Some reflections on the work of Udi Hrushovski

From Geometric Stability Theory to Tame Geometry Fields Institute

December 16, 2021

Dave Marker

Fields Workshop

December 16, 2021 1 / 1

Udi Hrushovski 1959-...

- 34

< □ > < □ > < □ > < □ > < □ >

Part I: Strongly Minimal Expansions of $\ensuremath{\mathbb{C}}$

Theorem

Suppose $X \subset \mathbb{C}^n$ is non-construcible and $\mathbb{M} = (\mathbb{C}, +, \dots, X)$ is strongly minimal. Then i) there is $f : \mathbb{C} \to \mathbb{C}$ definable in \mathbb{M} but non-constructible; ii) for any irreducible algebraic curve $C \subset \mathbb{C}^2$ the intersection of C with the graph of f is finite.

Let *n* be minimal such that there is $X \subset \mathbb{C}^n$ definable in \mathbb{M} and non-constructible.

For all $a \in \mathbb{C}$ let $X_a = \{\mathbf{x} \in \mathbb{C}^{n-1} : (a, \mathbf{x}) \in X\}.$

By assumption X_a is constructible and is defined by some field formula $\phi_a(x, \mathbf{b}_a)$.

By saturation we only need finitely many such formulas so we can get by with a single formula $\phi(x, y_1, \ldots, y_m)$.

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

Consider

$$\mathbf{c} E \mathbf{d} \Leftrightarrow \forall x \ (\phi(x, \mathbf{c}) \leftrightarrow \phi(x, \mathbf{d})).$$

Be elimination of imaginaries there is a constructible $g:\mathbb{C}^m\to\mathbb{C}^l$ such that

$$\mathbf{c}E\mathbf{d} \Leftrightarrow g(\mathbf{c}) = g(\mathbf{d}).$$

In \mathbb{M} define $F : \mathbb{C} \to \mathbb{C}'$ by

$$F(a) = \mathbf{b} \Leftrightarrow \exists \mathbf{c} \ X_a = \phi(\mathbb{M}, \mathbf{c}) \land g(\mathbf{c}) = \mathbf{b}.$$

i.e, F(a) is a canonical parameter for X_a . But then

$$(a, \mathbf{x}) \in X \Leftrightarrow \exists \mathbf{c} \ g(\mathbf{c}) = F(\mathbf{a}) \land \phi(\mathbf{x}, \mathbf{c}).$$

So F is non-constructible.

There is $f : \mathbb{C} \to \mathbb{C}$ a coordinate function of F that is definable in \mathbb{M} and non-constructible.

ii) Let X be the intersection of C with the graph of f. Suppose for contradiction that X is infinite. Since f is non-constructible, $C \setminus X$ must also be infinite.

Without loss of generality we may assume C is a smooth projective curve with $X \subset C$ definable, infinite and co-infinite.

If C has genus 0, there is $h : \mathbb{C} \to C$ birational and $h^{-1}(X)$ is infinite and co-infinite, a contradiction.

Suppose C has genus g = 1. Then C is an elliptic curve, a divisible abelian group.

There are generic types of *C* containing $v \in X$ and others containing $v \notin X$.

Thus C has Morley degree at least 2.

But then C has a proper definable subgroup C^0 of finite index.

But C is divisible and has no subgroups of finite index.

イロト イポト イヨト イヨト 三日

If g > 1 a similar argument works using the embedding $j : C \rightarrow Jac(C)$ into the Jacobian.

• *Jac*(*C*) is a divisible commutative group;

• $(x_1, \ldots, x_g) \mapsto j(x_1) \oplus \cdots \oplus j(x_g)$ is a birational map between $C^{(g)} = C^g / Sym_g$ and the Jacobian.

• If x_1, \ldots, x_g are independent generics in X and y_1, \ldots, y_g are independent generics in $C \setminus X$, then $j(x_1) \oplus \cdots \oplus j(x_g)$ and $j(y_1) \oplus \cdots \oplus j(y_g)$ are distinct generics in Jac(C).

If follows that Jac(C) has Morley degree > 1 and has proper finite index definable subgroups, contradicting divisibility.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Semialgebraic Expansions of $\ensuremath{\mathbb{C}}$

Suppose $X \subset \mathbb{R}^{2n}$. Let

$$\widehat{X} = \{ (x_1 + x_2 i, \dots, x_{2n-1} + x_{2n} i) \in \mathbb{C}^n : (x_1, \dots, x_n) \in X \}.$$

Theorem (Marker)

If X is semialgebraic either \widehat{X} is constructible or \mathbb{R} is definable in $(\mathbb{C}, +, \cdot, \widehat{X})$.

- If $X \subset \mathbb{R}^2$ and $\widehat{X} \subset \mathbb{C}$ is non-constructible we can define \mathbb{R} .
- Suppose $(\mathbb{C}, +, \cdot, X)$ defines no non-constructible subsets of \mathbb{C} . Since o-minimality \Rightarrow uniform bounding, $(\mathbb{C}, +, \cdot, X)$ is strongly minimal.

By Udi's result there is a non-constructible definable $f : \mathbb{C} \to \mathbb{C}$.

Let $f : \mathbb{C} \to \mathbb{C}$ be a non-constructible function definable in $(\mathbb{C}, +, \cdot, \widehat{X})$. Let $X_0 = \{(a, b) \in \mathbb{R}^2 : \exists c \ f(a) = b + ci\}$ and $X_1 = \{(a, b) \in \mathbb{R}^2 : \exists d \ f(a) = d + bi\}.$

These are graphs of semialgebraic functions, thus there are $p(x, y) \in \mathbb{R}[x, y]$ such that X_i is contained in the curve $p_i(x, y) = 0$. For all $x \in \mathbb{R}$

$$(x, f(x)) \in V = \{(x, y) : \exists z_0 \exists z_1 \ p_0(x, z_0) = 0 \land p_1(x, z_1) = 0 \land y = z_0 + z_1 i\}$$

a 1-dimension constructible set. It follows that except for a finite set the graph of f is contained in an irreducible component of V, contradicting Hrushovski's result.

Strongly minimal expansions of algebraically closed fields

Theorem

There is a strongly minimal $(K, +, \cdot, \oplus, \otimes)$ such that $(K, +, \cdot)$ is an algebraically closed field of characteristic 0 and (K, \oplus, \otimes) is an algebraically closed field of characteristic p > 0.

Proved by a Hrushovski fusion construction.

Key idea & difficulty: assign and enforce bounds on cardinalities of intersections of 1-dimensional sets

Part II: Hrushovski's work on differentially closed fields

1) Hrushovski–Soklović: *Minimal subsets of differentially closed fields* We work in $(\mathbb{K}, +, \cdot, \delta)$ a differentially closed field of characteristic zero. The field of constants is $C = \{x \in \mathbb{K} : \delta(x) = 0\}$.

Theorem

If X is a strongly minimal set then (perhaps after removing finitely many points), X, equipped with the Kolchin topology on X^n for all n, is a Zariski geometry.

Corollary

If X is a non-locally modular strongly minimal set, then X is non-orthogonal to the constants C.

Manin kernels

What about non-trivial locally moduar sets? Expanding on the work of Manin and Buium...

Theorem

Let A be a simple abelian variety not isomorphic to a variety defined over C. There is a nontrivial differential algebraic group homomorphism $\mu: A \to \mathbb{K}^d$ for some d, such that $A^{\sharp} = \ker \mu$ is a minimal infinite differential algebraic subgroup of A.

 A^{\sharp} is strongly minimal and locally modular.

Theorem

If A and B are abelian varieties that are not isomorphic to abelian varieties defined over C, then A^{\sharp} and B^{\sharp} are non-orthogonal if and only if A and B are isogenous, i.e., there is an algebraic homomorphism $f : A \rightarrow B$ with finite kernel.

Classification of non-trivial strongly minimal sets

Theorem

If X is any non-trivial locally modular strongly minimal set definable in \mathbb{K} , then X is non-orthogonal to A^{\sharp} for some simple abelian variety A not isomorphic to a variety defined over C.

Rely's on Hrushovski's result that non-trivial locally modular strongly minimal sets are non-orthogonal to interpretable strongly minimal groups.

Vaught's Conjecture for DCF

Corollary

There are 2^{\aleph_0} non-isomorphic countable models of DCF.

 $A^{\sharp} \supseteq \operatorname{Tor}(A)$ so the generic type of A^{\sharp} is non-isolated.

So, the strongly minimal set A^{\sharp} can have different finite dimensions.

Since we can find many orthogonal Manin-kernels we have eni-dop and can code graphs into differentially closed fields.

Diophantine applications

A warm up to the function field Mordell–Lang conjecture in characteristic zero.

Let k be an algebraically closed field, K/k finitely generated, A a simple abelian variety defined over K not isomorphic to an abelian variety defined over k, $V \subset A$ a proper subvariety of A.

claim $V \cap Tor(A)$ is finite.

Construct a derivation $D: K \to K$ with constants kWork in L a differential closure of K. Note C(L) = k.

Construct $A^{\sharp}(L) \supseteq \text{Tor}(A)$. By strong minimality $A^{\sharp}(L) \cap V$ must be finite (else V is a coset of a proper abelian subvariety).

Combined with additional ingredients—Hrushovski–Pillay results on 1-based groups, work on structure of finite Morley rank groups–leads to Hrushovski's proof of function field Mordell–Lang in characteristic 0 and inspired the proof for characteristic p.

Applications of Jouanolou's Theorem

2) untitled unpublished notes

Theorem

Let X be a strongly minimal set of transcendence degree 1 that is orthogonal to the constants. Then X is \aleph_0 -categorical, indeed, (after perhaps throwing out finitely many points) there is a definable \widehat{X} and a definable finite-to-one $f : X \to \widehat{X}$, such that \widehat{X} is a set with no structure.

transcendence degree 1 = if X is defined over k and x is a generic point of X/k then $k\langle x \rangle$ has transcendence degree 1.

For example, X could be defined by a first order equation f(x, x') = 0 or could be a *D*-variety living on a curve.

Theorem

Suppose V is a Kolchin closed set of transcendence degree d defined over the constants C. Either: i) there are only finitely many Kolchin closed subvarieties of V of transcendence degree d - 1 defined over \mathbb{C} , or ii) there is a non-trivial differential algebraic $f : V \to C$.

Hrushovski proved this using an extension of a theorem of Jounalou on differential forms

Freitag and Moosa have proved extensions of Hrushovski's results.

Other ω -stable differential fields

3) Hrushovski-Itai, On model complete differential fields

Theorem

There are 2^{\aleph_0} theories of differential fields that are ω -stable and eliminate quantifiers.

Introduced important tools for:

• constructing disintegrated strongly minimal sets living on algebraic curves C of genus $g \ge 2$ defined over the constants;

• proved results on definability of orthogonality in families

Further work on differential fields

4) Computing the Galois group of a linear differential equation Gives an algorithm for computing the Galois group of an ordinary linear differential equation over $\mathbb{Q}(t)$.

5) (with Anand Pillay) Effective bounds for the number of transcendental points on subvarieties of semi-abelian varieties Let A be an abelian variety and let $X \subset A$ be a subvariety, both defined over a number field, such that there are no infinite subvarieties $X_1, X_2 \subset X$ with $X_1 + X_2 \subseteq X$.

Let $\Gamma \subset A$ be a finitely generated group. Give doubly exponential bounds on the size of $X \cap \Gamma \setminus A(\mathbb{Q}^{alg})$.

6) (with Tom Scanlon) *Lascar and Morley ranks differ in differentially closed fields.*

► End?

イロト イポト イヨト イヨト 三日

Part III: Other favorites

- Detecting the presence of algebraic structure
 - non-trivial locally modular sets arise from groups;
 - detecting a group from a generic associative operation;
 - the group configuration;
 - finding a field in an ample Zariski geometry (with Zilber)
- e model theory of difference fields (with Chatzidakis and Peterzil) and the new proof of the Manin-Mumford conjecture
- Image model theory of the Frobenius automorphism and generalization of Lang–Weil bounds.
- Image: model theory of ACVF
 - elimination of imaginaries, stable domination... (with Haskell and Macpherson)
 - model theoretic construction of Berkovich space (with Loeser)
- approximate subgroups and connections to combinatorics

Happy Birthday Udi!

-

- 34

<ロ> <部> <部> <き> <き>