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Summability
Definition. A family (fi)i∈I in R((M)) is summable if each m ∈M belongs to the support of finitely many
fi and there is no strictly increasing sequence (mk)k∈N in M such that each nk belongs to the support of
some fi. The sum

f =
∑
i∈I

fi ∈ R((M))

is then defined adding the coe�icients of the corresponding monomials.

In other words (fi)i∈I is summable if and only if
⋃

i∈I supp(fi) ⊂M is reverse well ordered and for all
m ∈M there are at most finitely many i ∈ I such that m ∈ supp(fi).

Exercise. Let ε ≺ 1 in R((xZ)). Then (εn/n!)n∈N is summable, so we can define exp(ε) =
∑

n ε
n/n!.

Hint: x is the smallest monomial in R((xZ)), so all the monomials of εn are smaller or equal to x−n.

Exercise. (fi)i∈I ∈ R((M)) is summable if and only if there are no injective maps n 7→ in ∈ I and
monomials mn ∈ supp(fin) such that (mn)n is weakly increasing.

We call the sequence n 7→ (in,mn) a bad sequence.
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The surreals as a directed union of Hahn fields

Let Ω ⊂ No be the group of surreal monomials and letF be the family of all subgroups of Ω that are sets
(rather than proper classes).
Now let

R((Ω))On :=
⋃

M∈F

R((M)).

Recall that every surreal number f ∈ No has a Conway normal form f =
∑

i<αmiri.
Theorem (Conway 1976). There is a canonical identification

No = R((Ω))On

sending f =
∑

i<αmiri ∈ No to the sum of the summable family (miri)i<α in R((Ω))On.

Many properties ofNowill be deduced from corresponding properties of the Hahn fields R((M)).
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Neumann’s lemma

Given a multi-index i = (i1, . . . , i`) ∈ N` and x = (x1, . . . , x`) in R((M))`, let xi := xi1
1 xi2

2 · · · x
i`
` . We write

x ≺ 1 if xi ≺ 1 for all i = 1, . . . , `.

Lemma (Neumann 1949). For every ε ≺ 1 in R((M))` and {ri}i∈N` ⊆ R the family (riε
i)i∈N` is summable.

Corollary. R((M)) is a field.

If 0 6= f ∈ R((M)), we can write f = mr(1 + ε) with m ∈M, r ∈ R 6=0 and ε ≺ 1.
Then f−1 = m−1r−1(1 + ε)−1 where (1 + ε)−1 =

∑
n∈N(−1)nεn is well defined by Neumann’s lemma.

Corollary. No = R((Ω))On is a field.
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Proof of Neumann’s lemma

Lemma (Neumann 1949). For every ε ≺ 1 in R((M))` and {ri}i∈N` ⊆ R the family (riε
i)i∈N` is summable.

For simplicity ` = 1. For a contradiction there is a bad sequence n 7→ (in,mn).

So n 7→ in is injective, mn ∈ supp(εin) and mn is weakly increasing with n.
We order the bad sequences as follows: (in,mn)n < (jn, on)n if for the least n where the two sequences
di�er, either in < jn or in = jn and mn > on.

We construct a minimal bad sequence as follows. Let i0 be minimal such that for some m0, (i0,m0) can be
prolonged to a bad sequence. Let m0 be maximal with this property. Now let i1 be minimal such that for
some m1 there is a bad sequence starting with (i0,m0), (i1,m1). Let m1 be maximal such. Etc.

Since mn ∈ supp(εin), we can write mn = on,1 · · · on,in where oi,j ∈ supp(ε).

If (on,in)n is weakly decreasing, we obtain a smaller bad sequence by deleting each on,in from mn.
Contradiction.
In general, (on,in)n is weakly decreasing on an infinite subset A ⊂ N. We construct a smaller bad sequence
(i′n,m′n) which coincides on the previous one for n < min A, and continues on A where we delete (on,in)n
as above (if n 7→ i′n is not injective, we also need to remove the term with n = min A− 1). Contradiction.
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Restricted analytic functions

Let U ⊆ Rn be an open set and let f : U→ R be a real analytic function. Now let

Ũ = U + o(1)

be the infinitesimal neighbourhood of U inNon. There is a natural extension of f to a function

f̃ : Ũ→ No

defined as follows. For r ∈ U, let
∑

i∈Nn
Dif(r)

i! X i be the Taylor series of f around r, where i = (i1, . . . , in) is a
multi-index. Now for ε ∈ o(1)n ⊆ Non, define f̃(r + ε) :=

∑
i∈Nn

Dif(r)
i! εi, where the summability is

ensured by Neumann’s lemma.
Example. We can define sin : O(1) = R+ o(1)→ [−1, 1]. Note that sin(ω) is not defined.

Exercise. Show that f̃ ◦ g = f̃ ◦ g̃ whenever the image of g is contained in the domain of f .
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The theory of restricted analytic functions

If U ⊃ [−1, 1]n, consider the restriction f| of f to [−1, 1]n ⊆ Rn and the restriction f̃| of f̃ to [−1, 1]n ⊂ Non.
We call such f| a restricted analytic function.

Let
Ran := (R, <, 0, 1,+, ·, f|), Noan := (No, <, 0, 1,+, ·, f̃|)

where f| ranges over all restricted analytic functions.

Theorem (van den Dries, Macintyre, and Marker 1994). The expansionNoan of the fieldNowith all the
functions f̃| is an elementary extension of Ran.
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Ressayre’s axioms

Let Texp be the complete theory of (R, <, 0, 1,+, ·, exp).

In Ressayre (1993) (extended abstract) it was proved that the complete theory of Texp is recursively (in
fact finitely) axiomatized over the complete theory of restricted exp.

This can also be deduced via Robinson’s joint embedding theorem from the axiomatization of Tan,exp in
van den Dries et al. (1994), where Tan,exp is the complete theory of (Ran, exp).

Theorem. A real closed ordered field K endowed with an isomorphism of ordered groups
E : (K,+, <)→ (K>0, ·, <) is a model of Texp if and only if the following axioms hold:

(i) E(x) ≥ x + 1 for all x ∈ K;
(ii) the restriction of E to [−1, 1] makes K into a model of the theory of (R, <, 0, 1,+, ·, exp|[−1,1]).

Exercise. Show that the above axioms imply that E(x) ≥ xn for all x ≥ 4n2, n ∈ N.
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Purely infinite elements

LetNo↑ = R((Ω>1))On.

We have a direct sum decomposition

No = No↑ ⊕ R⊕ o(1).

Given x ∈ No, we can write
x = x↑ + x◦ + x↓

with x↑ ∈ No↑, x◦ ∈ R, x↓ ∈ o(1).

For instance:

x = ω3 + 3ω2︸ ︷︷ ︸
x↑∈No↑

+ 4︸︷︷︸
x◦∈R

+ω−1 + ω−2 + . . .︸ ︷︷ ︸
x↓∈o(1)
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Exponentiation of finite numbers
We can define exp(ω−1) ∈ No via the Taylor series exp(ω−1) =

∑
n∈N

ω−n

n! , since (ω
−n

n! )n∈N is summable.

However, we cannot use the same idea to define exp(ω) because (ω
n

n! )n∈N is not summable.

We also need to ensure that the basic laws of exponentiation hold, such as exp(x + y) = exp(x) exp(y).

We define exp : No→ No as follows (as per Berarducci and Mantova 2018, Thm. 3.8).

exp(x↑ + x◦ + x↓) := exp(x↑) exp(x◦) exp(x↓) x↑ ∈ No↑, x◦ ∈ R, x↓ ∈ o(1)

For the finite elements ofNo, it su�ices to define:

exp(r) := er r ∈ R

exp(ε) :=
∑
n∈N

εn

n!
ε ∈ o(1)

It remains to define exp onNo↑.
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Exponentiation of purely infinite numbers
For x =

∑
i<α rimi ∈ No↑ we define exp(x) guided by the heuristic that exp(x) should grow faster than

any polynomial.
In the following formulas, m,mi are all in Ω>1, r, ri in R 6=0.

exp(m) :=
{
mk, exp(mL)k

} ∣∣∣ {exp(mR)1/k
}

where k ranges in N 6=0,
mL,mR range among the options of m in Ω

exp(mr) :=
{
exp(m)r−

} ∣∣∣ {exp(m)r+
}

r−, r+ ranging in Q with r− < r < r+

exp
( ∑

i<β+1

miri

)
:= exp

(∑
i<β

miri

)
exp(rβmβ) for β ∈ On

exp
(∑

i<α

rimi

)
:=

exp
(∑

i<β

miri

)
exp(mβr−β )


∣∣∣∣∣∣
exp

(∑
i<β

miri

)
exp(mβr+β )


where β ranges in the ordinals< α and r−β , r+β range in Q with r−β < rβ < r+β .
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Exponential normal form
Theorem (Gonshor 1986). The map exp : (No, 0,+, <)→ (No>0, 1, ·, <) is an isomorphism.

The direct sum decomposition
No = No↑ ⊕ R⊕ o(1)

corresponds via exp to the multiplicative direct sum

No>0 = Ω� R>0 � (1 + o(1)).

In particular Ω = exp(No↑), so we can write every surreal f =
∑

i<α rimi ∈ No in the form

f =
∑
i<α

rieγi

where mi = eγi ∈ Ω and γi ∈ No↑. We call this the exponential normal form of f .

We call log : No>0 → No the inverse of exp.

For ε ≺ 1, log(1 + ε) =
∑∞

n=1(−1)n+1 εn

n = ε− ε2/2 + ε3/3 + . . ..
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Elementary properties

Theorem (van den Dries and Ehrlich 2001). No is an elementary extension of Ran,exp, where Ran,exp is the
expansion of the field R with all analytic functions restricted to [−1, 1]n and the (unrestricted) exponential
function.

We recall that Ran,exp is o-minimal: every subset of R definable in Rexp is a finite union of open intervals
(a, b), (a,+∞), (−∞, a) and points. The same same then holds for No in the language Lan,exp.
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LE-functions

Definition (Hardy 1910). Let f : (R≥a)n → R. We say that f is a log-exp function if it is a composition of
algebraic functions, exp and log.

Log-exp functions in one variable are linearly ordered by f < g if ∃n∀x > n(f(x) < g(x)) (Hardy, 1910).

Remark. Every log-exp function has a natural extension to a function fNo : (No≥a)n → No.

Proof. The graph of f is definable in Rexp, so fix a defining formula and let fNo be the function onNo
defined by the same formula. This does not depend on the choice of the formula since Rexp ≺ Noexp.

Exercise. The map f 7→ fNo(ω) is injective and order preserving. The exponential normal form of fNo(ω)
corresponds to an asymptotic expansion of f .
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Example
We compute the exponential normal form of (ω + 1)ω .

(ω + 1)ω = exp (ω(log(1 + ω)))

= exp
(
ω
(
log(ω) + log(1 + ω−1)

))
= exp

(
ω log(ω) +

∞∑
n=1

(−1)n+1

n
ω−n+1

)

= exp

(
ω log(ω) + 1− 1

2
ω−1 + . . .

)
= ωωe1 exp(−2−1ω−1 + . . .)

= eωω
(

1− 2−1ω−1 + . . .
)

= eωω − e2−1ωω−1 + . . .

This corresponds to the asymptotic expansion for x →∞ of the real function (x + 1)x :

(x + 1)x ∼ exx − e2−1xx−1 + . . . .
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