CHARACTER VARIETIES OF RANDOM GROUPS

Emmanuel Breuillard

Udi Hrushovski birthday conference

joint work with Oren Becker and Peter Varju

I. Charoder variety:
•
$$\Gamma_{w} := \langle x_{1}, ..., x_{k} \mid w_{1} = ... = w_{r} : 1 \rangle = [w_{1}, ..., w_{r}]$$

• presentation with k generators and r relators.
• G a semisimple algebraic group $| T$.
• $Hom (\Gamma_{y}, G) = \langle x \in G^{k} \mid w \Gamma_{x} \rangle = 1 \rangle$ is a closed
• $Hom (\Gamma_{y}, G) = \langle x \in G^{k} \mid w \Gamma_{x} \rangle = 1 \rangle$ is a closed
• G a semisimple algebraic group $| T$.
• $Hom (\Gamma_{y}, G) = \langle x \in G^{k} \mid w \Gamma_{x} \rangle = 1 \rangle$ is a closed
• $Hom (\Gamma_{y}, G) = \langle x \in G^{k} \mid w \Gamma_{x} \rangle = 1 \rangle$ is a closed
• $Hom (\Gamma_{y}, G) = \langle x \in G^{k} \mid w \Gamma_{x} \rangle = 1 \rangle$ is a closed
• G a semisimple of f is the affine variety of T .
• $Mw := Xw / | G$ is the affine variety in G .
with wordinate ring $T[X_{y}]^{G}$ is the Charocter variety
• $f T_{w}$ in G .

. We say that
$$\Gamma_{\infty}$$
 is Grigid if \mathcal{X}_{∞}^{2} is finite.
For example if Γ_{∞} is a lattice in a higher rank semisciple Lie group
(such as SL(d, R), d23), then Γ_{∞} is Grigid for all G: this is
essentially Norgalis's Superingidity Theorem.
. We say that Γ_{∞} is Golois rigid if \mathcal{X}_{∞}^{2} is finite and Q-iverdeck
 $E \times comple(in Bridson-AcReynolds, Reid-Spitler) PSL2(Z(\omega)), \omega^{2} + \omega + 1 = 0$
. has $\mathcal{X}^{2} = [\Gamma_{0}^{2} \cup (\Gamma_{0}^{2} in PEL2)]$
. Surface groups: $\Gamma_{\omega}: \langle a_{1}, ..., a_{q}, b_{1}, ..., b_{s} \mid \frac{1}{\Gamma_{0}}(a; b; l = 1)$
 $\partial F genus groups: $\Gamma_{\omega}: \langle a_{1}, ..., a_{q}, b_{1}, ..., b_{s} \mid \frac{1}{\Gamma_{0}}(a; b; l = 1)$
that $\dim \mathcal{X}_{\Gamma_{\omega}}^{2} = (2g - 2) \dim G$
and \mathcal{X}_{Γ}^{2} is geometrically invedocible$

2 methods a) compute
$$H_1^{(1)}(r, lie6)$$
 Weil's local rigid.¹
b) Use long. Will estimates and evaluate
 $\#$ Hom $(\Pi, G(\mathbb{F}_q))$ via character theory.
II Case of G = S(2 and F = Co, b | w = 1):
 $1 = 10^{16} \text{ dertury}$ Fricke - klein
 $x = 4r(\sigma), y = 4r(b), z = 4r(\sigma)$
 $w = word : 4r(wro, b) = P_{w}(4r(\sigma), 4r(\sigma))$
 $For some P_{v} \in \mathbb{Z}[v, v_{1}, 7]$
 $Example: w_{0} = abab', P_{w} = x^{2} + y^{2} + z^{2} - xyz - 2$
 $Forts : a) P_{v_{0}} = 2 \iff a ave b have a common eigenvector
 $Forts : b) \forall (x, y, 2) \in \mathbb{C}^{3} = I(\sigma, b) \in S(z \in s+. +\sigma = y, 4r(b, cy, 4v))$
 $For some P_{v} = S(z \in s+. +\sigma = y, 4r(b, cy, 4v))$
 $Forts : eigenvector for $F = 10^{16} + 10^{16$$$

Theorem 2 (under GRH)
$$\int_{\mathbb{R}} = (x_1, \dots, x_n] w = \dots = w_n = 1)$$

a random group with w: independent random words
of lingth l. With proba > 1 - e^{-ct}
a) when $r = k \cdot 1$ $\mathcal{R}_{r_n}^2$ is empty
b) when $r = k \cdot 1$ $\mathcal{R}_{r_n}^2$ is finite, $|X_{r_n}| > 1/log P$
and a single Galass or bit.
c) when $r \leq k-2$ $\mathcal{R}_{r_n}^2$ is absolutely irreducible
and dim $\mathcal{R}_{r_n}^2 = (k-r-1) \dim G$
Ru: theorem holds for all G semisimple, but proof requires
extra step to get the $\leq c^2$ bound on probe of enceptions.
2h: The $\equiv c^2$ bound ollows to restrict to wis in $[F_{r_n} f_n]$ or any
fixed subgroup in cleased series, and still get a meaning ful statement.

.

X voviety defour Ri, then Chepotarev: · dim X = lisnsup log [X(p)] · *EF[[[[[]]*] *PF[[[]]*] *[X(p)] (p) (composed) pclimX TTao composed* Frod(p) beromes equidistribuly in the Galois group: If [k:Q]<00, L= Galois closure of k and Gal(LIQ) octs on a set S2, then as T-00 $F_{p(T_{q},T)}$ # Fix(Frob(p)) = |S2| + error error 2' (log Ak + deg K) (Lagorias- odyzko. Ant ganny T T'2-2 (log Ak + deg K) (effective Prime Ided) Theorem.

Here Golois orts on geometric components of XV
drg XV << 2^{Ori} so [K(Xv): Q] << 2^{Ori}
Also: log Disc (K(Xv)) << 2^{Ori}
Nerd a: Good Reduction demma : X = {t₁ = ...= fr = 0} < 0^K
f: CZ[X], H(f:) <= H, drgfi <= d

$$\exists D \in NV$$
 st. if $pX =$
. if $pX = reduction modp is well-differed and
dipmension preserving on geometric components of X
and p is unramified in their fields & definition.
. log $D \leq d \leq d^{Ori}$ log H$

•

Bork to proof ideo: Double rounding:
Ep Ew = Ev Ep
V Ev # Q-involcomp
exponential
mixing for
almost all primes
Ew(I Xu (p)I) = Z, P(w(y) = I)
x + G(p)x
IF Cogley Groph (G(p), x) is an exponder then

$$\left| \int_{u} (w(y) = I) - \frac{1}{|G(p)|} \right| < c error$$

For all $l \Rightarrow \log p$

•

The above stratigy yields the dimension estimate and the Q-irreducibility of Xw, - rondom. To get absolute irreducibility and the Galuis lower bound for the size of Xm when k = r-1, we need to study $|X_w(H_q)| with q = p^n n \approx l/log l$ This ollows to rount the overage # of n-ryeles in the Gelois action on components. Compuling moments /Xw/Ag)/ k=1,2,...,6, he show that Galois arts 6-transitively and use Cameran's theorem (via (150) to conclude that the Galois pup is large...

Thank you.