{n} h=0
$$

Non-singular case: Assume that $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$.
Flow-box Theorem Then, there exists local analytic coordinates $\left(f, g_{1}, \ldots, g_{n-1}\right)$ such that

$$
\partial f=1 \quad \text { and } \quad \partial g_{1}=\cdots=\partial g_{n-1}=0
$$

i.e. $\partial=\frac{\partial}{\partial f}$.

Proof. Choose a local coordinate $f \in \boldsymbol{m}$ such that $\partial f=u$ (unit).
Let us assume that $u=1$ to simplify.
We complete f to a local system of coordinates $\left(f, g_{1}, \ldots, g_{n}\right)$, and consider the linear operator $\mathcal{O} \rightarrow \mathcal{O}$ given by

$$
\Phi=I-f \partial+\cdots+(-1)^{n} \frac{f^{n}}{n!} \partial^{n}+\cdots
$$

Notice that, for all $h \in \mathcal{O}$,

$$
\partial(\Phi h)=\partial \sum_{n \geqslant 0}(-1)^{n} \frac{f^{n}}{n!} \partial^{n} h=0
$$

Therefore $f, \Phi\left(g_{1}\right), \ldots, \Phi\left(g_{n}\right)$ is the required new coordinate system.

Singular case: Assume that now that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$.

Singular case: Assume that now that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$.
Then, (by Leibniz' rule) $\partial\left(\boldsymbol{m}^{k+1}\right) \subset \boldsymbol{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial^{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \boldsymbol{m}^{k+1}
$$

Singular case: Assume that now that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$.
Then, (by Leibniz' rule) $\partial\left(\boldsymbol{m}^{k+1}\right) \subset \boldsymbol{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial^{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \boldsymbol{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.

Singular case: Assume that now that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$.
Then, (by Leibniz' rule) $\partial\left(\boldsymbol{m}^{k+1}\right) \subset \boldsymbol{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial^{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \boldsymbol{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂^{k}, we obtain a unique Jordan decomposition

Singular case: Assume that now that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$.
Then, (by Leibniz' rule) $\partial\left(\boldsymbol{m}^{k+1}\right) \subset \boldsymbol{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial^{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \boldsymbol{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂^{k}, we obtain a unique Jordan decomposition

$$
\partial=\partial_{s}+\partial_{n}, \quad\left[\partial_{s}, \partial_{n}\right]=0
$$

Singular case: Assume that now that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$.
Then, (by Leibniz' rule) $\partial\left(\boldsymbol{m}^{k+1}\right) \subset \boldsymbol{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial^{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \boldsymbol{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂^{k}, we obtain a unique Jordan decomposition

$$
\partial=\partial_{s}+\partial_{n}, \quad\left[\partial_{s}, \partial_{n}\right]=0
$$

where

Singular case: Assume that now that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$.
Then, (by Leibniz' rule) $\partial\left(\boldsymbol{m}^{k+1}\right) \subset \boldsymbol{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial^{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \boldsymbol{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂^{k}, we obtain a unique Jordan decomposition

$$
\partial=\partial_{s}+\partial_{n}, \quad\left[\partial_{s}, \partial_{n}\right]=0
$$

where

- ∂_{s} is semi-simple
- ∂_{n} is asymptotically nilpotent (i.e. nilpotent restricted to each jet space).

Singular case: Assume that now that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$.
Then, (by Leibniz' rule) $\partial\left(\boldsymbol{m}^{k+1}\right) \subset \boldsymbol{m}^{k+1}$ for each $k \in \mathbb{N}$, and ∂ induces an sequence of endomorphism $\left\{\partial^{k}\right\}_{k}$ on the jet spaces

$$
J^{k}=\mathcal{O} / \boldsymbol{m}^{k+1}
$$

which is compatible with projections $\pi_{k l}: J^{k} \rightarrow J^{l}(k>l)$.
By considering the inverse limit (under Krull completion), of the classical Jordan decompositions of the finite dimensional endomorphisms ∂^{k}, we obtain a unique Jordan decomposition

$$
\partial=\partial_{s}+\partial_{n}, \quad\left[\partial_{s}, \partial_{n}\right]=0
$$

where

- ∂_{s} is semi-simple
- ∂_{n} is asymptotically nilpotent (i.e. nilpotent restricted to each jet space).

Moreover, ∂_{s} and ∂_{n} are derivations of $\hat{\mathcal{O}}=\underset{\longleftarrow}{\lim J^{k}}$ (see Jean Martinet - Exposé Bourbaki'81).

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

where $\operatorname{Gr}_{\alpha}\left(J^{k}, \partial\right)=\left\{f \in J^{k} \mid \partial f=\alpha f\right\}$.

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

where $\operatorname{Gr}_{\alpha}\left(J^{k}, \partial\right)=\left\{f \in J^{k} \mid \partial f=\alpha f\right\}$.
with the compatibility condition

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

where $\operatorname{Gr}_{\alpha}\left(J^{k}, \partial\right)=\left\{f \in J^{k} \mid \partial f=\alpha f\right\}$.
with the compatibility condition

$$
\forall k>l: \quad \pi_{k l}\left(\operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)\right)=\operatorname{Gr}_{\alpha}\left(J^{l}, \partial_{s}\right)
$$

derived from the commutative diagram

By the semi-simplicity of ∂_{s}, we have direct sum decompositions

$$
\forall k \in \mathbb{N}: \quad J^{k}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)
$$

where $\operatorname{Gr}_{\alpha}\left(J^{k}, \partial\right)=\left\{f \in J^{k} \mid \partial f=\alpha f\right\}$.
with the compatibility condition

$$
\forall k>l: \quad \pi_{k l}\left(\operatorname{Gr}_{\alpha}\left(J^{k}, \partial_{s}\right)\right)=\operatorname{Gr}_{\alpha}\left(J^{l}, \partial_{s}\right)
$$

derived from the commutative diagram

Definition. A germ of vector field ∂ is elementary if:

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- Or $\partial(m) \subset m$ and

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- Or $\partial(m) \subset m$ and

$$
\partial_{s} \neq 0
$$

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m} \quad$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- $\operatorname{Or} \partial(\boldsymbol{m}) \subset \boldsymbol{m}$ and

$$
\partial_{s} \neq 0
$$

Poincaré-Dulac normalisation: (over \mathbb{C}) Suppose that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$. Then, there exists formal coordinates $\left(x_{1}, \ldots, x_{n}\right)$ which diagonalize the semi-simple part of ∂, namely such that

$$
\partial_{s}=\sum_{i} \lambda_{i} x_{i} \frac{\partial}{\partial x_{i}}
$$

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- $\operatorname{Or} \partial(\boldsymbol{m}) \subset \boldsymbol{m}$ and

$$
\partial_{s} \neq 0
$$

Poincaré-Dulac normalisation: (over \mathbb{C}) Suppose that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$. Then, there exists formal coordinates $\left(x_{1}, \ldots, x_{n}\right)$ which diagonalize the semi-simple part of ∂, namely such that

$$
\partial_{s}=\sum_{i} \lambda_{i} x_{i} \frac{\partial}{\partial x_{i}}
$$

In these coordinates, each eigenspace of the direct sum decomposition

$$
\hat{\mathcal{O}}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(\hat{\mathcal{O}}, \partial_{s}\right)
$$

Definition. A germ of vector field ∂ is elementary if:

- either $\partial(\boldsymbol{m}) \not \subset \boldsymbol{m}$ (i.e. in appropriate local coordinates $\partial=\frac{\partial}{\partial x}$)
- $\operatorname{Or} \partial(m) \subset m$ and

$$
\partial_{s} \neq 0
$$

Poincaré-Dulac normalisation: (over \mathbb{C}) Suppose that $\partial(\boldsymbol{m}) \subset \boldsymbol{m}$. Then, there exists formal coordinates $\left(x_{1}, \ldots, x_{n}\right)$ which diagonalize the semi-simple part of ∂, namely such that

$$
\partial_{s}=\sum_{i} \lambda_{i} x_{i} \frac{\partial}{\partial x_{i}}
$$

In these coordinates, each eigenspace of the direct sum decomposition

$$
\hat{\mathcal{O}}=\bigoplus_{\alpha \in \mathbb{C}} \operatorname{Gr}_{\alpha}\left(\hat{\mathcal{O}}, \partial_{s}\right)
$$

is generated (over \mathbb{C}) by the monomials $x^{k}=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ such that $\langle k, \lambda\rangle=\alpha$.

What can we say about ∂_{n} ?

What can we say about ∂_{n} ?

The set of diagonal vector fields

$$
L(\mu)=\sum_{i=1}^{n} \mu_{i} x_{i} \frac{\partial}{\partial x_{i}}, \quad \mu \in \mathbb{C}^{n}
$$

forms an abelian Lie \mathbb{C}-subalgebra, i.e. $[L(\mu), L(\lambda)]=0$.

What can we say about ∂_{n} ?
The set of diagonal vector fields

$$
L(\mu)=\sum_{i=1}^{n} \mu_{i} x_{i} \frac{\partial}{\partial x_{i}}, \quad \mu \in \mathbb{C}^{n}
$$

forms an abelian Lie \mathbb{C}-subalgebra, i.e. $[L(\mu), L(\lambda)]=0$.
We say that it is a maximal toral subalgebra of $\operatorname{Der}(\mathcal{O})$.

What can we say about ∂_{n} ?
The set of diagonal vector fields

$$
L(\mu)=\sum_{i=1}^{n} \mu_{i} x_{i} \frac{\partial}{\partial x_{i}}, \quad \mu \in \mathbb{C}^{n}
$$

forms an abelian Lie \mathbb{C}-subalgebra, i.e. $[L(\mu), L(\lambda)]=0$.
We say that it is a maximal toral subalgebra of $\operatorname{Der}(\mathcal{O})$.
Writing $\partial=\partial_{s}+\partial_{n}$, and assuming $\partial_{s}=L(\lambda)$ (as in the Theorem), the commutativity relation

$$
\left[\partial_{s}, \partial_{n}\right]=0
$$

implies that ∂_{n} can be expanded as

$$
\partial_{n}=\sum_{k} x^{k} L\left(\mu_{k}\right)
$$

What can we say about ∂_{n} ?
The set of diagonal vector fields

$$
L(\mu)=\sum_{i=1}^{n} \mu_{i} x_{i} \frac{\partial}{\partial x_{i}}, \quad \mu \in \mathbb{C}^{n}
$$

forms an abelian Lie \mathbb{C}-subalgebra, i.e. $[L(\mu), L(\lambda)]=0$.
We say that it is a maximal toral subalgebra of $\operatorname{Der}(\mathcal{O})$.
Writing $\partial=\partial_{s}+\partial_{n}$, and assuming $\partial_{s}=L(\lambda)$ (as in the Theorem), the commutativity relation

$$
\left[\partial_{s}, \partial_{n}\right]=0
$$

implies that ∂_{n} can be expanded as

$$
\partial_{n}=\sum_{k} x^{k} L\left(\mu_{k}\right)
$$

where k ranges over the subset $\mathbb{Z}^{n} \backslash\{0\}$ such that $\langle\lambda, k\rangle=0$. These are the resonant monomials.

Example. (1:1) saddle. Consider a vector field having an initial expansion (in arbitrary coordianates)

Example. (1:1) saddle. Consider a vector field having an initial expansion (in arbitrary coordianates)

$$
\partial=(x+\ldots) \frac{\partial}{\partial x}-(y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{1,-1\}$ and the resonant monomials are $(x y)^{k}, k \in \mathbb{Z}$.

Example. (1:1) saddle. Consider a vector field having an initial expansion (in arbitrary coordianates)

$$
\partial=(x+\ldots) \frac{\partial}{\partial x}-(y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{1,-1\}$ and the resonant monomials are $(x y)^{k}, k \in \mathbb{Z}$.
The Poincaré-Dulac Theorem says that, up to a formal change of coordinates, we can write

$$
\partial=\underbrace{\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)}_{\partial_{s}}+\underbrace{\sum_{k \geqslant 1}(x y)^{k}\left(a_{k} x \frac{\partial}{\partial x}+b_{k} y \frac{\partial}{\partial y}\right)}_{\partial_{n}}
$$

where $u=x y$ is the generator of the subring $\operatorname{ker}\left(\partial_{s}\right)$. By further reductions, we can write

$$
(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right) \quad \text { or } \quad(1+F)\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)
$$

for some $F \in \mathbb{C}[[u]]$ of order $\geqslant 1, n \geqslant 1$ and $\rho \in \mathbb{C}$.

Example. (1:1) saddle. Consider a vector field having an initial expansion (in arbitrary coordianates)

$$
\partial=(x+\ldots) \frac{\partial}{\partial x}-(y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{1,-1\}$ and the resonant monomials are $(x y)^{k}, k \in \mathbb{Z}$.
The Poincaré-Dulac Theorem says that, up to a formal change of coordinates, we can write

$$
\partial=\underbrace{\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)}_{\partial_{s}}+\underbrace{\sum_{k \geqslant 1}(x y)^{k}\left(a_{k} x \frac{\partial}{\partial x}+b_{k} y \frac{\partial}{\partial y}\right)}_{\partial_{n}}
$$

where $u=x y$ is the generator of the subring $\operatorname{ker}\left(\partial_{s}\right)$. By further reductions, we can write

$$
(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right) \quad \text { or } \quad(1+F)\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)
$$

for some $F \in \mathbb{C}[[u]]$ of order $\geqslant 1, n \geqslant 1$ and $\rho \in \mathbb{C}$.

Application: Integrability of Poincaré-Dulac normal forms

Application: Integrability of Poincaré-Dulac normal forms

$$
\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)
$$

Application: Integrability of Poincaré-Dulac normal forms

$$
\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)
$$

Up to reparametrization of time, we can assume that $F=0$.

Application: Integrability of Poincaré-Dulac normal forms

$$
\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)
$$

Up to reparametrization of time, we can assume that $F=0$.
We consider the new variables $u=x y, \quad v=x / y$ and get

Application: Integrability of Poincaré-Dulac normal forms

$$
\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)
$$

Up to reparametrization of time, we can assume that $F=0$.
We consider the new variables $u=x y, \quad v=x / y$ and get

$$
\partial(u)=2 \frac{u^{n+1}}{1+\rho u^{n}}, \quad \partial(v)=2 v
$$

Application: Integrability of Poincaré-Dulac normal forms

$$
\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)
$$

Up to reparametrization of time, we can assume that $F=0$.
We consider the new variables $u=x y, \quad v=x / y$ and get

$$
\partial(u)=2 \frac{u^{n+1}}{1+\rho u^{n}}, \quad \partial(v)=2 v
$$

which is a fully integrable system.

Application: Integrability of Poincaré-Dulac normal forms
$\partial=(1+F)\left(\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)+\frac{u^{n}}{1+\rho u^{n}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)\right)$
Up to reparametrization of time, we can assume that $F=0$.
We consider the new variables $u=x y, \quad v=x / y$ and get

$$
\partial(u)=2 \frac{u^{n+1}}{1+\rho u^{n}}, \quad \partial(v)=2 v
$$

which is a fully integrable system.
The corresponding differential system is given by

$$
\left(\frac{1}{u^{n+1}}+\rho \frac{1}{u}\right) d u=\frac{d v}{v}
$$

and, by direct integration,

$$
I=\frac{1}{n u^{n}}+\rho \ln u-\ln v
$$

This is a first integral of the vector field (namely, $\partial I=0$). It is an element of $\mathbb{R}_{\text {an, } \exp }$.

Example: $(\lambda: \mu)$-saddle.

Example: $(\lambda: \mu)$-saddle.

$$
\partial=(\lambda x+\ldots) \frac{\partial}{\partial x}-(\mu y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{\lambda,-\mu\}$

Example: $(\lambda: \mu)$-saddle.

$$
\partial=(\lambda x+\ldots) \frac{\partial}{\partial x}-(\mu y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{\lambda,-\mu\}$

Example: $(\lambda: \mu)$-saddle.

$$
\partial=(\lambda x+\ldots) \frac{\partial}{\partial x}-(\mu y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{\lambda,-\mu\}$

If $\lambda / \mu \notin \mathbb{Q}$ then the Poincaré-Dulac normal form is

$$
\partial=\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y}
$$

Example: $(\lambda: \mu)$-saddle.

$$
\partial=(\lambda x+\ldots) \frac{\partial}{\partial x}-(\mu y+\cdots) \frac{\partial}{\partial y}
$$

Then, $\operatorname{Spec}\left(\left.\partial\right|_{J^{1}}\right)=\{\lambda,-\mu\}$

If $\lambda / \mu \notin \mathbb{Q}$ then the Poincaré-Dulac normal form is

$$
\partial=\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y}
$$

and the first integral is simply $I=x^{\mu} y^{\lambda}$.

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

but they are completely different over \mathbb{C}^{2} for $\lambda / \mu \neq \lambda^{\prime} / \mu^{\prime}$.

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

but they are completely different over \mathbb{C}^{2} for $\lambda / \mu \neq \lambda^{\prime} / \mu^{\prime}$.

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

but they are completely different over \mathbb{C}^{2} for $\lambda / \mu \neq \lambda^{\prime} / \mu^{\prime}$.

Over \mathbb{C}^{2} : There are several rigidity phenomena

Two saddles $(\lambda: \mu)$ and $\left(\lambda^{\prime}: \mu^{\prime}\right)$ have exactly the same topological phase portrait over \mathbb{R}^{2}

but they are completely different over \mathbb{C}^{2} for $\lambda / \mu \neq \lambda^{\prime} / \mu^{\prime}$.

Over \mathbb{C}^{2} : There are several rigidity phenomena
E.g. Some analytic invariants are topologically determined (for instance, linearizability).

Transverse behaviour of the foliation in the vicinity of a saddle point.

Transverse behaviour of the foliation in the vicinity of a saddle point.
There are two holonomy maps of interest:
1)

Transverse behaviour of the foliation in the vicinity of a saddle point.
There are two holonomy maps of interest:
1)

Corner transition map
2) In the complex setting...

Transverse behaviour of the foliation in the vicinity of a saddle point.
There are two holonomy maps of interest:
1)

Corner transition map
2) In the complex setting...

"The" Holonomy map

Transverse behaviour of the foliation in the vicinity of a saddle point.
There are two holonomy maps of interest:
1)

Corner transition map
2) In the complex setting...

"The" Holonomy map

We can recover the (orbital) analytic class of the saddle from the analytic class of one of these maps (once we fix the ratio μ / λ)

Definition: Two germs of vector fields

$$
\partial, \tilde{\partial} \in \operatorname{Der}(\mathcal{O})
$$

(seen as derivations of the local ring)

Definition: Two germs of vector fields

$$
\partial, \tilde{\partial} \in \operatorname{Der}(\mathcal{O})
$$

(seen as derivations of the local ring)
are analytically conjugated if there exists an automorphism

$$
\varphi \in \operatorname{Aut}(\mathcal{O})
$$

(i.e. an \mathbb{C}-endomorphism of the local ring such that $\varphi(f g)=\varphi(f) \varphi(g)$) such that

$$
\varphi^{-1} \partial \varphi=\tilde{\partial}
$$

Definition: Two germs of vector fields

$$
\partial, \tilde{\partial} \in \operatorname{Der}(\mathcal{O})
$$

(seen as derivations of the local ring)
are analytically conjugated if there exists an automorphism

$$
\varphi \in \operatorname{Aut}(\mathcal{O})
$$

(i.e. an \mathbb{C}-endomorphism of the local ring such that $\varphi(f g)=\varphi(f) \varphi(g)$) such that

$$
\varphi^{-1} \partial \varphi=\tilde{\partial}
$$

Definition: Two germs of vector fields $\partial, \tilde{\partial}$ are orbitally analytic equivalent if there exists a unit $u \in \mathbb{C}\{x\}$ such that ∂ is analytically conjugated to $u \tilde{\partial}$.

Dynamics of the complex holonomy map as an element of $\operatorname{Diff}(\mathbb{C}, 0)$

rotation

Dynamics of the complex holonomy map as an element of $\operatorname{Diff}(\mathbb{C}, 0)$

rotation

Dynamics of the complex holonomy map as an element of $\operatorname{Diff}(\mathbb{C}, 0)$

rotation

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by

 conjugation$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

The problem is reasonably well-understood for elementary singularities in dimension two (modulo some very hard small divisor problems) see e.g. Dulac,Ecalle,llyashenko,Martinet,Ramis,Yoccoz and Perez Marco,... works.

Classification Problem: "Describe" the orbits of the action of $\operatorname{Aut}(\mathbb{C}\{x\})$ on $\operatorname{Der}(\mathbb{C}\{x\})$ by conjugation

$$
(\varphi, \partial) \longmapsto \varphi \cdot \partial=\varphi^{-1} \partial \varphi
$$

I.e. local analytic changes of coordinates.

The problem is reasonably well-understood for elementary singularities in dimension two (modulo some very hard small divisor problems) see e.g. Dulac,Ecalle,llyashenko,Martinet,Ramis, Yoccoz and Perez Marco,... works.

This problem is much less understood for vector fields higher dimensions.

What about the local transverse behaviour in the vicinity of non-elementary singularities?

What about the local transverse behaviour in the vicinity of non-elementary singularities? Example: (Cerveau-Moussu 1988) The cuspidal singularity

What about the local transverse behaviour in the vicinity of non-elementary singularities? Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

What about the local transverse behaviour in the vicinity of non-elementary singularities? Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

What about the local transverse behaviour in the vicinity of non-elementary singularities?
Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

For Δ of (2,3)-quasi homogeneous order $\geqslant 2$, there exists a local analytic coordinate change such that, up to division by a unit,

What about the local transverse behaviour in the vicinity of non-elementary singularities?
Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

For Δ of $(2,3)$-quasi homogeneous order $\geqslant 2$, there exists a local analytic coordinate change such that, up to division by a unit,

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+r(x, y)\left(2 x \frac{\partial}{\partial x}+3 y \frac{\partial}{\partial x}\right), \quad r \in \boldsymbol{m}
$$

What about the local transverse behaviour in the vicinity of non-elementary singularities?
Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

For Δ of $(2,3)$-quasi homogeneous order $\geqslant 2$, there exists a local analytic coordinate change such that, up to division by a unit,

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+r(x, y)\left(2 x \frac{\partial}{\partial x}+3 y \frac{\partial}{\partial x}\right), \quad r \in \boldsymbol{m}
$$

$\partial(f)=6 r f$.

What about the local transverse behaviour in the vicinity of non-elementary singularities?
Example: (Cerveau-Moussu 1988) The cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

"Almost" first integral. $\quad f(x, y)=y^{2}-x^{3}$

$$
\partial_{s}=0, \quad \operatorname{Jac}_{(0,0)}=\left(\begin{array}{cc}
0 & 2 \\
0 & 0
\end{array}\right)
$$

For Δ of $(2,3)$-quasi homogeneous order $\geqslant 2$, there exists a local analytic coordinate change such that, up to division by a unit,

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+r(x, y)\left(2 x \frac{\partial}{\partial x}+3 y \frac{\partial}{\partial x}\right), \quad r \in \boldsymbol{m}
$$

$\partial(f)=6 r f$.
The cusp $\Gamma=\{f=0\}$ is an invariant curve.

There are two distinct corner transition maps.

The holonomy map does not classify the singularity

Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

$$
d\left(y^{2}-x^{3}\right)
$$

Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

Blow-up 1: $x \rightarrow x, \quad y \rightarrow x y$

Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

Blow-up 1: $x \rightarrow x, \quad y \rightarrow x y$

Blow-up 2: $x \rightarrow x y, \quad y \rightarrow y$

$$
d\left(x^{2} y^{3}(y-x)\right)
$$

Resolution of the cuspidal foliation. We consider the dual 1-form to simplify

$$
d\left(y^{2}-x^{3}\right)
$$

Blow-up 1: $x \rightarrow x, \quad y \rightarrow x y$

Blow-up 2: $x \rightarrow x y, \quad y \rightarrow y$

$$
d\left(x^{2} y^{3}(y-x)\right)
$$

Blow-up 3: $x \rightarrow x, \quad y \rightarrow x y$

$$
d\left(x^{6} y^{3}(y-1)\right)
$$

All singularities are now elementary saddles.

All singularities are now elementary saddles.

The foliation is now organized in a neighborhood of the exceptional divisor..

Can we recover the analytic moduli from the transverse behaviour?

Can we recover the analytic moduli from the transverse behaviour?

Can we recover the analytic moduli from the transverse behaviour?

(Moussu) The vanishing holonomy $\operatorname{Hol}(\mathcal{F}, L)=\left\langle f, g \in \operatorname{Diff}(\mathbb{C}, 0) \mid f^{2}=g^{3}=\mathrm{id}\right\rangle$ characterizes the analytic class of the germ of foliation.

Nilpotent locus for foliations by curves

Nilpotent locus for foliations by curves

The nilpotent locus of a foliated manifold is the subset $\operatorname{Nilp}(M, \mathcal{F})$ of points where \mathcal{F} is not elementary.

Nilpotent locus for foliations by curves
The nilpotent locus of a foliated manifold is the subset $\operatorname{Nilp}(M, \mathcal{F})$ of points where \mathcal{F} is not elementary.

Claim: $\operatorname{Nilp}(M, \mathcal{F})$ is an analytic (or algebraic) subset of M.
(in fact, $p \in \operatorname{Nilp}(M, \mathcal{F}) \Longleftrightarrow \partial\left(\boldsymbol{m}_{p}\right) \subset \boldsymbol{m}_{p}$ and $\partial_{1} \in \operatorname{End}_{\mathbb{C}}\left(\boldsymbol{m}_{p} / \boldsymbol{m}_{p}^{2}\right)$ is a nilpotent endomorphism, for ∂ some arbitrarily chosen local generator).

Nilpotent locus for foliations by curves

The nilpotent locus of a foliated manifold is the subset $\operatorname{Nilp}(M, \mathcal{F})$ of points where \mathcal{F} is not elementary.

Claim: $\operatorname{Nilp}(M, \mathcal{F})$ is an analytic (or algebraic) subset of M.
(in fact, $p \in \operatorname{Nilp}(M, \mathcal{F}) \Longleftrightarrow \partial\left(\boldsymbol{m}_{p}\right) \subset \boldsymbol{m}_{p}$ and $\partial_{1} \in \operatorname{End}_{\mathbb{C}}\left(\boldsymbol{m}_{p} / \boldsymbol{m}_{p}^{2}\right)$ is a nilpotent endomorphism, for ∂ some arbitrarily chosen local generator).

Alternatively,

$$
p \in \operatorname{Nilp}(M, \mathcal{F}) \Longleftrightarrow \forall k \in \mathbb{N} \exists n \in \mathbb{N}:\left(\partial_{k}\right)^{n}=0
$$

where $\partial_{k}: J^{k} \rightarrow J^{k}$ is the induced derivation on the $k^{\text {th }}$ jet.

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}. More precisely, for each point $p \in M$, consider

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.
More precisely, for each point $p \in M$, consider

- ∂ a local generator of \mathcal{F}, and

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.
More precisely, for each point $p \in M$, consider

- ∂ a local generator of \mathcal{F}, and
- f an equation for a local irreducible component of E,

Then

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.
More precisely, for each point $p \in M$, consider

- ∂ a local generator of \mathcal{F}, and
- f an equation for a local irreducible component of E,

Then

$$
\forall i \in \mathbb{N} \quad: \quad \partial\left(\left\langle f^{i}\right\rangle\right) \subset\left\langle f^{i}\right\rangle
$$

Suppose that (M, \mathcal{F}) is further equipped with a normal crossings divisor E.
Definition: We say that \mathcal{F} is adapted to E each irreducible component is invariant by \mathcal{F}.
More precisely, for each point $p \in M$, consider

- ∂ a local generator of \mathcal{F}, and
- f an equation for a local irreducible component of E,

Then

$$
\forall i \in \mathbb{N} \quad: \quad \partial\left(\left\langle f^{i}\right\rangle\right) \subset\left\langle f^{i}\right\rangle
$$

We further say that \mathcal{F} is tightly adapted to D if there exists an index i such that

$$
\partial\left(\left\langle f^{i}\right\rangle\right) \not \subset\left\langle f^{i+1}\right\rangle
$$

In other words, for $E=\left(x_{1} \ldots x_{k}=0\right)$,

$$
\partial=\sum_{i=1}^{k} a_{i}\left(x_{i} \frac{\partial}{\partial x_{i}}\right)+\sum_{i=k+1}^{n} a_{i} \frac{\partial}{\partial x_{i}}
$$

with $a_{1}, \ldots, a_{n} \in \mathbb{C}\{x\}$ such that $\left\langle a_{1}, \ldots, a_{n}\right\rangle \not \subset\left\langle x_{i}\right\rangle$, for each $i=1, \ldots, k$.

Example: $E=(x=0)$

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$
$b \neq 0$: The generic point on the divisor is non-singular

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$
$b \neq 0$: The generic point on the divisor is non-singular
$b=0$: The generic point on the divisor is an elementary singularity

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$
$b \neq 0$: The generic point on the divisor is non-singular
$b=0$: The generic point on the divisor is an elementary singularity

(The singular set of the foliation can have codimension one components)

Example: $E=(x=0)$

$$
\partial=a x \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}
$$

with $\langle a, b\rangle \not \subset\langle x\rangle$
$b \neq 0$: The generic point on the divisor is non-singular
$b=0$: \quad The generic point on the divisor is an elementary singularity

(The singular set of the foliation can have codimension one components)
\mathcal{F} is tightly adapted to $E \Longleftrightarrow$ no irreducible component of E lies on $\operatorname{Nilp}(M, \mathcal{F})$

The problem of elimination of the nilpotent locus

The problem of elimination of the nilpotent locus
A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

The problem of elimination of the nilpotent locus
A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with - A normal crossings divisor E and

The problem of elimination of the nilpotent locus
A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E.

The problem of elimination of the nilpotent locus
A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E. such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.

A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E. such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.

Problem: For each relatively compact subset $M_{0} \subset M$, find a finite sequence of blowing-ups

A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E. such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.

Problem: For each relatively compact subset $M_{0} \subset M$, find a finite sequence of blowing-ups

$$
\left(M_{0}, E_{0}, \mathcal{F}_{0}\right) \stackrel{\pi_{1}}{\longleftarrow} \cdots \stackrel{\pi_{n}}{\leftarrow}\left(M_{n}, E_{n}, \mathcal{F}_{n}\right)
$$

such that:

A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E. such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.

Problem: For each relatively compact subset $M_{0} \subset M$, find a finite sequence of blowing-ups

$$
\left(M_{0}, E_{0}, \mathcal{F}_{0}\right) \stackrel{\pi_{1}}{\longleftarrow} \cdots \stackrel{\pi_{n}}{\longleftarrow}\left(M_{n}, E_{n}, \mathcal{F}_{n}\right)
$$

such that:

1) The center C_{i} of π_{i} has normal crossings with E_{i} and is contained in $\operatorname{Nilp}\left(M_{i}, \mathcal{F}_{i}\right)$

A singularly foliated manifold is a triple (M, E, \mathcal{F}) formed by a manifold M, equipped with

- A normal crossings divisor E and
- A singular foliation by curves \mathcal{F} which is tightly adapted to E. such that $\operatorname{Nilp}(M, \mathcal{F})$ has codimension greater or equal than two.

Problem: For each relatively compact subset $M_{0} \subset M$, find a finite sequence of blowing-ups

$$
\left(M_{0}, E_{0}, \mathcal{F}_{0}\right) \stackrel{\pi_{1}}{\longleftarrow} \cdots \stackrel{\pi_{n}}{\longleftarrow}\left(M_{n}, E_{n}, \mathcal{F}_{n}\right)
$$

such that:

1) The center C_{i} of π_{i} has normal crossings with E_{i} and is contained in $\operatorname{Nilp}\left(M_{i}, \mathcal{F}_{i}\right)$
2) $\operatorname{Nilp}\left(M_{n}, \mathcal{F}_{n}\right)=\emptyset$.

How to compute the transform of a foliation by blowing-up?

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

$$
x_{1} \rightarrow x_{1}, \quad x_{2} \rightarrow x_{1} x_{2} \quad \ldots \quad x_{n} \rightarrow x_{1} x_{n}
$$

It is easier to compute the strict transform of the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$.

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

$$
x_{1} \rightarrow x_{1}, \quad x_{2} \rightarrow x_{1} x_{2} \quad \ldots \quad x_{n} \rightarrow x_{1} x_{n}
$$

It is easier to compute the strict transform of the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$.

$$
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow x_{1} \frac{\partial}{\partial x_{1}}-x_{2} \frac{\partial}{\partial x_{1}}-\cdots-x_{n} \frac{\partial}{\partial x_{n}}
$$

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

$$
x_{1} \rightarrow x_{1}, \quad x_{2} \rightarrow x_{1} x_{2} \quad \ldots \quad x_{n} \rightarrow x_{1} x_{n}
$$

It is easier to compute the strict transform of the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$.

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow x_{1} \frac{\partial}{\partial x_{1}}-x_{2} \frac{\partial}{\partial x_{1}}-\cdots-x_{n} \frac{\partial}{\partial x_{n}} \\
x_{2} \frac{\partial}{\partial x_{2}} \rightarrow x_{2} \frac{\partial}{\partial x_{2}}, \quad \cdots \quad, \quad x_{n} \frac{\partial}{\partial x_{n}} \rightarrow x_{n} \frac{\partial}{\partial x_{n}}
\end{gathered}
$$

(or via de dual basis of logarithmic one-forms $\left\{\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{n}}{x_{n}}\right\}$)

How to compute the transform of a foliation by blowing-up?
via local generators, In local coordinates

$$
x_{1} \rightarrow x_{1}, \quad x_{2} \rightarrow x_{1} x_{2} \quad \ldots \quad x_{n} \rightarrow x_{1} x_{n}
$$

It is easier to compute the strict transform of the logarithmic basis $\left\{x_{1} \frac{\partial}{\partial x_{1}}, \ldots, x_{n} \frac{\partial}{\partial x_{n}}\right\}$.

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow x_{1} \frac{\partial}{\partial x_{1}}-x_{2} \frac{\partial}{\partial x_{1}}-\cdots-x_{n} \frac{\partial}{\partial x_{n}} \\
x_{2} \frac{\partial}{\partial x_{2}} \rightarrow x_{2} \frac{\partial}{\partial x_{2}}, \quad \cdots \quad, \quad x_{n} \frac{\partial}{\partial x_{n}} \rightarrow x_{n} \frac{\partial}{\partial x_{n}}
\end{gathered}
$$

(or via de dual basis of logarithmic one-forms $\left\{\frac{d x_{1}}{x_{1}}, \ldots, \frac{d x_{n}}{x_{n}}\right\}$)

Example: $(\lambda: \mu)$ - linear saddle $, \quad \lambda, \mu>0$

Example: $(\lambda: \mu)$ - linear saddle, $\quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

Example: $(\lambda: \mu)$ - linear saddle, $\quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

$$
\lambda\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)-\mu y \frac{\partial}{\partial y} \quad(\lambda: \lambda+\mu)
$$

Under the substitution $x \rightarrow x y, y \rightarrow y$

Example: $(\lambda: \mu)$ - linear saddle, $\quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

$$
\lambda\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)-\mu y \frac{\partial}{\partial y} \quad(\lambda: \lambda+\mu)
$$

Under the substitution $x \rightarrow x y, y \rightarrow y$

$$
\lambda x \frac{\partial}{\partial x}-\mu\left(y \frac{\partial}{\partial y}-x \frac{\partial}{\partial x}\right) \quad(\lambda+\mu: \mu)
$$

Example: $(\lambda: \mu)$ - linear saddle, $\quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

$$
\lambda\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)-\mu y \frac{\partial}{\partial y} \quad(\lambda: \lambda+\mu)
$$

Under the substitution $x \rightarrow x y, y \rightarrow y$

$$
\lambda x \frac{\partial}{\partial x}-\mu\left(y \frac{\partial}{\partial y}-x \frac{\partial}{\partial x}\right) \quad(\lambda+\mu: \mu)
$$

Example: $(\lambda: \mu)$ - linear saddle, $\quad \lambda, \mu>0$

$$
\lambda x \frac{\partial}{\partial x}-\mu y \frac{\partial}{\partial y} \quad(\lambda: \mu)
$$

Under the substitution $x \rightarrow x, y \rightarrow x y$

$$
\lambda\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)-\mu y \frac{\partial}{\partial y} \quad(\lambda: \lambda+\mu)
$$

Under the substitution $x \rightarrow x y, y \rightarrow y$

$$
\lambda x \frac{\partial}{\partial x}-\mu\left(y \frac{\partial}{\partial y}-x \frac{\partial}{\partial x}\right) \quad(\lambda+\mu: \mu)
$$

We can never get rid of saddle points...

Example: node

Example: node

$$
x \frac{\partial}{\partial x}+\rho y \frac{\partial}{\partial y} \quad, \quad \rho>0
$$

Example: node

$$
x \frac{\partial}{\partial x}+\rho y \frac{\partial}{\partial y} \quad, \quad \rho>0
$$

Example: node

$$
\rho>1
$$

Example: node

$$
x \frac{\partial}{\partial x}+\rho y \frac{\partial}{\partial y} \quad, \quad \rho>0
$$

We can never get rid of a node if $\rho \notin \mathbb{Q}$.

Example: saddle-nodes

Example: saddle-nodes

$$
x^{k} x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad k \geqslant 1
$$

Example: saddle-nodes

$$
x^{k} x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad k \geqslant 1
$$

Example: saddle-nodes

$$
x^{k} x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad k \geqslant 1
$$

After m directional blowing-ups: $x \rightarrow x, y \rightarrow x y$

$$
x^{k}\left(x \frac{\partial}{\partial x}-m y \frac{\partial}{\partial y}\right)+y \frac{\partial}{\partial y}
$$

This model is completely stable. It is a final model.

Example: saddle-nodes

$$
x^{k} x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad k \geqslant 1
$$

After m directional blowing-ups: $x \rightarrow x, y \rightarrow x y$

$$
x^{k}\left(x \frac{\partial}{\partial x}-m y \frac{\partial}{\partial y}\right)+y \frac{\partial}{\partial y}
$$

This model is completely stable. It is a final model.

$$
\text { First integral } \quad h=\left(x^{m} y\right) \exp \left(\frac{1}{k x^{k}}\right)
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

In logarithmic basis:

$$
x^{-1}\left(x \frac{\partial}{\partial x}\right)+x^{k} y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

In logarithmic basis:

$$
\begin{gathered}
x^{-1}\left(x \frac{\partial}{\partial x}\right)+x^{k} y^{-1}\left(y \frac{\partial}{\partial y}\right) \\
\operatorname{Center}(x=0): \quad \tilde{\partial}=x \partial=x \frac{\partial}{\partial x}+x^{k+1} \frac{\partial}{\partial y}
\end{gathered}
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

In logarithmic basis:

$$
x^{-1}\left(x \frac{\partial}{\partial x}\right)+x^{k} y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

$$
\operatorname{Center}(x=0): \quad \tilde{\partial}=x \partial=x \frac{\partial}{\partial x}+x^{k+1} \frac{\partial}{\partial y}
$$

$$
\text { Center }(y=0): \quad \tilde{\partial}=y \partial=y \frac{\partial}{\partial x}+x^{k}\left(y \frac{\partial}{\partial y}\right) \quad(\text { nilpotent singularity })
$$

Blowing-up centers with tangencies with the foliation can create non-elementary points.

$$
\partial=\frac{\partial}{\partial x}+x^{k} \frac{\partial}{\partial y}, \quad k \geqslant 1
$$

In logarithmic basis:

$$
x^{-1}\left(x \frac{\partial}{\partial x}\right)+x^{k} y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

$$
\operatorname{Center}(x=0): \quad \tilde{\partial}=x \partial=x \frac{\partial}{\partial x}+x^{k+1} \frac{\partial}{\partial y}
$$

$$
\text { Center }(y=0): \quad \tilde{\partial}=y \partial=y \frac{\partial}{\partial x}+x^{k}\left(y \frac{\partial}{\partial y}\right) \quad(\text { nilpotent singularity })
$$

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for singularly foliated manifolds (M, \mathcal{F}) with $\operatorname{dim} M \geqslant 3$.

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for singularly foliated manifolds (M, \mathcal{F}) with $\operatorname{dim} M \geqslant 3$.

Example of Sanz and Sanchez-Salas:

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for singularly foliated manifolds (M, \mathcal{F}) with $\operatorname{dim} M \geqslant 3$.

Example of Sanz and Sanchez-Salas:

$$
\partial=\left(y \frac{\partial}{\partial x}+x z \frac{\partial}{\partial y}\right)+\beta z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-z\left(-x \frac{\partial}{\partial x}+2 z \frac{\partial}{\partial z}\right)
$$

is tangent to the Whitney umbrella $W=y^{2}-z x^{2}$.

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for singularly foliated manifolds (M, \mathcal{F}) with $\operatorname{dim} M \geqslant 3$.

Example of Sanz and Sanchez-Salas:

$$
\partial=\left(y \frac{\partial}{\partial x}+x z \frac{\partial}{\partial y}\right)+\beta z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-z\left(-x \frac{\partial}{\partial x}+2 z \frac{\partial}{\partial z}\right)
$$

is tangent to the Whitney umbrella $W=y^{2}-z x^{2}$.

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for $\operatorname{dim} M \geqslant 3$.

Example of Sanz and Sanchez-Salas:

$$
\partial=\left(y \frac{\partial}{\partial x}+x z \frac{\partial}{\partial y}\right)+\beta z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-z\left(-x \frac{\partial}{\partial x}+2 z \frac{\partial}{\partial z}\right)+\lambda z \frac{\partial}{\partial x}
$$

with $\beta \notin \frac{1}{2} \mathbb{Z}_{>0}, \quad \lambda \in \mathbb{C}^{\star}$.

Formal expansion of the "handle"

$$
\begin{array}{ll}
y=\tau(z)=\sum \tau_{n} z^{n}, & \tau_{n} \sim \lambda(n!)^{2} \\
x=\xi(z)=\sum \xi_{n} z^{n}, & \xi_{n} \sim \lambda(n!)^{2}
\end{array}
$$

Theorem of Bendixson-Seidenberg. The elimination of nilpotent points holds for singularly foliated surfaces.

But... It is false for $\operatorname{dim} M \geqslant 3$.

Example of Sanz and Sanchez-Salas:

$$
\partial=\left(y \frac{\partial}{\partial x}+x z \frac{\partial}{\partial y}\right)+\beta z\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-z\left(-x \frac{\partial}{\partial x}+2 z \frac{\partial}{\partial z}\right)+\lambda z \frac{\partial}{\partial x}
$$

with $\beta \notin \frac{1}{2} \mathbb{Z}_{>0}, \quad \lambda \in \mathbb{C}^{\star}$.

Formal expansion of the "handle"

$$
\begin{array}{ll}
y=\tau(z)=\sum \tau_{n} z^{n}, & \tau_{n} \sim \lambda(n!)^{2} \\
x=\xi(z)=\sum \xi_{n} z^{n}, & \xi_{n} \sim \lambda(n!)^{2}
\end{array}
$$

We cannot take the handle as a blowing-up center because it is non-analytic.

Weighted blowing-up

Weighted blowing-up
Fix some non-zero $\omega \in\left(\mathbb{Z}_{\geqslant 0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

Weighted blowing-up
Fix some non-zero $\omega \in\left(\mathbb{Z}_{\geqslant 0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

Weighted blowing-up
Fix some non-zero $\omega \in\left(\mathbb{Z}_{\geqslant 0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1}
$$

Fix some non-zero $\omega \in\left(\mathbb{Z}_{\geqslant 0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

Fix some non-zero $\omega \in\left(\mathbb{Z}_{\geqslant 0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

Fix some non-zero $\omega \in\left(\mathbb{Z}_{\geqslant 0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

$$
\operatorname{Graph}(\Phi) \subset \mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}
$$

Fix some non-zero $\omega \in\left(\mathbb{Z}_{\geqslant 0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

$$
\operatorname{Graph}(\Phi) \subset \mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}
$$

The blowed-up space is its Zariski-closure

Fix some non-zero $\omega \in\left(\mathbb{Z}_{\geqslant 0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{gathered}
\pi: \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x \rightarrow \text { orbit through } x
\end{gathered}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

$$
\operatorname{Graph}(\Phi) \subset \mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}
$$

The blowed-up space is its Zariski-closure

$$
\widetilde{M}=\overline{\operatorname{Graph}(\Phi)} \mathrm{Zar}
$$

Fix some non-zero $\omega \in\left(\mathbb{Z}_{\geqslant 0}\right)^{n}$ and consider the orbits of the action of \mathbb{C}^{\star} on $\mathbb{C}^{n} \backslash\{0\}$ by

$$
(t, x) \longmapsto t \cdot x=t^{\omega} x=\left(t^{\omega_{1}} x_{1}, \ldots, t^{\omega_{n}} x_{n}\right)
$$

The orbit space is the so-called weighted projective space

$$
\begin{aligned}
\pi: & \mathbb{C}^{n} \backslash\{0\} \longrightarrow \mathbb{P}_{\omega}^{n-1} \\
x & \rightarrow \text { orbit through } x
\end{aligned}
$$

We consider the graph of the quotient mapping as a subset of $\mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}$

$$
\operatorname{Graph}(\Phi) \subset \mathbb{C}^{n} \times \mathbb{P}_{\omega}^{n-1}
$$

The blowed-up space is its Zariski-closure

$$
\widetilde{M}=\overline{\operatorname{Graph}(\Phi)} \mathrm{Zar}
$$

and the projection $\pi: \widetilde{M} \rightarrow \mathbb{C}^{n}$ is the weighted blowing-up of the origin in \mathbb{C}^{n}.

The charts of a weighted-blowing up

The charts of a weighted-blowing up
The x_{1}-directional chart is given by

The charts of a weighted-blowing up
The x_{1}-directional chart is given by

$$
\begin{aligned}
& x_{1} \rightarrow y_{1}^{\omega_{1}} \\
& x_{2} \rightarrow y_{1}^{\omega_{1}} y_{2} \\
& \vdots \\
& \vdots \\
& x_{n} \rightarrow y_{1}^{\omega_{n}} y_{n}
\end{aligned}
$$

The charts of a weighted-blowing up
The x_{1}-directional chart is given by

$$
\begin{aligned}
& x_{1} \rightarrow y_{1}^{\omega_{1}} \\
& x_{2} \rightarrow y_{1}^{\omega_{1}} y_{2} \\
& \vdots \\
& \vdots \\
& x_{n} \rightarrow y_{1}^{\omega_{n}} y_{n}
\end{aligned}
$$

We interpret $\left(y_{1}, . ., y_{n}\right)$ as an orbifold chart on \widetilde{M}. Namely the affine space \mathbb{C}^{n} equipped with an action of the cyclic group $\mathbb{Z} / \omega_{1} \mathbb{Z}$, defined by

$$
y_{1} \rightarrow \xi y_{1}, \quad \text { For } 2 \leqslant k \leqslant n: \quad y_{k} \longrightarrow \xi^{-\omega_{k}} y_{k}
$$

where ξ is a $\omega_{1}^{\text {th }}$-primitive root of unity. The other charts are defined analogously.

The charts of a weighted-blowing up
The x_{1}-directional chart is given by

$$
\begin{aligned}
& x_{1} \rightarrow y_{1}^{\omega_{1}} \\
& x_{2} \rightarrow y_{1}^{\omega_{1}} y_{2} \\
& \vdots \\
& \vdots \\
& x_{n} \rightarrow y_{1}^{\omega_{n}} y_{n}
\end{aligned}
$$

We interpret $\left(y_{1, . .}, y_{n}\right)$ as an orbifold chart on \widetilde{M}. Namely the affine space \mathbb{C}^{n} equipped with an action of the cyclic group $\mathbb{Z} / \omega_{1} \mathbb{Z}$, defined by

$$
y_{1} \rightarrow \xi y_{1}, \quad \text { For } 2 \leqslant k \leqslant n: \quad y_{k} \longrightarrow \xi^{-\omega_{k}} y_{k}
$$

where ξ is a $\omega_{1}^{\text {th }}$-primitive root of unity. The other charts are defined analogously.
The glueing of these charts equipps \widetilde{M} with the structure of an orbifold.

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids)

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids) Let M be a paracompact Hausdorff space.

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids) Let M be a paracompact Hausdorff space.

An orbifold chart on X is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids) Let M be a paracompact Hausdorff space.

An orbifold chart on X is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map which induces a homeomorphism $U / G \rightarrow \phi(U)$.

An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding λ : $V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (induces an injective homomorphism $H \rightarrow G$).

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids) Let M be a paracompact Hausdorff space.

An orbifold chart on X is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map which induces a homeomorphism $U / G \rightarrow \phi(U)$.

An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding λ : $V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (induces an injective homomorphism $H \rightarrow G$).

Two orbifold charts (U, G, ϕ) and (V, H, ψ) on M are compatible if for any $z \in \phi(U) \cap \psi(v)$ there exists an orbifold chart (W, K, θ) defined near z and embeddings

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids) Let M be a paracompact Hausdorff space.

An orbifold chart on X is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map
which induces a homeomorphism $U / G \rightarrow \phi(U)$.
An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding λ : $V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (induces an injective homomorphism $H \rightarrow G$).

Two orbifold charts (U, G, ϕ) and (V, H, ψ) on M are compatible if for any $z \in \phi(U) \cap \psi(v)$ there exists an orbifold chart (W, K, θ) defined near z and embeddings

$$
(W, K, \theta) \hookrightarrow(U, G, \phi), \quad(W, K, \theta) \hookrightarrow(V, H, \psi)
$$

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids) Let M be a paracompact Hausdorff space.

An orbifold chart on X is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map
which induces a homeomorphism $U / G \rightarrow \phi(U)$.
An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding λ : $V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (induces an injective homomorphism $H \rightarrow G$).

Two orbifold charts (U, G, ϕ) and (V, H, ψ) on M are compatible if for any $z \in \phi(U) \cap \psi(v)$ there exists an orbifold chart (W, K, θ) defined near z and embeddings

$$
(W, K, \theta) \hookrightarrow(U, G, \phi), \quad(W, K, \theta) \hookrightarrow(V, H, \psi)
$$

An orbifold atlas on M is a collection $\mathcal{U}=\left\{\left(U_{i}, G_{i}, \phi_{i}\right)\right\}_{i \in I}$ of pairwise compatible orbifold charts such that $\left\{\phi\left(U_{i}\right)\right\}_{i \in I}$ forms an open cover of M.

Orbifolds (in one slide) (cf. Moerdijk, Mrcun - Introduction to foliations and Lie groupoids) Let M be a paracompact Hausdorff space.

An orbifold chart on X is given by triple (U, G, ϕ) where U is a connected open subset of \mathbb{R}^{n} (or \mathbb{C}^{n}), G is a finite subgroup of $\operatorname{Diff}(U)$ and $\phi: U \rightarrow M$ is an open map
which induces a homeomorphism $U / G \rightarrow \phi(U)$.
An embedding $\lambda:(V, H, \psi) \hookrightarrow(U, G, \phi)$ between orbifold charts on M is an embedding λ : $V \rightarrow U$ such that $\phi \circ \lambda=\psi$ (induces an injective homomorphism $H \rightarrow G$).

Two orbifold charts (U, G, ϕ) and (V, H, ψ) on M are compatible if for any $z \in \phi(U) \cap \psi(v)$ there exists an orbifold chart (W, K, θ) defined near z and embeddings

$$
(W, K, \theta) \hookrightarrow(U, G, \phi), \quad(W, K, \theta) \hookrightarrow(V, H, \psi)
$$

An orbifold atlas on M is a collection $\mathcal{U}=\left\{\left(U_{i}, G_{i}, \phi_{i}\right)\right\}_{i \in I}$ of pairwise compatible orbifold charts such that $\left\{\phi\left(U_{i}\right)\right\}_{i \in I}$ forms an open cover of M.

An orbifold is a pair (M, \mathcal{U}) where M is paracompact Hausdorff topological space and \mathcal{U} is a maximal orbifold atlas on M.

A sub-variety $Y \subset M$ is a sub-orbifold if for each point $p \in Y$ there exists a local chart (U, G, ϕ) such that $\phi^{-1}(Y)$ is a G-invariant submanifold of U.

Important: 1) The local group actions are part of the structure.

Important: 1) The local group actions are part of the structure.
"Remember the group"

Important: 1) The local group actions are part of the structure.
"Remember the group"
2) The underlying topological space can be a singular.

Important: 1) The local group actions are part of the structure.
"Remember the group"
2) The underlying topological space can be a singular.

Example: $\quad X=\mathbb{C}^{2} / G, \quad G=\mathbb{Z} / 2 \mathbb{Z}$

Important: 1) The local group actions are part of the structure.

"Remember the group"

2) The underlying topological space can be a singular.

Example: $\quad X=\mathbb{C}^{2} / G, \quad G=\mathbb{Z} / 2 \mathbb{Z}$

$$
(x, y) \longrightarrow(-x,-y)
$$

Important: 1) The local group actions are part of the structure.

"Remember the group"

2) The underlying topological space can be a singular.

Example: $\quad X=\mathbb{C}^{2} / G, \quad G=\mathbb{Z} / 2 \mathbb{Z}$

$$
(x, y) \longrightarrow(-x,-y)
$$

$X=\operatorname{Spec} \mathbb{C}[x, y]^{G} \quad$ (ring of invariants)

$$
\begin{gathered}
\mathbb{C}[x, y]^{G}=\mathbb{C}\left[x^{2}, x y, y^{2}\right] \\
X=\operatorname{spec} \mathbb{C}[u, v, w] /\left(v^{2}-u w\right)
\end{gathered}
$$

X is the quadratic cone.

General idea: The weighted blowing-up allows to take into account some natural quasihomogeneous filtration of the initial object.

General idea: The weighted blowing-up allows to take into account some natural quasihomogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

General idea: The weighted blowing-up allows to take into account some natural quasihomogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

In the z-directional chart we obtain

$$
x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}
$$

General idea: The weighted blowing-up allows to take into account some natural quasihomogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

In the z-directional chart we obtain

$$
x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}
$$

and $w=z^{4}\left(y^{2}-x^{2}\right)$ becomes a normal crossings divisor.

General idea: The weighted blowing-up allows to take into account some natural quasihomogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

In the z-directional chart we obtain

$$
x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}
$$

and $w=z^{4}\left(y^{2}-x^{2}\right)$ becomes a normal crossings divisor.
This is the orbifold chart $\left(\mathbb{C}^{3}, \mathbb{Z} / 2 \mathbb{Z}, \phi\right)$, where the action is $(x, y, z) \rightarrow(-x, y,-z)$

General idea: The weighted blowing-up allows to take into account some natural quasihomogeneous filtration of the initial object.

Example: Let us blow-up the origin in \mathbb{C}^{3} with weight $\omega=(1,2,2)$ and look at the pull-back of the Whitney umbrella $w=y^{2}-z x^{2}$

In the z-directional chart we obtain

$$
x \rightarrow z x, \quad y \rightarrow z^{2} y, \quad z \rightarrow z^{2}
$$

and $w=z^{4}\left(y^{2}-x^{2}\right)$ becomes a normal crossings divisor.
This is the orbifold chart $\left(\mathbb{C}^{3}, \mathbb{Z} / 2 \mathbb{Z}, \phi\right)$, where the action is $(x, y, z) \rightarrow(-x, y,-z)$

Over \mathbb{R} : We can alternatively work in the category of manifold with corners

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

(advantage: stay in the category of smooth manifolds)

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

(advantage: stay in the category of smooth manifolds) (drawback: we "forget the group" $==>$ loose information about the local symetries)

Over \mathbb{R} : We can alternatively work in the category of manifold with corners
The spherical blowing-up of \mathbb{R}^{n} at the origin with weight ω is the real analytic map

$$
\Phi: \mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1} \longrightarrow \mathbb{R}^{n}
$$

given by $\Phi(t, \bar{x})=t^{\omega} \bar{x}$. The exceptional divisor is the boundary

$$
\text { boundary }\left(\mathbb{R}_{\geqslant 0} \times \mathbb{S}^{n-1}\right)=\{0\} \times \mathbb{S}^{n-1}
$$

In general, we require the blowing-up center to have normal crossings with the boundary.

(advantage: stay in the category of smooth manifolds) (drawback: we "forget the group" $==>$ loose information about the local symetries) (c.f. Melrose's "Analysis on manifolds with corners" - online)

Blowing-up along global centers

Blowing-up along global centers

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

Blowing-up along global centers

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$.

Blowing-up along global centers

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$. \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.

Blowing-up along global centers

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$. \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.

In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) $C \subset M$, we need to require the existence of a global trivialization of C

Blowing-up along global centers

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$. \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.

In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) $C \subset M$, we need to require the existence of a global trivialization of C

Blowing-up along global centers

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$. \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.

In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) $C \subset M$, we need to require the existence of a global trivialization of C

Such that the diffeomorphisms between the transition charts respects the local quasi-homogeneous filtration.

Blowing-up along global centers

A weighted blowing-up of a point $p \in M$ is fully determined by a quasi-homogeneous filtration of the local ring. Namely a filtration

$$
\mathcal{O}=\mathcal{O}_{0} \supset \mathcal{O}_{1} \supset \mathcal{O}_{2} \supset \cdots \quad \mathcal{O}_{k} \cdot \mathcal{O}_{l} \subset \mathcal{O}_{k+l}
$$

such that in appropriate coordinates $\left(x_{1}, \ldots, x_{n}\right)$, we have $x_{1} \in \mathcal{O}_{\omega_{1}}, . ., x_{n} \in \mathcal{O}_{\omega_{n}}$. \mathcal{O}_{k} is the subring of functions of quasi-homogeneous weight $\geqslant k$.

In order to define a quasi-homogeneous blow-up along a submanifold (suborbifold) $C \subset M$, we need to require the existence of a global trivialization of C

Such that the diffeomorphisms between the transition charts respects the local quasi-homogeneous filtration.

This is a non-trivial topological restriction.

Example: $\quad C=Z(x, y) \subset \mathbb{C}^{3}$

$$
\begin{gathered}
\omega=(1, \beta, 0) \in \mathbb{Z}^{3} \\
\beta>1
\end{gathered}
$$

Example: $\quad C=Z(x, y) \subset \mathbb{C}^{3}$

$$
\begin{gathered}
\omega=(1, \beta, 0) \in \mathbb{Z}^{3} \\
\beta>1
\end{gathered}
$$

All automorphisms of the form

$$
x \rightarrow x+\rho y^{m}, \quad y \rightarrow y+\xi x^{l}, \quad l \geqslant \beta
$$

Example: $\quad C=Z(x, y) \subset \mathbb{C}^{3}$

$$
\begin{gathered}
\omega=(1, \beta, 0) \in \mathbb{Z}^{3} \\
\beta>1
\end{gathered}
$$

All automorphisms of the form

$$
x \rightarrow x+\rho y^{m}, \quad y \rightarrow y+\xi x^{l}, \quad l \geqslant \beta
$$

preserve the $(1, \beta, 0)$-filtration of $\mathbb{C}[x, y, z]$.

Example: $\quad C=Z(x, y) \subset \mathbb{C}^{3}$

$$
\begin{gathered}
\omega=(1, \beta, 0) \in \mathbb{Z}^{3} \\
\beta>1
\end{gathered}
$$

All automorphisms of the form

$$
x \rightarrow x+\rho y^{m}, \quad y \rightarrow y+\xi x^{l}, \quad l \geqslant \beta
$$

preserve the $(1, \beta, 0)$-filtration of $\mathbb{C}[x, y, z]$.
More generally, all automorphisms obtained by integrating the Lie algebra (over \mathbb{C}) generated by

$$
\left\{x \frac{\partial}{\partial x}, y \frac{\partial}{\partial y}, x^{l} \frac{\partial}{\partial y}, \left.y^{m} \frac{\partial}{\partial x} \quad \right\rvert\, \quad m \geqslant 1, l \geqslant \beta\right\}
$$

Weighted blowing-up of vector fields

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right)
$$

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right) \\
x_{k} \frac{\partial}{\partial x_{k}} \longrightarrow x_{k} \frac{\partial}{\partial x_{k}}
\end{gathered}
$$

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right) \\
x_{k} \frac{\partial}{\partial x_{k}} \longrightarrow x_{k} \frac{\partial}{\partial x_{k}}
\end{gathered}
$$

Example: $\partial=x \frac{\partial}{\partial x}+n y \frac{\partial}{\partial y}, \quad n \in \mathbb{Z}_{>0}$.

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right) \\
x_{k} \frac{\partial}{\partial x_{k}} \longrightarrow x_{k} \frac{\partial}{\partial x_{k}}
\end{gathered}
$$

Example: $\partial=x \frac{\partial}{\partial x}+n y \frac{\partial}{\partial y}, \quad n \in \mathbb{Z}_{>0}$.

$$
\begin{gathered}
x \rightarrow x, \quad y \rightarrow x^{n} y \\
\partial=x \frac{\partial}{\partial x}
\end{gathered}
$$

Weighted blowing-up of vector fields

$$
x_{1} \rightarrow x_{1}^{\omega_{1}}, \quad \text { For } 2 \leqslant k \leqslant n: \quad x_{k} \rightarrow x_{1}^{\omega_{k}} x_{k}
$$

Transformation of the logarithmic basis

$$
\begin{gathered}
x_{1} \frac{\partial}{\partial x_{1}} \longrightarrow \frac{1}{\omega_{1}}\left(x_{1} \frac{\partial}{\partial x_{1}}-\omega_{2} x_{2} \frac{\partial}{\partial x_{2}}-\cdots-\omega_{n} x_{n} \frac{\partial}{\partial x_{n}}\right) \\
x_{k} \frac{\partial}{\partial x_{k}} \longrightarrow x_{k} \frac{\partial}{\partial x_{k}}
\end{gathered}
$$

Example: $\partial=x \frac{\partial}{\partial x}+n y \frac{\partial}{\partial y}, \quad n \in \mathbb{Z}_{>0}$.

$$
\begin{gathered}
x \rightarrow x, \quad y \rightarrow x^{n} y \\
\partial=x \frac{\partial}{\partial x}
\end{gathered}
$$

The solution curves of ∂ are precisely the orbits of the torus action $t \cdot(x, y)=\left(t x, t^{n} y\right)$.

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Based on the quasi-homogeneity the almost first integral $y^{2}-x^{3}$, we consider the blow-up with weight $(2,3)$.

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Based on the quasi-homogeneity the almost first integral $y^{2}-x^{3}$, we consider the blow-up with weight $(2,3)$.

We write ∂ in the logarithmic basis (forgetting Δ for the moment)

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Based on the quasi-homogeneity the almost first integral $y^{2}-x^{3}$, we consider the blow-up with weight $(2,3)$.

We write ∂ in the logarithmic basis (forgetting Δ for the moment)

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

In the x-chart: $x \rightarrow x^{2}, y \rightarrow x^{3} y$

$$
\partial=x y\left(x \frac{\partial}{\partial x}-3 y \frac{\partial}{\partial y}\right)+3 x y^{-1}\left(y \frac{\partial}{\partial y}\right)=x\left(x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y}\right)
$$

Example: weighted resolution of the cuspidal singularity

$$
\partial=2 y \frac{\partial}{\partial x}+3 x^{2} \frac{\partial}{\partial y}+\Delta
$$

Based on the quasi-homogeneity the almost first integral $y^{2}-x^{3}$, we consider the blow-up with weight $(2,3)$.

We write ∂ in the logarithmic basis (forgetting Δ for the moment)

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

In the x-chart: $x \rightarrow x^{2}, y \rightarrow x^{3} y$

$$
\partial=x y\left(x \frac{\partial}{\partial x}-3 y \frac{\partial}{\partial y}\right)+3 x y^{-1}\left(y \frac{\partial}{\partial y}\right)=x\left(x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y}\right)
$$

The divisor $\{x=0\}$ is contained in the nilpotent locus. We factor out x and write

$$
\partial_{1}=x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y}
$$

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$

$$
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right)
$$

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$

$$
\begin{gathered}
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right) \\
\rightarrow \quad \partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y\left(y \frac{\partial}{\partial y}-2 x \frac{\partial}{\partial x}\right)=y\left(2\left(1-x^{3}\right) \frac{\partial}{\partial x}+x^{2} y \frac{\partial}{\partial y}\right)
\end{gathered}
$$

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$

$$
\begin{gathered}
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right) \\
\rightarrow \quad \partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y\left(y \frac{\partial}{\partial y}-2 x \frac{\partial}{\partial x}\right)=y\left(2\left(1-x^{3}\right) \frac{\partial}{\partial x}+x^{2} y \frac{\partial}{\partial y}\right)
\end{gathered}
$$

and, factoring out y, we obtain

$$
\partial_{2}=2\left(1-x^{3}\right) \frac{\partial}{\partial x}-x^{2} y \frac{\partial}{\partial y}
$$

In the y-chart: $x \rightarrow y^{2} x, y \rightarrow y^{3}$

$$
\begin{gathered}
\partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+3 x^{2} y^{-1}\left(y \frac{\partial}{\partial y}\right) \\
\rightarrow \quad \partial=2 x^{-1} y\left(x \frac{\partial}{\partial x}\right)+x^{2} y\left(y \frac{\partial}{\partial y}-2 x \frac{\partial}{\partial x}\right)=y\left(2\left(1-x^{3}\right) \frac{\partial}{\partial x}+x^{2} y \frac{\partial}{\partial y}\right)
\end{gathered}
$$

and, factoring out y, we obtain

$$
\partial_{2}=2\left(1-x^{3}\right) \frac{\partial}{\partial x}-x^{2} y \frac{\partial}{\partial y}
$$

Local symmetries of the foliated orbifold

Local symmetries of the foliated orbifold

Local symmetries of the foliated orbifold

$$
\pi_{1}(L)=\left\{\gamma, \eta, \rho \mid \gamma^{2}=\eta^{3}=1, \rho=\gamma \eta\right\}
$$

$$
\partial_{1}=x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y} \quad \zeta \mathbb{Z} / 2 \mathbb{Z}
$$

$$
\partial_{1}=x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y} \quad ⿹ \mathbb{Z} / 2 \mathbb{Z}
$$

$$
g \cdot x=-x, \quad g \cdot y \rightarrow-y
$$

$$
g \cdot \partial_{1}=-\partial_{1}
$$

$$
\partial_{1}=x y \frac{\partial}{\partial x}+3\left(1-y^{2}\right) \frac{\partial}{\partial y} \quad \mathbb{Z} / 2 \mathbb{Z}
$$

$$
g \cdot x=-x, \quad g \cdot y \rightarrow-y
$$

$$
g \cdot \partial_{1}=-\partial_{1}
$$

Other chart

$$
\begin{gathered}
\partial_{2}=2\left(1-x^{3}\right) \frac{\partial}{\partial x}-x^{2} y \frac{\partial}{\partial y} \\
g \cdot x=\xi^{-2} x, \quad g \cdot y=\xi y, \quad\left(\xi^{3}=\mathrm{id}\right) \\
g \cdot \partial_{2}=\xi^{2} \partial_{2}
\end{gathered}
$$

Elimination of nilpotent points in dimension two

