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Introduction
The ordered fieldNo of surreal numbers was introduced by Conway (1976). It includes both the field R
and the classOn of all ordinal numbers, and it is included in the class of games (up to equivalence).

we obtain a theory at once simpler and more extensive than Dedekind’s theory of the real numbers just
by definining numbers as the strength of positions in certain games (Conway, 1976).

Examples. The ordinal ω is a surreal number, and so are ω − 1 , 1/ω ,
√
ω , log(ω) , ω

√
2, . . ..

Transseries originated with the work of Dahn and Göring (1987) and were rediscovered by Ecalle (1992)
in his positive solution of Dulac’s conjecture: the finiteness of limit cycles in polynomial planar vector
fields (part of Hilbert’s 16th problem).

Transseries can also occur in solving implicit equations of the form p(x, y, ex, ey) = 0 where p is a
polynomial.

We shall discuss the connections between surreals and transseries, having also in mind the applications
to asymptotic analysis in the context of Hardy fields.
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Reminder on ordinal numbers
Definition. 0 (zero) is an ordinal.

If α is an ordinal, so is α + 1 (the smallest ordinal> α).
The sup of a set of ordinals is an ordinal.

The first few ordinals are:
0, 1, 2, . . . , ω,
ω + 1, ω + 2, . . . , ω + ω = ω2, ω2 + 1, . . . , ω3, . . . ,
ω2, ω2 + 1, . . . , ω2 + ω, . . . , ω22, . . . , ω22 + ω, . . . , ω23, . . . ,
ω3, . . . , ω3 + ω, . . . , ω3 + ω2, ω3 + ω2, ω3 + ω22, . . . , ω32, . . . ,
. . . , ω4, . . . ω5, . . . . . . . . . . . . , ωω

The classOn of all ordinals is not a set, otherwise its sup would be a new ordinal.

Following von Neumann, an ordinal α is identified with the set of ordinals< α.
0 = ∅, 1 = {0}, 2 = {0, 1}, . . . , n + 1 = n ∪ {n}, . . . , ω = {n | n < ω}.

In general α + 1 = α ∪ {α} and supi∈I αi =
⋃

i∈I αi.
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The tree of surreal numbers
Definition. A surreal number is a function x : α→ {	,⊕}where α = birthday(x) is an ordinal.
On the classNo of surreal numbers we define a simplicity relation<s by x <s y if x ( y.

(No, <s) is a binary tree.

Every x ∈ No has two children,
‘x	’ and ‘x⊕’.

x ∩ y is the meet of x, y.

No has a (unique) total order<
such that

x	∗ < x < x⊕∗
where x	∗ is any extension of
x	 and x⊕∗ is any extension of
x⊕.
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Simplicity
A subclass C ⊆ No is convex if whenever x, y ∈ C and x < z < y, also z ∈ C.

Proposition. Every non-empty convex subclass C has a simplest element given by
⋂

C.

Proof. It su�ices to observe that for any x, y ∈ Nowith x ≤ y, we have x ≤ x ∩ y ≤ y.

Proposition. If L,R are sets of surreals with L < R, then {x ∈ No : L < x < R} is convex non-empty.

Proof sketch. Let us write x(α) = ⊥when α ≥ birthday(x), and let	 < ⊥ < ⊕.
By induction, let b(α) := max{x(α) : x ∈ L, x|α = b|α}, c(α) := min{y(α) : y ∈ R, x|α = c|α}.
By construction, L ≤ b, c ≤ R. Since L < R, we have b ≤ c.
One can easily verify that L < x < R for (at least) one x ∈ {b, c, b	, c⊕, b⊕	, c	⊕}.

Definition. If L and R are sets of surreals with L < R, let x = L | R be the simplest surreal with L < x < R.

Note that x = {xL} | {xR}where xL, xR range over the numbers simpler than x with xL < x, x < xR.
We call xL a le�-option of x and xR a right-option of x.

Example.⊕⊕	⊕ = {∅,⊕,⊕⊕	} | {⊕⊕} (where ∅ is the empty sequence).
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Addition
Definition. The addition of surreal numbers is defined by induction on simplicity:

x + y := {xL + y, x + yL} | {xR + y, x + yR}

where xL, yR vary among le� and right options of x and similarly for y.

The idea is that + should be strictly increasing in both arguments.

Proposition. Addition makes No into an ordered abelian group with neutral element 0 = ∅ | ∅ and
opposite−x = {−xR} | {−xL}.

Partial proof. By induction on simplicity, one can immediately prove that addition is well defined and
strictly increasing in both arguments.
By a trivial induction, x + y = y + x for all x, y ∈ No.
By definition, x + 0 = {xL + 0} | {xR + 0}, thus by induction x + 0 = {xL} | {xR} = x.
Similarly, x + (−x) = {xL + (−x), x + (−xR)} | {xR + (−x), x + (−xL)}. By induction, we may assume
xL + (−x) < x + (−x) = 0, xR + (−x) > 0 and so on. Thus, 0 is between the le� and right sets, and is
clearly the simplest, thus x + (−x) = 0.
Associativity relies on the ‘uniformity property’ (omitted).



7/12

Multiplication
We want to define a multiplication of surreal numbers making it into an ordered ring.

Heuristic: in any ordered ring, the sign of

(x − a)(y − b) = xy − xb− ay + ab

is determined by the signs of (x − a) and (y − b).

This motivates the following definition of multiplication inNo:
Definition. The multiplication of surreal numbers is defined by

xy := {xLy + xyL − xLyL, xRy + xyR − xRyR} | {xLy + xyR − xLyR, xRy + xyL − xRyL}.

where xL ranges over the le�-options of x, xR ranges over its right-options, and similarly for yL and yR.

Proposition. (No, <,+, ·) is an ordered ring.

We will later prove that it is in fact a field.
MoreoverNo is real closed: every polynomial p(x) ∈ No[x] which changes sign has a zero inNo.
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Embedding the reals

SinceNo is an ordered field, it contains a unique subfield Q ⊂ No isomorphic to the rational numbers.

The dyadic rationals m
2n ∈ Q are the surreal numbers s : k→ {	,⊕}whose birthday is a finite ordinal.

For r ∈ R, let r− and r+ range over all dyadic rationals with r− < r < r+.
The real numbers are a subfield ofNo under the identification r = {r−} | {r+} ∈ No.

A surreal number x : α→ {	,⊕} belongs to R ⊂ No if and only if either birthday (x) < ω or
birthday (x) = ω and and x is not eventually constant (see Conway (1976) or Gonshor (1986, p. 33)).
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Embedding the ordinals

There is a natural embeddingOn→ No: the ordinal α is mapped to the surreal x : α→ {	,⊕}with
x(i) = ⊕ for all i < α.

The image of the embeddingOn→ No coincides with the numbers of the form L | ∅where L is any
subset ofNo.

When there is no risk of confusion, we identifyOnwith its image inNo and writeOn ⊂ No.

The surreal sum and product restricted toOn is the Hessenberg sum and product respectively.
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Domination
Definition. Given f , g in an ordered abelian group (or field), we define
• f � g :⇐⇒ |f | ≤ n|g| for some n ∈ N (say g dominates f );
• f � g :⇐⇒ f � g & g � f (say f , g are comparable);
• f ≺ g :⇐⇒ f � g & g 6� f (say f strictly dominates f );
• f ∼ g :⇐⇒ f − g ≺ f (say f is asymptotic to g).

Note that� is a quasi-order (namely, it is reflexive, transitive, and total), and that∼ is a symmetric
relation. Indeed assume f − g ≺ f and let us prove that f − g ≺ g. This is clear if f � g. On the other
hand if g ≺ f , then f − g � f , contradicting the assumption.

Example. Let R(x) be the field of rational functions ordered by x > R and let f , g ∈ R(x). We have f ≺ g
if f/g tends to 0 for x→ +∞; f ∼ g if f/g tends to 1; and f � g if f/g tends to a non-zero limit in R.

We write O(f ) for the set of all g such that g � f and o(f ) for the set of all g such that g ≺ f .

O(1) is the ring of finite elements and o(1) ⊆ O(1) is its unique maximal ideal consisting of the
infinitesimal elements.
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Monomials

Definition. Given an ordered field K and a multiplicative subgroup N ⊆ K>0, we say that N is a group of
monomials of K if for every f ∈ K \ {0} there is one and only one n ∈ N with f � n.

In other words a group of monomials is a section of the natural valutation v : K∗ → Γ (with valuation ring
O(1) ⊆ K).

Example. The multiplicative group xZ is a group of monomials of R(x).

If K is a real closed field, its value group with respect to the natural valuation is a Q-vector space. From
the existence of basis in vector spaces it follows that every real closed field admits a group of monomials.



12/12

Surreals monomials

Definition. Let Ω ⊂ No be the class of simplest positive elements in each�-class ofNo.

Theorem. Ω is a multiplicative subgroup ofNo, hence a group of monomials.

Proof sketch. Define by induction ω·x = {0, nω·x
L} | { 1

n+1ω
·xR} for n ranging in N.

One can show that ω·No = Ω. Moreover, ω·xω·y = ω·(x+y), thus Ω must be a multiplicative group.

(The notation ω·x is chosen to avoid confusion with ‘ωx = exp(x log(ω))’, to be defined later.)

Exercise. Prove that ω ∈ Ω, where ω is the smallest infinite ordinal. Thus ωZ = {ωn | n ∈ Z} ⊆ Ω.

We have an embedding R(x) ∼= R(ω) ⊆ No of the rational functions inNo.
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