Surreal Numbers and Transseries - Lectures 3 and 4

Alessandro Berarducci ${ }^{1}$, Vincenzo Mantova ${ }^{2}$
${ }^{1}$ University of Pisa, ${ }^{2}$ University of Leeds
Fields Institute, 24 and 26 January 2022

Summability

Definition. A family $\left(f_{i}\right)_{i \in I}$ in $\mathbb{R}((\mathfrak{M}))$ is summable if each $\mathfrak{m} \in \mathfrak{M}$ belongs to the support of finitely many f_{i} and there is no strictly increasing sequence $\left(\mathfrak{m}_{k}\right)_{k \in \mathbb{N}}$ in \mathfrak{M} such that each \mathfrak{n}_{k} belongs to the support of some f_{i}. The sum

$$
f=\sum_{i \in I} f_{i} \in \mathbb{R}((\mathfrak{M}))
$$

is then defined adding the coefficients of the corresponding monomials.
In other words $\left(f_{i}\right)_{i \in 1}$ is summable if and only if $\bigcup_{i \in 1} \operatorname{supp}\left(f_{i}\right) \subset \mathfrak{M}$ is reverse well ordered and for all $\mathfrak{m} \in \mathfrak{M}$ there are at most finitely many $i \in I$ such that $\mathfrak{m} \in \operatorname{supp}\left(f_{i}\right)$.

Exercise. Let $\varepsilon \prec 1$ in $\mathbb{R}\left(\left(\mathbf{x}^{\mathbb{Z}}\right)\right)$. Then $\left(\varepsilon^{n} / n!\right)_{n \in \mathbb{N}}$ is summable, so we can define $\exp (\varepsilon)=\sum_{n} \varepsilon^{n} / n!$.
Hint: \mathbf{x} is the smallest monomial in $\mathbb{R}\left(\left(\mathbf{x}^{\mathbb{Z}}\right)\right)$, so all the monomials of ε^{n} are smaller or equal to \mathbf{x}^{-n}.
Exercise. $\left(f_{i}\right)_{i \in I} \in \mathbb{R}((\mathfrak{M}))$ is summable if and only if there are no injective maps $n \mapsto i_{n} \in I$ and monomials $\mathfrak{m}_{n} \in \operatorname{supp}\left(f_{i_{n}}\right)$ such that $\left(\mathfrak{m}_{n}\right)_{n}$ is weakly increasing.

We call the sequence $n \mapsto\left(i_{n}, \mathfrak{m}_{n}\right)$ a bad sequence.

The surreals as a directed union of Hahn fields

Let $\boldsymbol{\Omega} \subset \mathbf{N o}$ be the group of surreal monomials and let \mathcal{F} be the family of all subgroups of $\boldsymbol{\Omega}$ that are sets (rather than proper classes).
Now let

$$
\mathbb{R}((\Omega))_{\text {on }}:=\bigcup_{\mathfrak{M} \in \mathcal{F}} \mathbb{R}((\mathfrak{M})) .
$$

Recall that every surreal number $f \in$ No has a Conway normal form $f=\sum_{i<\alpha} \mathfrak{m}_{i} r_{i}$.
Theorem (Conway 1976). There is a canonical identification

$$
\text { No }=\mathbb{R}((\Omega))_{\text {on }}
$$

sending $f=\sum_{i<\alpha} \mathfrak{m}_{i} r_{i} \in \mathbf{N o}$ to the sum of the summable family $\left(\mathfrak{m}_{i} r_{i}\right)_{i<\alpha}$ in $\mathbb{R}((\Omega))_{\text {on }}$.

Many properties of No will be deduced from corresponding properties of the Hahn fields $\mathbb{R}((\mathfrak{M}))$.

Neumann's lemma

Given a multi-index $i=\left(i_{1}, \ldots, i_{\ell}\right) \in \mathbb{N}^{\ell}$ and $x=\left(x_{1}, \ldots, x_{\ell}\right)$ in $\mathbb{R}((\mathfrak{M}))^{\ell}$, let $x^{i}:=x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{\ell}^{i_{\ell}}$. We write $x \prec 1$ if $x_{i} \prec 1$ for all $i=1, \ldots, \ell$.

Lemma (Neumann 1949). For every $\varepsilon \prec 1$ in $\mathbb{R}((\mathfrak{M}))^{\ell}$ and $\left\{r_{i}\right\}_{i \in \mathbb{N}^{\ell}} \subseteq \mathbb{R}$ the family $\left(r_{i} \varepsilon^{i}\right)_{i \in \mathbb{N}^{\ell}}$ is summable.

Corollary. $\mathbb{R}((\mathfrak{M}))$ is a field.

If $0 \neq f \in \mathbb{R}((\mathfrak{M}))$, we can write $f=\mathfrak{m} r(1+\varepsilon)$ with $\mathfrak{m} \in \mathfrak{M}, r \in \mathbb{R}^{\neq 0}$ and $\varepsilon \prec 1$.
Then $f^{-1}=\mathfrak{m}^{-1} r^{-1}(1+\varepsilon)^{-1}$ where $(1+\varepsilon)^{-1}=\sum_{n \in \mathbb{N}}(-1)^{n} \varepsilon^{n}$ is well defined by Neumann's lemma.

Corollary. $\mathbf{N o}=\mathbb{R}((\boldsymbol{\Omega}))_{\mathbf{o n}}$ is a field.

Proof of Neumann's lemma

Lemma (Neumann 1949). For every $\varepsilon \prec 1$ in $\mathbb{R}((\mathfrak{M}))^{\ell}$ and $\left\{r_{i}\right\}_{i \in \mathbb{N}^{e}} \subseteq \mathbb{R}$ the family $\left(r_{i} \varepsilon^{i}\right)_{i \in \mathbb{N}^{e}}$ is summable.
For simplicity $\ell=1$. For a contradiction there is a bad sequence $n \mapsto\left(i_{n}, \mathfrak{m}_{n}\right)$.
So $n \mapsto i_{n}$ is injective, $\mathfrak{m}_{n} \in \operatorname{supp}\left(\varepsilon^{i_{n}}\right)$ and \mathfrak{m}_{n} is weakly increasing with n.
We order the bad sequences as follows: $\left(i_{n}, \mathfrak{m}_{n}\right)_{n}<\left(j_{n}, \mathfrak{o}_{n}\right)_{n}$ if for the least n where the two sequences differ, either $i_{n}<j_{n}$ or $i_{n}=j_{n}$ and $\mathfrak{m}_{n}>\mathfrak{o}_{n}$.

We construct a minimal bad sequence as follows. Let i_{0} be minimal such that for some $\mathfrak{m}_{0},\left(i_{0}, \mathfrak{m}_{0}\right)$ can be prolonged to a bad sequence. Let \mathfrak{m}_{0} be maximal with this property. Now let i_{1} be minimal such that for some \mathfrak{m}_{1} there is a bad sequence starting with $\left(i_{0}, \mathfrak{m}_{0}\right),\left(i_{1}, \mathfrak{m}_{1}\right)$. Let \mathfrak{m}_{1} be maximal such. Etc.

Since $\mathfrak{m}_{n} \in \operatorname{supp}\left(\varepsilon^{i_{n}}\right)$, we can write $\mathfrak{m}_{n}=\mathfrak{o}_{n, 1} \cdots \mathfrak{o}_{n, i_{n}}$ where $\mathfrak{o}_{i, j} \in \operatorname{supp}(\varepsilon)$.
If $\left(\mathfrak{o}_{n, i_{n}}\right)_{n}$ is weakly decreasing, we obtain a smaller bad sequence by deleting each $\mathfrak{o}_{n, i_{n}}$ from \mathfrak{m}_{n}. Contradiction.
In general, $\left(\mathfrak{o}_{n, i_{n}}\right)_{n}$ is weakly decreasing on an infinite subset $A \subset \mathbb{N}$. We construct a smaller bad sequence $\left(i_{n}^{\prime}, \mathfrak{m}_{n}^{\prime}\right)$ which coincides on the previous one for $n<\min A$, and continues on A where we delete $\left(\mathfrak{o}_{n, i_{n}}\right)_{n}$ as above (if $n \mapsto i_{n}^{\prime}$ is not injective, we also need to remove the term with $n=\min A-1$). Contradiction.

Restricted analytic functions

Let $U \subseteq \mathbb{R}^{n}$ be an open set and let $f: U \rightarrow \mathbb{R}$ be a real analytic function. Now let

$$
\widetilde{U}=U+o(1)
$$

be the infinitesimal neighbourhood of U in $\mathbf{N o}^{n}$. There is a natural extension of f to a function

$$
\tilde{f}: \tilde{U} \rightarrow \mathbf{N o}
$$

defined as follows. For $r \in U$, let $\sum_{i \in \mathbb{N}^{n}} \frac{D^{i} f(r)}{i!} X^{i}$ be the Taylor series of f around r, where $i=\left(i_{1}, \ldots, i_{n}\right)$ is a multi-index. Now for $\varepsilon \in o(1)^{n} \subseteq \mathbf{N o}^{n}$, define $\tilde{f}(r+\varepsilon):=\sum_{i \in \mathbb{N}^{n}} \frac{D^{i} f(r)}{i!} \varepsilon^{i}$, where the summability is ensured by Neumann's lemma.
Example. We can define $\sin : O(1)=\mathbb{R}+o(1) \rightarrow[-1,1]$. Note that $\sin (\omega)$ is not defined.

Exercise. Show that $\widetilde{f \circ g}=\widetilde{f} \circ \widetilde{g}$ whenever the image of g is contained in the domain of f.

The theory of restricted analytic functions

If $U \supset[-1,1]^{n}$, consider the restriction $f \mid$ of f to $[-1,1]^{n} \subseteq \mathbb{R}^{n}$ and the restriction \tilde{f}_{\mid}of \tilde{f} to $[-1,1]^{n} \subset \mathbf{N o}^{n}$. We call such f_{\mid}a restricted analytic function.

Let

$$
\mathbb{R}_{a n}:=\left(\mathbb{R},<, 0,1,+, \cdot, f_{\mid}\right), \quad \mathbf{N o}_{a n}:=\left(\mathbf{N o},<, 0,1,+, \cdot, \tilde{f}_{\mid}\right)
$$

where f_{\mid}ranges over all restricted analytic functions.

Theorem (van den Dries, Macintyre, and Marker 1994). The expansion $\mathbf{N o}_{\text {an }}$ of the field No with all the functions \tilde{f}_{\mid}is an elementary extension of $\mathbb{R}_{a n}$.

Ressayre's axioms

Let $T_{\text {exp }}$ be the complete theory of $(\mathbb{R},<, 0,1,+, \cdot, \exp)$.
In Ressayre (1993) (extended abstract) it was proved that the complete theory of $T_{\text {exp }}$ is recursively (in fact finitely) axiomatized over the complete theory of restricted exp.

This can also be deduced via Robinson's joint embedding theorem from the axiomatization of $T_{a n, \text { exp }}$ in van den Dries et al. (1994), where $T_{a n, \exp }$ is the complete theory of ($\mathbb{R}_{a n}$, exp).

Theorem. A real closed ordered field K endowed with an isomorphism of ordered groups $E:(K,+,<) \rightarrow\left(K^{>0}, \cdot,<\right)$ is a model of $T_{\text {exp }}$ if and only if the following axioms hold:
(i) $E(x) \geq x+1$ for all $x \in K$;
(ii) the restriction of E to $[-1,1]$ makes K into a model of the theory of $\left(\mathbb{R},<, 0,1,+, \cdot, \exp _{[[-1,1]}\right)$.

Exercise. Show that the above axioms imply that $E(x) \geq x^{n}$ for all $x \geq 4 n^{2}, n \in \mathbb{N}$.

Purely infinite elements

Let $\mathbf{N o}^{\uparrow}=\mathbb{R}\left(\left(\boldsymbol{\Omega}^{>1}\right)\right)_{\text {on }}$.
We have a direct sum decomposition

$$
\mathbf{N o}=\mathbf{N} \mathbf{o}^{\uparrow} \oplus \mathbb{R} \oplus o(1) .
$$

Given $x \in \mathbf{N o}$, we can write

$$
x=x^{\uparrow}+x^{\circ}+x^{\downarrow}
$$

with $x^{\uparrow} \in \mathbf{N o}^{\uparrow}, x^{\circ} \in \mathbb{R}, x^{\downarrow} \in o(1)$.

For instance:

$$
x=\underbrace{\omega^{3}+3 \omega^{2}}_{x^{\uparrow} \in \mathbf{N}^{\circ} \uparrow}+\underbrace{4}_{x^{\circ} \in \mathbb{R}}+\underbrace{\omega^{-1}+\omega^{-2}+\ldots}_{x \downarrow \in o(1)}
$$

Exponentiation of finite numbers

We can define $\exp \left(\omega^{-1}\right) \in \mathbf{N o}$ via the Taylor series $\exp \left(\omega^{-1}\right)=\sum_{n \in \mathbb{N}} \frac{\omega^{-n}}{n!}$, since $\left(\frac{\omega^{-n}}{n!}\right)_{n \in \mathbb{N}}$ is summable.

However, we cannot use the same idea to define $\exp (\omega)$ because $\left(\frac{\omega^{n}}{n!}\right)_{n \in \mathbb{N}}$ is not summable.
We also need to ensure that the basic laws of exponentiation hold, such as $\exp (x+y)=\exp (x) \exp (y)$.
We define exp : No \rightarrow No as follows (as per Berarducci and Mantova 2018, Thm. 3.8).

$$
\exp \left(x^{\uparrow}+x^{\circ}+x^{\downarrow}\right):=\exp \left(x^{\uparrow}\right) \exp \left(x^{\circ}\right) \exp \left(x^{\downarrow}\right) \quad x^{\uparrow} \in \mathbf{N} \mathbf{o}^{\uparrow}, x^{\circ} \in \mathbb{R}, x^{\downarrow} \in o(1)
$$

For the finite elements of $\mathbf{N o}$, it suffices to define:

$$
\begin{array}{ll}
\exp (r):=e^{r} & r \in \mathbb{R} \\
\exp (\varepsilon):=\sum_{n \in \mathbb{N}} \frac{\varepsilon^{n}}{n!} & \varepsilon \in o(1)
\end{array}
$$

It remains to define \exp on $\mathbf{N o}^{\uparrow}$.

Exponentiation of purely infinite numbers

For $x=\sum_{i<\alpha} r_{i} \mathfrak{m}_{i} \in \mathbf{N o}^{\uparrow}$ we define $\exp (x)$ guided by the heuristic that $\exp (x)$ should grow faster than any polynomial.
In the following formulas, $\mathfrak{m}, \mathfrak{m}_{i}$ are all in $\Omega^{>1}, r, r_{i}$ in $\mathbb{R}^{\neq 0}$.

$$
\left.\begin{array}{rl}
\exp (\mathfrak{m}) & :=\left\{\mathfrak{m}^{k}, \exp \left(\mathfrak{m}^{L}\right)^{k}\right\} \mid\left\{\exp \left(\mathfrak{m}^{R}\right)^{1 / k}\right\} \\
\exp (\mathfrak{m} r) & :=\left\{\begin{array}{l}
\text { where } k \text { ranges in } \mathbb{N}^{\neq 0}, \\
\mathfrak{m}^{L}, \mathfrak{m}^{R} \text { range among the options of } \mathfrak{m} \text { in } \Omega
\end{array}\right. \\
\exp \left(\sum_{i<\beta+1} \mathfrak{m}^{r^{-}}\right\} \mid\left\{\exp \left(\mathfrak{m} r^{r^{+}}\right\}\right. & :=\exp \left(\sum_{i<\beta} \mathfrak{m}_{i} r_{i}\right) \exp \left(r_{\beta} \mathfrak{m}_{\beta}\right) \quad \text { for } \beta \in \text { On } \\
\exp \left(\sum_{i<\alpha} r_{i} \mathfrak{m}_{i}\right) & :=\left\{\exp \left(\sum_{i<\beta} \mathfrak{m}_{i} r_{i}\right) \exp \left(\mathfrak{m}_{\beta} r_{\beta}^{-}\right)\right\} \mid\left\{\exp \left(\sum_{i<\beta} \mathfrak{m}_{i} r_{i}\right) \exp \left(\mathfrak{m}_{\beta} r_{\beta}^{+}\right)\right\}
\end{array}\right\}
$$

Exponential normal form

Theorem (Gonshor 1986). The map exp : $(\mathbf{N o}, 0,+,<) \rightarrow\left(\mathbf{N o}^{>0}, 1, \cdot,<\right)$ is an isomorphism.
The direct sum decomposition

$$
\mathbf{N o}=\mathbf{N} \mathbf{o}^{\uparrow} \oplus \mathbb{R} \oplus o(1)
$$

corresponds via exp to the multiplicative direct sum

$$
\mathbf{N o}^{>0}=\boldsymbol{\Omega} \odot \mathbb{R}^{>0} \odot(1+o(1)) .
$$

In particular $\boldsymbol{\Omega}=\exp \left(\mathbf{N o}{ }^{\uparrow}\right)$, so we can write every surreal $f=\sum_{i<\alpha} r_{i} \mathfrak{m}_{i} \in \mathbf{N o}$ in the form

$$
f=\sum_{i<\alpha} r_{i} e^{\gamma_{i}}
$$

where $\mathfrak{m}_{i}=e^{\gamma_{i}} \in \boldsymbol{\Omega}$ and $\gamma_{i} \in \mathbf{N o}^{\uparrow}$. We call this the exponential normal form of f.
We call $\log : \mathbf{N o}^{>0} \rightarrow$ No the inverse of exp.

$$
\text { For } \varepsilon \prec 1, \log (1+\varepsilon)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\varepsilon^{n}}{n}=\varepsilon-\varepsilon^{2} / 2+\varepsilon^{3} / 3+\ldots
$$

Elementary properties

Theorem (van den Dries and Ehrlich 2001). No is an elementary extension of $\mathbb{R}_{a n, \exp }$, where $\mathbb{R}_{\text {an, } \exp }$ is the expansion of the field \mathbb{R} with all analytic functions restricted to $[-1,1]^{n}$ and the (unrestricted) exponential function.

We recall that $\mathbb{R}_{a n, \exp }$ is o-minimal: every subset of \mathbb{R} definable in $\mathbb{R}_{\exp }$ is a finite union of open intervals $(a, b),(a,+\infty),(-\infty, a)$ and points. The same same then holds for No in the language $L_{a n, \exp }$.

LE-functions

Definition (Hardy 1910). Let $f:\left(\mathbb{R}^{\geq a}\right)^{n} \rightarrow \mathbb{R}$. We say that f is a log-exp function if it is a composition of algebraic functions, exp and log.

Log-exp functions in one variable are linearly ordered by $f<g$ if $\exists n \forall x>n(f(x)<g(x))$ (Hardy, 1910).

Remark. Every log-exp function has a natural extension to a function $f_{\mathbf{N o}}:\left(\mathbf{N o}^{\geq a}\right)^{n} \rightarrow \mathbf{N o}$.
Proof. The graph of f is definable in $\mathbb{R}_{\text {exp }}$, so fix a defining formula and let f_{No} be the function on No defined by the same formula. This does not depend on the choice of the formula since $\mathbb{R}_{\text {exp }} \prec \mathbf{N o} \mathbf{o}_{\text {exp }}$.

Exercise. The map $f \mapsto f_{\mathrm{No}}(\omega)$ is injective and order preserving. The exponential normal form of $f_{\mathrm{No}}(\omega)$ corresponds to an asymptotic expansion of f.

Example

We compute the exponential normal form of $(\omega+1)^{\omega}$.

$$
\begin{aligned}
(\omega+1)^{\omega} & =\exp (\omega(\log (1+\omega))) \\
& =\exp \left(\omega\left(\log (\omega)+\log \left(1+\omega^{-1}\right)\right)\right) \\
& =\exp \left(\omega \log (\omega)+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \omega^{-n+1}\right) \\
& =\exp \left(\omega \log (\omega)+1-\frac{1}{2} \omega^{-1}+\ldots\right) \\
& =\omega^{\omega} e^{1} \exp \left(-2^{-1} \omega^{-1}+\ldots\right) \\
& =e \omega^{\omega}\left(1-2^{-1} \omega^{-1}+\ldots\right) \\
& =e \omega^{\omega}-e 2^{-1} \omega^{\omega-1}+\ldots
\end{aligned}
$$

This corresponds to the asymptotic expansion for $x \rightarrow \infty$ of the real function $(x+1)^{x}$:

$$
(x+1)^{x} \sim e x^{x}-e 2^{-1} x^{x-1}+\ldots
$$

Bibliography I

Alessandro Berarducci and Vincenzo Mantova. Surreal numbers, derivations and transseries. Journal of the European Mathematical Society, 20(2):339-390, jan 2018. ISSN 1435-9855. doi:10.4171/JEMS/769. 10
John H. Conway. On number and games, volume 6 of London Mathematical Society Monographs. Academic Press, London, 1976. ISBN 0-12-186350-6. 3

Harry Gonshor. An introduction to the theory of surreal numbers. London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1986. ISBN 0-521-31205-1. doi:10.1017/CBO9780511629143. 12
G. H. Hardy. Orders of infinity, The 'infinitärcalcül' of Paul du Bois-Reymond. Cambridge University Press, 1910. URL http://eremita.di.uminho.pt/gutenberg/3/8/0/7/38079/38079-pdf.pdf. 14

Bernhard Hermann Neumann. On ordered division rings. Trans. Amer. Math. Soc, 66(1):202-252, 1949. 4, 5

Jean-Pierre Ressayre. Integer parts of real closed exponential fields (extended abstract). In Peter Clote and J. Krajíček, editors, Arithmetic, Proof Theory, and Computational Complexity (Prague, 1991), volume 23 of Oxford Logic Guides, pages 278-288. Oxford University Press, New York, 1993. ISBN 978-0-19-853690-1. 8

Bibliography II

Lou van den Dries and Philip Ehrlich. Fields of surreal numbers and exponentiation. Fundamenta Mathematicae, 167(2):173-188, 2001. ISSN 0016-2736. doi:10.4064/fm167-2-3. 13

Lou van den Dries, Angus Macintyre, and David Marker. The elementary theory of restricted analytic fields with exponentiation. Annals of Mathematics, 140(1):183-205, 1994. doi:10.2307/2118545. 7, 8

