Surreal Numbers and Transseries — Lectures 3 and 4

Alessandro Berarducci¹, Vincenzo Mantova²

¹University of Pisa, ²University of Leeds

Fields Institute, 24 and 26 January 2022

Summability

Definition. A family $(f_i)_{i \in I}$ in $\mathbb{R}((\mathfrak{M}))$ is summable if each $\mathfrak{m} \in \mathfrak{M}$ belongs to the support of finitely many f_i and there is no strictly increasing sequence $(\mathfrak{m}_k)_{k \in \mathbb{N}}$ in \mathfrak{M} such that each \mathfrak{n}_k belongs to the support of some f_i . The sum

$$f = \sum_{i \in I} f_i \in \mathbb{R}((\mathfrak{M}))$$

is then defined adding the coefficients of the corresponding monomials.

In other words $(f_i)_{i \in I}$ is summable if and only if $\bigcup_{i \in I} \operatorname{supp}(f_i) \subset \mathfrak{M}$ is reverse well ordered and for all $\mathfrak{m} \in \mathfrak{M}$ there are at most finitely many $i \in I$ such that $\mathfrak{m} \in \operatorname{supp}(f_i)$.

Exercise. Let $\varepsilon \prec 1$ in $\mathbb{R}((\mathbf{x}^{\mathbb{Z}}))$. Then $(\varepsilon^n/n!)_{n\in\mathbb{N}}$ is summable, so we can define $\exp(\varepsilon) = \sum_n \varepsilon^n/n!$.

Hint: **x** is the smallest monomial in $\mathbb{R}((\mathbf{x}^{\mathbb{Z}}))$, so all the monomials of ε^n are smaller or equal to \mathbf{x}^{-n} .

Exercise. $(f_i)_{i \in I} \in \mathbb{R}((\mathfrak{M}))$ is summable if and only if there are no injective maps $n \mapsto i_n \in I$ and monomials $\mathfrak{m}_n \in \operatorname{supp}(f_{i_n})$ such that $(\mathfrak{m}_n)_n$ is weakly increasing.

We call the sequence $n \mapsto (i_n, \mathfrak{m}_n)$ a bad sequence.

The surreals as a directed union of Hahn fields

Let $\Omega \subset No$ be the group of surreal monomials and let \mathcal{F} be the family of all subgroups of Ω that are sets (rather than proper classes). Now let

$$\mathbb{R}((\mathbf{\Omega}))_{\mathsf{on}} := igcup_{\mathfrak{M}\in\mathcal{F}} \mathbb{R}((\mathfrak{M})).$$

Recall that every surreal number $f \in No$ has a Conway normal form $f = \sum_{i < \alpha} \mathfrak{m}_i r_i$. Theorem (Conway 1976). There is a canonical identification

 $\mathsf{No} = \mathbb{R}((\Omega))_{\mathsf{On}}$

sending $f = \sum_{i < \alpha} \mathfrak{m}_i r_i \in \mathbf{No}$ to the sum of the summable family $(\mathfrak{m}_i r_i)_{i < \alpha}$ in $\mathbb{R}((\Omega))_{\mathbf{On}}$.

Many properties of **No** will be deduced from corresponding properties of the Hahn fields $\mathbb{R}((\mathfrak{M}))$.

Neumann's lemma

Given a multi-index $i = (i_1, \ldots, i_\ell) \in \mathbb{N}^\ell$ and $x = (x_1, \ldots, x_\ell)$ in $\mathbb{R}((\mathfrak{M}))^\ell$, let $\mathbf{x}^i := x_1^{i_1} x_2^{i_2} \cdots x_\ell^{i_\ell}$. We write $x \prec 1$ if $x_i \prec 1$ for all $i = 1, \ldots, \ell$.

Lemma (Neumann 1949). For every $\varepsilon \prec 1$ in $\mathbb{R}((\mathfrak{M}))^{\ell}$ and $\{r_i\}_{i \in \mathbb{N}^{\ell}} \subseteq \mathbb{R}$ the family $(r_i \varepsilon^i)_{i \in \mathbb{N}^{\ell}}$ is summable.

Corollary. $\mathbb{R}((\mathfrak{M}))$ *is a field.*

If $0 \neq f \in \mathbb{R}((\mathfrak{M}))$, we can write $f = \mathfrak{m}r(1 + \varepsilon)$ with $\mathfrak{m} \in \mathfrak{M}$, $r \in \mathbb{R}^{\neq 0}$ and $\varepsilon \prec 1$. Then $f^{-1} = \mathfrak{m}^{-1}r^{-1}(1 + \varepsilon)^{-1}$ where $(1 + \varepsilon)^{-1} = \sum_{n \in \mathbb{N}} (-1)^n \varepsilon^n$ is well defined by Neumann's lemma.

Corollary. No = $\mathbb{R}((\Omega))_{on}$ is a field.

Proof of Neumann's lemma

Lemma (Neumann 1949). For every $\varepsilon \prec 1$ in $\mathbb{R}((\mathfrak{M}))^{\ell}$ and $\{r_i\}_{i \in \mathbb{N}^{\ell}} \subseteq \mathbb{R}$ the family $(r_i \varepsilon^i)_{i \in \mathbb{N}^{\ell}}$ is summable.

For simplicity $\ell = 1$. For a contradiction there is a bad sequence $n \mapsto (i_n, \mathfrak{m}_n)$. So $n \mapsto i_n$ is injective, $\mathfrak{m}_n \in \operatorname{supp}(\varepsilon^{i_n})$ and \mathfrak{m}_n is weakly increasing with n. We order the bad sequences as follows: $(i_n, \mathfrak{m}_n)_n < (j_n, \mathfrak{o}_n)_n$ if for the least n where the two sequences differ, either $i_n < j_n$ or $i_n = j_n$ and $\mathfrak{m}_n > \mathfrak{o}_n$.

We construct a minimal bad sequence as follows. Let i_0 be minimal such that for some \mathfrak{m}_0 , (i_0, \mathfrak{m}_0) can be prolonged to a bad sequence. Let \mathfrak{m}_0 be maximal with this property. Now let i_1 be minimal such that for some \mathfrak{m}_1 there is a bad sequence starting with (i_0, \mathfrak{m}_0) , (i_1, \mathfrak{m}_1) . Let \mathfrak{m}_1 be maximal such. Etc.

Since $\mathfrak{m}_n \in \operatorname{supp}(\varepsilon^{i_n})$, we can write $\mathfrak{m}_n = \mathfrak{o}_{n,1} \cdots \mathfrak{o}_{n,i_n}$ where $\mathfrak{o}_{i,j} \in \operatorname{supp}(\varepsilon)$.

If $(o_{n,i_n})_n$ is weakly decreasing, we obtain a smaller bad sequence by deleting each o_{n,i_n} from \mathfrak{m}_n . Contradiction.

In general, $(\mathfrak{o}_{n,i_n})_n$ is weakly decreasing on an infinite subset $A \subset \mathbb{N}$. We construct a smaller bad sequence (i'_n, \mathfrak{m}'_n) which coincides on the previous one for $n < \min A$, and continues on A where we delete $(\mathfrak{o}_{n,i_n})_n$ as above (if $n \mapsto i'_n$ is not injective, we also need to remove the term with $n = \min A - 1$). Contradiction.

Restricted analytic functions

Let $U \subseteq \mathbb{R}^n$ be an open set and let $f : U \to \mathbb{R}$ be a real analytic function. Now let

 $\widetilde{U} = U + o(1)$

be the infinitesimal neighbourhood of U in **No**ⁿ. There is a natural extension of f to a function

 $\widetilde{f}:\widetilde{U}
ightarrow$ No

defined as follows. For $r \in U$, let $\sum_{i \in \mathbb{N}^n} \frac{D'f(r)}{i!} X^i$ be the Taylor series of f around r, where $i = (i_1, \ldots, i_n)$ is a multi-index. Now for $\varepsilon \in o(1)^n \subseteq \mathbf{No}^n$, define $\tilde{f}(r + \varepsilon) := \sum_{i \in \mathbb{N}^n} \frac{D'f(r)}{i!} \varepsilon^i$, where the summability is ensured by Neumann's lemma.

Example. We can define sin : $O(1) = \mathbb{R} + o(1) \rightarrow [-1, 1]$. Note that sin(ω) is not defined.

Exercise. Show that $\widetilde{f \circ g} = \widetilde{f} \circ \widetilde{g}$ whenever the image of g is contained in the domain of f.

The theory of restricted analytic functions

If $U \supset [-1, 1]^n$, consider the restriction $f_{|}$ of f to $[-1, 1]^n \subseteq \mathbb{R}^n$ and the restriction $\tilde{f}_{|}$ of \tilde{f} to $[-1, 1]^n \subset \mathbf{No}^n$. We call such $f_{|}$ a restricted analytic function.

Let

$$\mathbb{R}_{\textit{an}} := (\mathbb{R}, <, 0, 1, +, \cdot, f_{|}), \quad \mathsf{No}_{\textit{an}} := (\mathsf{No}, <, 0, 1, +, \cdot, \tilde{f}_{|})$$

where $f_{|}$ ranges over all restricted analytic functions.

Theorem (van den Dries, Macintyre, and Marker 1994). The expansion No_{an} of the field No with all the functions $\tilde{f}_{|}$ is an elementary extension of \mathbb{R}_{an} .

Ressayre's axioms

Let $\mathcal{T}_{\mathsf{exp}}$ be the complete theory of $(\mathbb{R}, <, 0, 1, +, \cdot, \mathsf{exp})$.

In Ressayre (1993) (extended abstract) it was proved that the complete theory of T_{exp} is recursively (in fact finitely) axiomatized over the complete theory of restricted exp.

This can also be deduced via Robinson's joint embedding theorem from the axiomatization of $T_{an,exp}$ in van den Dries et al. (1994), where $T_{an,exp}$ is the complete theory of (\mathbb{R}_{an} , exp).

Theorem. A real closed ordered field K endowed with an isomorphism of ordered groups $E: (K, +, <) \rightarrow (K^{>0}, \cdot, <)$ is a model of T_{exp} if and only if the following axioms hold: (i) $E(x) \ge x + 1$ for all $x \in K$;

(ii) the restriction of E to [-1, 1] makes K into a model of the theory of $(\mathbb{R}, <, 0, 1, +, \cdot, \exp_{|[-1,1]})$.

Exercise. Show that the above axioms imply that $E(x) \ge x^n$ for all $x \ge 4n^2$, $n \in \mathbb{N}$.

Purely infinite elements

Let $\mathsf{No}^{\uparrow} = \mathbb{R}((\Omega^{>1}))_{\mathsf{On}}.$

We have a direct sum decomposition

$$\mathsf{No} = \mathsf{No}^{\uparrow} \oplus \mathbb{R} \oplus o(1).$$

Given $x \in \mathbf{No}$, we can write

$$x = x^{\uparrow} + x^{\circ} + x^{\downarrow}$$

with $x^{\uparrow} \in \mathbf{No}^{\uparrow}, x^{\circ} \in \mathbb{R}, x^{\downarrow} \in o(1).$

For instance:

$$x = \underbrace{\omega^3 + 3\omega^2}_{x^{\uparrow} \in \mathbf{No}^{\uparrow}} + \underbrace{4}_{x^{\circ} \in \mathbb{R}} + \underbrace{\omega^{-1} + \omega^{-2} + \dots}_{x^{\downarrow} \in o(1)}$$

Exponentiation of finite numbers

We can define $\exp(\omega^{-1}) \in No$ via the Taylor series $\exp(\omega^{-1}) = \sum_{n \in \mathbb{N}} \frac{\omega^{-n}}{n!}$, since $(\frac{\omega^{-n}}{n!})_{n \in \mathbb{N}}$ is summable.

However, we cannot use the same idea to define $\exp(\omega)$ because $(\frac{\omega^n}{n!})_{n \in \mathbb{N}}$ is not summable.

We also need to ensure that the basic laws of exponentiation hold, such as $\exp(x + y) = \exp(x) \exp(y)$.

We define exp : $No \rightarrow No$ as follows (as per Berarducci and Mantova 2018, Thm. 3.8).

$$\exp(x^{\uparrow} + x^{\circ} + x^{\downarrow}) := \exp(x^{\uparrow}) \exp(x^{\circ}) \exp(x^{\downarrow}) \qquad \qquad x^{\uparrow} \in \mathbf{No}^{\uparrow}, x^{\circ} \in \mathbb{R}, x^{\downarrow} \in o(1)$$

For the finite elements of **No**, it suffices to define:

$$\exp(r) := e^r \qquad r \in \mathbb{R}$$

 $\exp(\varepsilon) := \sum_{n \in \mathbb{N}} \frac{\varepsilon^n}{n!} \qquad \varepsilon \in o(1)$

It remains to define exp on \mathbf{No}^{\uparrow} .

Exponentiation of purely infinite numbers

For $x = \sum_{i < \alpha} r_i \mathfrak{m}_i \in \mathbf{No}^{\uparrow}$ we define $\exp(x)$ guided by the heuristic that $\exp(x)$ should grow faster than any polynomial.

In the following formulas, $\mathfrak{m}, \mathfrak{m}_i$ are all in $\Omega^{>1}, r, r_i$ in $\mathbb{R}^{\neq 0}$.

$$\begin{split} \exp(\mathfrak{m}) &:= \left\{ \mathfrak{m}^{k}, \exp(\mathfrak{m}^{L})^{k} \right\} \left| \left\{ \exp(\mathfrak{m}^{R})^{1/k} \right\} & \text{where } k \text{ ranges in } \mathbb{N}^{\neq 0}, \\ \mathfrak{m}^{L}, \mathfrak{m}^{R} \text{ range among the options of } \mathfrak{m} \text{ in } \Omega \\ \exp(\mathfrak{m} r) &:= \left\{ \exp(\mathfrak{m})^{r^{-}} \right\} \left| \left\{ \exp(\mathfrak{m})^{r^{+}} \right\} & r^{-}, r^{+} \text{ ranging in } \mathbb{Q} \text{ with } r^{-} < r < r^{+} \\ \exp\left(\sum_{i < \beta} \mathfrak{m}_{i} r_{i}\right) &:= \exp\left(\sum_{i < \beta} \mathfrak{m}_{i} r_{i}\right) \exp(r_{\beta} \mathfrak{m}_{\beta}) & \text{for } \beta \in \mathbf{On} \\ \exp\left(\sum_{i < \alpha} r_{i} \mathfrak{m}_{i}\right) &:= \left\{ \exp\left(\sum_{i < \beta} \mathfrak{m}_{i} r_{i}\right) \exp(\mathfrak{m}_{\beta} r_{\beta}^{-}) \right\} \left| \left\{ \exp\left(\sum_{i < \beta} \mathfrak{m}_{i} r_{i}\right) \exp(\mathfrak{m}_{\beta} r_{\beta}^{+}) \right\} \\ & \text{where } \beta \text{ ranges in the ordinals } < \alpha \text{ and } r_{\beta}^{-}, r_{\beta}^{+} \text{ range in } \mathbb{Q} \text{ with } r_{\beta}^{-} < r_{\beta} < r_{\beta}^{+}. \end{split}$$

11/15

Exponential normal form

Theorem (Gonshor 1986). The map $exp : (No, 0, +, <) \rightarrow (No^{>0}, 1, \cdot, <)$ is an isomorphism.

The direct sum decomposition

$$\mathsf{No}=\mathsf{No}^{\uparrow}\oplus\mathbb{R}\oplus o(1)$$

corresponds via exp to the multiplicative direct sum

$$\mathsf{No}^{>0} = \mathbf{\Omega} \odot \mathbb{R}^{>0} \odot (1 + o(1)).$$

In particular $\Omega = \exp(No^{\uparrow})$, so we can write every surreal $f = \sum_{i < \alpha} r_i \mathfrak{m}_i \in No$ in the form

$$f = \sum_{i < \alpha} r_i e^{\gamma_i}$$

where $\mathfrak{m}_i = e^{\gamma_i} \in \Omega$ and $\gamma_i \in \mathbf{No}^{\uparrow}$. We call this the exponential normal form of f. We call $\log : \mathbf{No}^{>0} \to \mathbf{No}$ the inverse of exp. For $\varepsilon \prec 1$, $\log(1 + \varepsilon) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\varepsilon^n}{\varepsilon} = \varepsilon - \varepsilon^2/2 + \varepsilon^3/3 + \dots$

Elementary properties

Theorem (van den Dries and Ehrlich 2001). **No** *is an elementary extension of* $\mathbb{R}_{an,exp}$ *, where* $\mathbb{R}_{an,exp}$ *is the expansion of the field* \mathbb{R} *with all analytic functions restricted to* $[-1,1]^n$ *and the (unrestricted) exponential function.*

We recall that $\mathbb{R}_{an,exp}$ is o-minimal: every subset of \mathbb{R} definable in \mathbb{R}_{exp} is a finite union of open intervals $(a, b), (a, +\infty), (-\infty, a)$ and points. The same same then holds for **No** in the language $L_{an,exp}$.

LE-functions

Definition (Hardy 1910). Let $f : (\mathbb{R}^{\geq a})^n \to \mathbb{R}$. We say that f is a log-exp function if it is a composition of algebraic functions, exp and log.

Log-exp functions in one variable are linearly ordered by f < g if $\exists n \forall x > n(f(x) < g(x))$ (Hardy, 1910).

Remark. Every log-exp function has a natural extension to a function f_{No} : $(No^{\geq a})^n \to No$.

Proof. The graph of f is definable in \mathbb{R}_{exp} , so fix a defining formula and let f_{No} be the function on **No** defined by the same formula. This does not depend on the choice of the formula since $\mathbb{R}_{exp} \prec No_{exp}$.

Exercise. The map $f \mapsto f_{No}(\omega)$ is injective and order preserving. The exponential normal form of $f_{No}(\omega)$ corresponds to an asymptotic expansion of f.

Example

We compute the exponential normal form of $(\omega + 1)^{\omega}$.

$$\begin{aligned} (\omega+1)^{\omega} &= \exp\left(\omega(\log(1+\omega))\right) \\ &= \exp\left(\omega\left(\log(\omega) + \log(1+\omega^{-1})\right)\right) \\ &= \exp\left(\omega\log(\omega) + \sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\omega^{-n+1}\right) \\ &= \exp\left(\omega\log(\omega) + 1 - \frac{1}{2}\omega^{-1} + \dots\right) \\ &= \omega^{\omega}e^{1}\exp(-2^{-1}\omega^{-1} + \dots) \\ &= e\omega^{\omega}\left(1 - 2^{-1}\omega^{-1} + \dots\right) \\ &= e\omega^{\omega} - e^{2^{-1}}\omega^{\omega-1} + \dots\end{aligned}$$

This corresponds to the asymptotic expansion for $x \to \infty$ of the real function $(x + 1)^x$:

$$(x+1)^x \sim ex^x - e2^{-1}x^{x-1} + \dots$$

Bibliography I

- Alessandro Berarducci and Vincenzo Mantova. Surreal numbers, derivations and transseries. *Journal of the European Mathematical Society*, 20(2):339–390, jan 2018. ISSN 1435-9855. doi:10.4171/JEMS/769. 10
- John H. Conway. *On number and games*, volume 6 of *London Mathematical Society Monographs*. Academic Press, London, 1976. ISBN 0-12-186350-6. 3
- Harry Gonshor. *An introduction to the theory of surreal numbers*. London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1986. ISBN 0-521-31205-1. doi:10.1017/CBO9780511629143. 12
- G. H. Hardy. Orders of infinity, The 'infinitärcalcül' of Paul du Bois-Reymond. Cambridge University Press, 1910. URL http://eremita.di.uminho.pt/gutenberg/3/8/0/7/38079/38079-pdf.pdf. 14
 Bernhard Hermann Neumann. On ordered division rings. Trans. Amer. Math. Soc, 66(1):202-252, 1949. 4, 5
- Jean-Pierre Ressayre. Integer parts of real closed exponential fields (extended abstract). In Peter Clote and J. Krajíček, editors, *Arithmetic, Proof Theory, and Computational Complexity (Prague, 1991)*, volume 23 of *Oxford Logic Guides*, pages 278–288. Oxford University Press, New York, 1993. ISBN 978-0-19-853690-1. 8

Bibliography II

- Lou van den Dries and Philip Ehrlich. Fields of surreal numbers and exponentiation. *Fundamenta Mathematicae*, 167(2):173–188, 2001. ISSN 0016-2736. doi:10.4064/fm167-2-3. 13
- Lou van den Dries, Angus Macintyre, and David Marker. The elementary theory of restricted analytic fields with exponentiation. *Annals of Mathematics*, 140(1):183–205, 1994. doi:10.2307/2118545. 7, 8